module Prelude import public Builtins import public IO import public Prelude.Algebra import public Prelude.Basics import public Prelude.Bool import public Prelude.Classes import public Prelude.Cast import public Prelude.Nat import public Prelude.List import public Prelude.Maybe import public Prelude.Monad import public Prelude.Applicative import public Prelude.Foldable import public Prelude.Functor import public Prelude.Either import public Prelude.Strings import public Prelude.Chars import public Prelude.Traversable import public Prelude.Bits import public Prelude.Uninhabited import public Prelude.Pairs import public Prelude.Stream import public Prelude.Providers import public Prelude.Show import public Prelude.Interactive import public Prelude.File import public Decidable.Equality import public Language.Reflection import public Language.Reflection.Errors %access public %default total -- Things that can't be elsewhere for import cycle reasons decAsBool : Dec p -> Bool decAsBool (Yes _) = True decAsBool (No _) = False ---- Functor instances instance Functor PrimIO where map f io = prim_io_bind io (prim_io_return . f) instance Functor Maybe where map f (Just x) = Just (f x) map f Nothing = Nothing instance Functor (Either e) where map f (Left l) = Left l map f (Right r) = Right (f r) ---- Applicative instances instance Applicative PrimIO where pure = prim_io_return am <*> bm = prim_io_bind am (\f => prim_io_bind bm (prim_io_return . f)) instance Applicative Maybe where pure = Just (Just f) <*> (Just a) = Just (f a) _ <*> _ = Nothing instance Applicative (Either e) where pure = Right (Left a) <*> _ = Left a (Right f) <*> (Right r) = Right (f r) (Right _) <*> (Left l) = Left l instance Applicative List where pure x = [x] fs <*> vs = concatMap (\f => map f vs) fs ---- Alternative instances instance Alternative Maybe where empty = Nothing (Just x) <|> _ = Just x Nothing <|> v = v instance Alternative List where empty = [] (<|>) = (++) ---- Monad instances instance Monad PrimIO where b >>= k = prim_io_bind b k instance Monad Maybe where Nothing >>= k = Nothing (Just x) >>= k = k x instance Monad (Either e) where (Left n) >>= _ = Left n (Right r) >>= f = f r instance Monad List where m >>= f = concatMap f m ---- Traversable instances instance Traversable Maybe where traverse f Nothing = pure Nothing traverse f (Just x) = [| Just (f x) |] instance Traversable List where traverse f [] = pure List.Nil traverse f (x::xs) = [| List.(::) (f x) (traverse f xs) |] ---- some mathematical operations ---- XXX this should probably go some place else, pow : (Num a) => a -> Nat -> a pow x Z = 1 pow x (S n) = x * (pow x n) ---- Ranges natRange : Nat -> List Nat natRange n = List.reverse (go n) where go Z = [] go (S n) = n :: go n -- predefine Nat versions of Enum, so we can use them in the default impls total natEnumFromThen : Nat -> Nat -> Stream Nat natEnumFromThen n inc = n :: natEnumFromThen (inc + n) inc total natEnumFromTo : Nat -> Nat -> List Nat natEnumFromTo n m = map (plus n) (natRange ((S m) - n)) total natEnumFromThenTo : Nat -> Nat -> Nat -> List Nat natEnumFromThenTo _ Z _ = [] natEnumFromThenTo n (S inc) m = map (plus n . (* (S inc))) (natRange (S (divNatNZ (m - n) (S inc) SIsNotZ))) class Enum a where total pred : a -> a total succ : a -> a succ e = fromNat (S (toNat e)) total toNat : a -> Nat total fromNat : Nat -> a total enumFrom : a -> Stream a