module Idris.Prover where import Idris.Core.Elaborate hiding (Tactic(..)) import Idris.Core.TT import Idris.Core.Evaluate import Idris.Core.CaseTree import Idris.Core.Typecheck import Idris.AbsSyntax import Idris.AbsSyntaxTree import Idris.Delaborate import Idris.ElabDecls import Idris.ElabTerm import Idris.Parser hiding (params) import Idris.Error import Idris.DataOpts import Idris.Completion import Idris.IdeSlave import Idris.Output import Text.Trifecta.Result(Result(..)) import System.Console.Haskeline import System.Console.Haskeline.History import Control.Monad.State.Strict import Control.DeepSeq import Util.Pretty import Debug.Trace prover :: Bool -> Name -> Idris () prover lit x = do ctxt <- getContext i <- getIState case lookupTy x ctxt of [t] -> if elem x (map fst (idris_metavars i)) then prove (idris_optimisation i) ctxt lit x t else ifail $ show x ++ " is not a metavariable" _ -> fail "No such metavariable" showProof :: Bool -> Name -> [String] -> String showProof lit n ps = bird ++ show n ++ " = proof" ++ break ++ showSep break (map (\x -> " " ++ x) ps) ++ break ++ "\n" where bird = if lit then "> " else "" break = "\n" ++ bird proverSettings :: ElabState [PDecl] -> Settings Idris proverSettings e = setComplete (proverCompletion (assumptionNames e)) defaultSettings assumptionNames :: ElabState [PDecl] -> [String] assumptionNames e = case envAtFocus (proof e) of OK env -> names env where names [] = [] names ((MN _ _, _) : bs) = names bs names ((n, _) : bs) = show n : names bs prove :: Ctxt OptInfo -> Context -> Bool -> Name -> Type -> Idris () prove opt ctxt lit n ty = do let ps = initElaborator n ctxt ty ideslavePutSExp "start-proof-mode" n (tm, prf) <- ploop n True ("-" ++ show n) [] (ES (ps, []) "" Nothing) Nothing iLOG $ "Adding " ++ show tm iputStrLn $ showProof lit n prf i <- getIState ideslavePutSExp "end-proof-mode" n let proofs = proof_list i putIState (i { proof_list = (n, prf) : proofs }) let tree = simpleCase False True False CompileTime (fileFC "proof") [] [] [([], P Ref n ty, tm)] logLvl 3 (show tree) (ptm, pty) <- recheckC (fileFC "proof") [] tm logLvl 5 ("Proof type: " ++ show pty ++ "\n" ++ "Expected type:" ++ show ty) case converts ctxt [] ty pty of OK _ -> return () Error e -> ierror (CantUnify False ty pty e [] 0) ptm' <- applyOpts ptm updateContext (addCasedef n (CaseInfo True False) False False True False [] [] -- argtys, inaccArgs [Right (P Ref n ty, ptm)] [([], P Ref n ty, ptm)] [([], P Ref n ty, ptm)] [([], P Ref n ty, ptm)] [([], P Ref n ty, ptm')] ty) solveDeferred n elabStep :: ElabState [PDecl] -> ElabD a -> Idris (a, ElabState [PDecl]) elabStep st e = case runStateT eCheck st of OK (a, st') -> return (a, st') Error a -> ierror a where eCheck = do res <- e probs' <- get_probs case probs' of [] -> do tm <- get_term ctxt <- get_context lift $ check ctxt [] (forget tm) return res ((_,_,_,e,_,_):_) -> lift $ Error e dumpState :: IState -> ProofState -> Idris () dumpState ist (PS nm [] _ _ tm _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) = do rendered <- iRender $ prettyName False [] nm <> colon <+> text "No more goals." iputGoal rendered dumpState ist ps@(PS nm (h:hs) _ _ tm _ _ _ _ _ _ problems i _ _ ctxy _ _ _ _) = do let OK ty = goalAtFocus ps let OK env = envAtFocus ps let state = prettyOtherGoals hs <> line <> prettyAssumptions env <> line <> prettyGoal (zip (assumptionNames env) (repeat False)) ty rendered <- iRender state iputGoal rendered where ppo = ppOptionIst ist tPretty bnd t = pprintPTerm ppo bnd [] (idris_infixes ist) $ delab ist t assumptionNames :: Env -> [Name] assumptionNames = map fst prettyPs :: [(Name, Bool)] -> Env -> Doc OutputAnnotation prettyPs bnd [] = empty prettyPs bnd ((n@(MN _ r), _) : bs) | r == txt "rewrite_rule" = prettyPs ((n, False):bnd) bs prettyPs bnd ((n, Let t v) : bs) = line <> bindingOf n False <+> text "=" <+> tPretty bnd v <+> colon <+> align (tPretty bnd t) <> prettyPs ((n, False):bnd) bs prettyPs bnd ((n, b) : bs) = line <> bindingOf n False <+> colon <+> align (tPretty bnd (binderTy b)) <> prettyPs ((n, False):bnd) bs prettyG bnd (Guess t v) = tPretty bnd t <+> text "=?