enumFrom n = n :: enumFrom (succ n) total enumFromThen : a -> a -> Stream a enumFromThen x y = map fromNat (natEnumFromThen (toNat x) (toNat y)) total enumFromTo : a -> a -> List a enumFromTo x y = map fromNat (natEnumFromTo (toNat x) (toNat y)) total enumFromThenTo : a -> a -> a -> List a enumFromThenTo x1 x2 y = map fromNat (natEnumFromThenTo (toNat x1) (toNat x2) (toNat y)) instance Enum Nat where pred n = Nat.pred n succ n = S n toNat x = id x fromNat x = id x enumFromThen x y = natEnumFromThen x y enumFromThenTo x y z = natEnumFromThenTo x y z enumFromTo x y = natEnumFromTo x y instance Enum Integer where pred n = n - 1 succ n = n + 1 toNat n = cast n fromNat n = cast n enumFromThen n inc = n :: enumFromThen (inc + n) inc enumFromTo n m = if n <= m then go (natRange (S (cast {to = Nat} (m - n)))) else [] where go : List Nat -> List Integer go [] = [] go (x :: xs) = n + cast x :: go xs enumFromThenTo _ 0 _ = [] enumFromThenTo n inc m = go (natRange (S (divNatNZ (fromInteger (abs (m - n))) (S (fromInteger ((abs inc) - 1))) SIsNotZ))) where go : List Nat -> List Integer go [] = [] go (x :: xs) = n + (cast x * inc) :: go xs instance Enum Int where pred n = n - 1 succ n = n + 1 toNat n = cast n fromNat n = cast n enumFromTo n m = if n <= m then go [] (cast {to = Nat} (m - n)) m else [] where go : List Int -> Nat -> Int -> List Int go acc Z m = m :: acc go acc (S k) m = go (m :: acc) k (m - 1) enumFromThen n inc = n :: enumFromThen (inc + n) inc enumFromThenTo _ 0 _ = [] enumFromThenTo n inc m = go (natRange (S (divNatNZ (cast {to=Nat} (abs (m - n))) (S (cast {to=Nat} ((abs inc) - 1))) SIsNotZ))) where go : List Nat -> List Int go [] = [] go (x :: xs) = n + (cast x * inc) :: go xs syntax "[" [start] ".." [end] "]" = enumFromTo start end syntax "[" [start] "," [next] ".." [end] "]" = enumFromThenTo start (next - start) end syntax "[" [start] ".." "]" = enumFrom start syntax "[" [start] "," [next] ".." "]" = enumFromThen start (next - start) ---- More utilities curry : ((a, b) -> c) -> a -> b -> c curry f a b = f (a, b) uncurry : (a -> b -> c) -> (a, b) -> c uncurry f (a, b) = f a b namespace JSNull ||| Check if a foreign pointer is null partial nullPtr : Ptr -> JS_IO Bool nullPtr p = do ok <- foreign FFI_JS "isNull" (Ptr -> JS_IO Int) p return (ok /= 0) ||| Check if a supposed string was actually a null pointer partial nullStr : String -> JS_IO Bool nullStr p = do ok <- foreign FFI_JS "isNull" (String -> JS_IO Int) p return (ok /= 0) ||| Pointer equality eqPtr : Ptr -> Ptr -> IO Bool eqPtr x y = do eq <- foreign FFI_C "idris_eqPtr" (Ptr -> Ptr -> IO Int) x y return (eq /= 0) ||| Loop while some test is true ||| ||| @ test the condition of the loop ||| @ body the loop body partial -- obviously while : (test : IO' l Bool) -> (body : IO' l ()) -> IO' l () while t b = do v <- t if v then do b while t b else return () ------- Some error rewriting %language ErrorReflection private cast_part : TT -> ErrorReportPart cast_part (P Bound n t) = TextPart "unknown type" cast_part x = TermPart x %error_handler cast_error : Err -> Maybe (List ErrorReportPart) cast_error (CantResolve `(Cast ~x ~y)) = Just [TextPart "Can't cast from", cast_part x, TextPart "to", cast_part y] cast_error _ = Nothing %error_handler num_error : Err -> Maybe (List ErrorReportPart) num_error (CantResolve `(Num ~x)) = Just [TermPart x, TextPart "is not a numeric type"] num_error _ = Nothing