=" <+> tPretty bnd v prettyG bnd b = tPretty bnd $ binderTy b prettyGoal bnd ty = text "---------- Goal: ----------" <$$> bindingOf h False <+> colon <+> align (prettyG bnd ty) prettyAssumptions env = if length env == 0 then empty else text "---------- Assumptions: ----------" <> nest nestingSize (prettyPs [] $ reverse env) prettyOtherGoals hs = if length hs == 0 then empty else text "---------- Other goals: ----------" <$$> nest nestingSize (align . cat . punctuate (text ",") . map (flip bindingOf False) $ hs) lifte :: ElabState [PDecl] -> ElabD a -> Idris a lifte st e = do (v, _) <- elabStep st e return v receiveInput :: ElabState [PDecl] -> Idris (Maybe String) receiveInput e = do i <- getIState l <- runIO $ getLine (sexp, id) <- case parseMessage l of Left err -> ierror err Right (sexp, id) -> return (sexp, id) putIState $ i { idris_outputmode = (IdeSlave id) } case sexpToCommand sexp of Just (REPLCompletions prefix) -> do (unused, compls) <- proverCompletion (assumptionNames e) (reverse prefix, "") let good = SexpList [SymbolAtom "ok", toSExp (map replacement compls, reverse unused)] ideslavePutSExp "return" good receiveInput e Just (Interpret cmd) -> return (Just cmd) Nothing -> return Nothing ploop :: Name -> Bool -> String -> [String] -> ElabState [PDecl] -> Maybe History -> Idris (Term, [String]) ploop fn d prompt prf e h = do i <- getIState let autoSolve = opt_autoSolve (idris_options i) when d $ dumpState i (proof e) (x, h') <- case idris_outputmode i of RawOutput -> runInputT (proverSettings e) $ -- Manually track the history so that we can use the proof state do _ <- case h of Just history -> putHistory history Nothing -> return () l <- getInputLine (prompt ++ "> ") h' <- getHistory return (l, Just h') IdeSlave n -> do isetPrompt prompt i <- receiveInput e return (i, h) (cmd, step) <- case x of Nothing -> do iPrintError ""; ifail "Abandoned" Just input -> do return (parseTactic i input, input) case cmd of Success Abandon -> do iPrintError ""; ifail "Abandoned" _ -> return () (d, st, done, prf') <- idrisCatch (case cmd of Failure err -> do iPrintError (show err) return (False, e, False, prf) Success Undo -> do (_, st) <- elabStep e loadState iPrintResult "" return (True, st, False, init prf) Success ProofState -> do iPrintResult "" return (True, e, False, prf) Success ProofTerm -> do tm <- lifte e get_term iPrintResult $ "TT: " ++ show tm ++ "\n" return (False, e, False, prf) Success Qed -> do hs <- lifte e get_holes when (not (null hs)) $ ifail "Incomplete proof" iPrintResult "Proof completed!" return (False, e, True, prf) Success (TCheck (PRef _ n)) -> do ctxt <- getContext ist <- getIState imp <- impShow idrisCatch (do let h = idris_outh ist OK env = envAtFocus (proof e) ctxt' = envCtxt env ctxt bnd = map (\x -> (fst x, False)) env ist' = ist { tt_ctxt = ctxt' } putIState ist' -- Unlike the REPL, metavars have no special treatment, to -- make it easier to see how to prove with them. case lookupNames n ctxt' of [] -> ihPrintError h $ "No such variable " ++ show n ts -> ihPrintFunTypes h bnd n (map (\n -> (n, delabTy ist' n)) ts) putIState ist return (False, e, False, prf)) (\err -> do putIState ist ; ierror err) Success (TCheck t) -> do ist <- getIState ctxt <- getContext idrisCatch (do let OK env = envAtFocus (proof e) ctxt' = envCtxt env ctxt putIState ist { tt_ctxt = ctxt' } (tm, ty) <- elabVal toplevel False t let ppo = ppOptionIst ist ty' = normaliseC ctxt [] ty h = idris_outh ist infixes = idris_infixes ist case tm of TType _ -> ihPrintTermWithType h (prettyImp ppo PType) type1Doc _ -> let bnd = map (\x -> (fst x, False)) env in ihPrintTermWithType h (pprintPTerm ppo bnd [] infixes (delab ist tm)) (pprintPTerm ppo bnd [] infixes (delab ist ty)) putIState ist return (False, e, False, prf)) (\err -> do putIState ist { tt_ctxt = ctxt } ; ierror err) Success (TEval t) -> withErrorReflection $ do ctxt <- getContext ist <- getIState idrisCatch (do let OK env = envAtFocus (proof e) ctxt' = envCtxt env ctxt ist' = ist { tt_ctxt = ctxt' } bnd = map (\x -> (fst x, False)) env putIState ist' (tm, ty) <- elabVal toplevel False t let tm' = force (normaliseAll ctxt' env tm) ty' = force (normaliseAll ctxt' env ty) ppo = ppOption (idris_options ist') infixes = idris_infixes ist tmDoc = pprintPTerm ppo bnd [] infixes (delab ist' tm') tyDoc = pprintPTerm ppo bnd [] infixes (delab ist' ty') ihPrintTermWithType (idris_outh ist') tmDoc tyDoc putIState ist return (False, e, False, prf)) (\err -> do putIState ist ; ierror err) Success tac -> do (_, e) <- elabStep e saveState (_, st) <- elabStep e (runTac autoSolve i fn tac) -- trace (show (problems (proof st))) $ iPrintResult "" return (True, st, False, prf ++ [step])) (\err -> do iPrintError (pshow i err) return (False, e, False, prf)) ideslavePutSExp "write-proof-state" (prf', length prf') if done then do (tm, _) <- elabStep st get_term return (tm, prf') else ploop fn d prompt prf' st h' where envCtxt env ctxt = foldl (\c (n, b) -> addTyDecl n Bound (binderTy b) c) ctxt env