{-# LANGUAGE PatternGuards, DeriveFunctor #-} module IRTS.Lang where import Control.Monad.State hiding (lift) import Control.Applicative hiding (Const) import Idris.Core.TT import Idris.Core.CaseTree import Data.List import Debug.Trace data Endianness = Native | BE | LE deriving (Show, Eq) data LVar = Loc Int | Glob Name deriving (Show, Eq) -- ASSUMPTION: All variable bindings have unique names here data LExp = LV LVar | LApp Bool LExp [LExp] -- True = tail call | LLazyApp Name [LExp] -- True = tail call | LLazyExp LExp | LForce LExp -- make sure Exp is evaluted | LLet Name LExp LExp -- name just for pretty printing | LLam [Name] LExp -- lambda, lifted out before compiling | LProj LExp Int -- projection | LCon (Maybe LVar) -- Location to reallocate, if available Int Name [LExp] | LCase CaseType LExp [LAlt] | LConst Const | LForeign FDesc -- Function descriptor (usually name as string) FDesc -- Return type descriptor [(FDesc, LExp)] -- first LExp is the FFI type description | LOp PrimFn [LExp] | LNothing | LError String deriving Eq data FDesc = FCon Name | FStr String | FUnknown | FIO FDesc | FApp Name [FDesc] deriving (Show, Eq) data Export = ExportData FDesc -- Exported data descriptor (usually string) | ExportFun Name -- Idris name FDesc -- Exported function descriptor FDesc -- Return type descriptor [FDesc] -- Argument types deriving (Show, Eq) data ExportIFace = Export Name -- FFI descriptor String -- interface file [Export] deriving (Show, Eq) -- Primitive operators. Backends are not *required* to implement all -- of these, but should report an error if they are unable data PrimFn = LPlus ArithTy | LMinus ArithTy | LTimes ArithTy | LUDiv IntTy | LSDiv ArithTy | LURem IntTy | LSRem ArithTy | LAnd IntTy | LOr IntTy | LXOr IntTy | LCompl IntTy | LSHL IntTy | LLSHR IntTy | LASHR IntTy | LEq ArithTy | LLt IntTy | LLe IntTy | LGt IntTy | LGe IntTy | LSLt ArithTy | LSLe ArithTy | LSGt ArithTy | LSGe ArithTy | LSExt IntTy IntTy | LZExt IntTy IntTy | LTrunc IntTy IntTy | LStrConcat | LStrLt | LStrEq | LStrLen | LIntFloat IntTy | LFloatInt IntTy | LIntStr IntTy | LStrInt IntTy | LFloatStr | LStrFloat | LChInt IntTy | LIntCh IntTy | LBitCast ArithTy ArithTy -- Only for values of equal width | LFExp | LFLog | LFSin | LFCos | LFTan | LFASin | LFACos | LFATan | LFSqrt | LFFloor | LFCeil | LFNegate | LStrHead | LStrTail | LStrCons | LStrIndex | LStrRev | LReadStr | LWriteStr -- system info | LSystemInfo | LFork | LPar -- evaluate argument anywhere, possibly on another -- core or another machine. 'id' is a valid implementation | LExternal Name | LNoOp deriving (Show, Eq) -- Supported target languages for foreign calls data FCallType = FStatic | FObject | FConstructor deriving (Show, Eq) data FType = FArith ArithTy | FFunction | FFunctionIO | FString | FUnit | FPtr | FManagedPtr | FAny deriving (Show, Eq) -- FIXME: Why not use this for all the IRs now? data LAlt' e = LConCase Int Name [Name] e | LConstCase Const e | LDefaultCase e deriving (Show, Eq, Functor) type LAlt = LAlt' LExp data LDecl = LFun [LOpt] Name [Name] LExp -- options, name, arg names, def | LConstructor Name Int Int -- constructor name, tag, arity deriving (Show, Eq) type LDefs = Ctxt LDecl data LOpt = Inline | NoInline deriving (Show, Eq) addTags :: Int -> [(Name, LDecl)] -> (Int, [(Name, LDecl)]) addTags i ds = tag i ds [] where tag i ((n, LConstructor n' (-1) a) : as) acc = tag (i + 1) as ((n, LConstructor n' i a) : acc) tag i ((n, LConstructor n' t a) : as) acc = tag i as ((n, LConstructor n' t a) : acc) tag i (x : as) acc = tag i as (x : acc) tag i [] acc = (i, reverse acc) data LiftState = LS Name Int [(Name, LDecl)] lname (NS n x) i = NS (lname n i) x lname (UN n) i = MN i n lname x i = sMN i (show x ++ "_lam") liftAll :: [(Name, LDecl)] -> [(Name, LDecl)] liftAll xs = concatMap (\ (x, d) -> lambdaLift x d) xs lambdaLift :: Name -> LDecl -> [(Name, LDecl)] lambdaLift n (LFun opts _ args e) = let (e', (LS _ _ decls)) = runState (lift args e) (LS n 0 []) in (n, LFun opts n args e') : decls lambdaLift n x = [(n, x)] getNextName :: State LiftState Name getNextName = do LS n i ds <- get put (LS n (i + 1) ds) return (lname n i) addFn :: Name -> LDecl -> State LiftState () addFn fn d = do LS n i ds <- get put (LS n i ((fn, d) : ds)) lift :: [Name] -> LExp -> State LiftState LExp lift env (LV v) = return (LV v) -- Lifting happens before these can exist... lift env (LApp tc (LV (Glob n)) args) = do args' <- mapM (lift env) args return (LApp tc (LV (Glob n)) args') lift env (LApp tc f args) = do f' <- lift env f fn <- getNextName addFn fn (LFun [Inline] fn env f') args' <- mapM (lift env) args return (LApp tc (LV (Glob fn)) (map (LV . Glob) env ++ args')) lift env (LLazyApp n args) = do args' <- mapM (lift env) args return (LLazyApp n args') lift env (LLazyExp (LConst c)) = return (LConst c) -- lift env (LLazyExp (LApp tc (LV (Glob f)) args)) -- = lift env (LLazyApp f args) lift env (LLazyExp e) = do e' <- lift env e let usedArgs = nub $ usedIn env e' fn <- getNextName addFn fn (LFun [NoInline] fn usedArgs e') return (LLazyApp fn (map (LV . Glob) usedArgs)) lift env (LForce e) = do e' <- lift env e return (LForce e') lift env (LLet n v e) = do v' <- lift env v e' <- lift (env ++ [n]) e return (LLet n v' e') lift env (LLam args e) = do e' <- lift (env ++ args) e let usedArgs = nub $ usedIn env e' fn <- getNextName addFn fn (LFun [Inline] fn (usedArgs ++ args) e') return (LApp False (LV (Glob fn)) (map (LV . Glob) usedArgs)) lift env (LProj t i) = do t' <- lift env t return (LProj t' i) lift env (LCon loc i n args) = do args' <- mapM (lift env) args return (LCon loc i n args') lift env (LCase up e alts) = do alts' <- mapM liftA alts e' <- lift env e return (LCase up e' alts') where liftA (LConCase i n args e) = do e' <- lift (env ++ args) e return (LConCase i n args e') liftA (LConstCase c e) = do e' <- lift env e return (LConstCase c e') liftA (LDefaultCase e) = do e' <- lift env e return (LDefaultCase e') lift env (LConst c) = return (LConst c) lift env (LForeign t s args) = do args' <- mapM (liftF env) args return (LForeign t s args') where liftF env (t, e) = do e' <- lift env e return (t, e') lift env (LOp f args) = do args' <- mapM (lift env) args return (LOp f args') lift env (LError str) = return $ LError str lift env LNothing = return $ LNothing allocUnique :: LDefs -> (Name, LDecl) -> (Name, LDecl) allocUnique defs p@(n, LConstructor _ _ _) = p allocUnique defs (n, LFun opts fn args e) = let e' = evalState (findUp e) [] in (n, LFun opts fn args e') where -- Keep track of 'updatable' names in the state, i.e. names whose heap -- entry may be reused, along with the arity which was there findUp :: LExp -> State [(Name, Int)] LExp findUp (LApp t (LV (Glob n)) as) | Just (LConstructor _ i ar) <- lookupCtxtExact n defs, ar == length as = findUp (LCon Nothing i n as) findUp (LV (Glob n)) | Just (LConstructor _ i 0) <- lookupCtxtExact n defs = return $ LCon Nothing i n [] -- nullary cons are global, no need to update findUp (LApp t f as) = LApp t <$> findUp f <*> mapM findUp as findUp (LLazyApp n as) = LLazyApp n <$> mapM findUp as findUp (LLazyExp e) = LLazyExp <$> findUp e findUp (LForce e) = LForce <$> findUp e -- use assumption that names are unique! findUp (LLet n val sc) = LLet n <$> findUp val <*> findUp sc findUp (LLam ns sc) = LLam ns <$> findUp sc findUp (LProj e i) = LProj <$> findUp e <*> return i findUp (LCon (Just l) i n es) = LCon (Just l) i n <$> mapM findUp es findUp (LCon Nothing i n es) = do avail <- get v <- findVar [] avail (length es) LCon v i n <$> mapM findUp es findUp (LForeign t s es) = LForeign t s <$> mapM (\ (t, e) -> do e' <- findUp e return (t, e')) es findUp (LOp o es) = LOp o <$> mapM findUp es findUp (LCase Updatable e@(LV (Glob n)) as) = LCase Updatable e <$> mapM (doUpAlt n) as findUp (LCase t e as) = LCase t <$> findUp e <*> mapM findUpAlt as findUp t = return t findUpAlt (LConCase i t args rhs) = do avail <- get rhs' <- findUp rhs put avail return $ LConCase i t args rhs' findUpAlt (LConstCase i rhs) = LConstCase i <$> findUp rhs findUpAlt (LDefaultCase rhs) = LDefaultCase <$> findUp rhs doUpAlt n (LConCase i t args rhs) = do avail <- get put ((n, length args) : avail) rhs' <- findUp rhs put avail return $ LConCase i t args rhs' doUpAlt n (LConstCase i rhs) = LConstCase i <$> findUp rhs doUpAlt n (LDefaultCase rhs) = LDefaultCase <$> findUp rhs findVar _ [] i = return Nothing findVar acc ((n, l) : ns) i | l == i = do put (reverse acc ++ ns) return (Just (Glob n)) findVar acc (n : ns) i = findVar (n : acc) ns i -- Return variables in list which are used in the expression usedArg env n | n `elem` env = [n] | otherwise = [] usedIn :: [Name] -> LExp -> [Name] usedIn env (LV (Glob n)) = usedArg env n usedIn env (LApp _ e args) = usedIn env e ++ concatMap (usedIn env) args usedIn env (LLazyApp n args) = concatMap (usedIn env) args ++ usedArg env n usedIn env (LLazyExp e) = usedIn env e usedIn env (LForce e) = usedIn env e usedIn env (LLet n v e) = usedIn env v ++ usedIn (env \\ [n]) e usedIn env (LLam ns e) = usedIn (env \\ ns) e usedIn env (LCon v i n args) = let rest = concatMap (usedIn env) args in case v of Nothing -> rest Just (Glob n) -> usedArg env n ++ rest usedIn env (LProj t i) = usedIn env t usedIn env (LCase up e alts) = usedIn env e ++ concatMap (usedInA env) alts where usedInA env (LConCase i n ns e) = usedIn env e usedInA env (LConstCase c e) = usedIn env e usedInA env (LDefaultCase e) = usedIn env e usedIn env (LForeign _ _ args) = concatMap (usedIn env) (map snd args) usedIn env (LOp f args) = concatMap (usedIn env) args usedIn env _ = [] instance Show LExp where show e = show' [] "" e where show' env ind (LV (Loc i)) = env!!i show' env ind (LV (Glob n)) = show n show' env ind (LLazyApp e args) = show e ++ "|(" ++ showSep ", " (map (show' env ind) args) ++")" show' env ind (LApp _ e args) = show' env ind e ++ "(" ++ showSep ", " (map (show' env ind) args) ++")" show' env ind (LLazyExp e) = "lazy{ " ++ show' env ind e ++ " }" show' env ind (LForce e) = "force{ " ++ show' env ind e ++ " }" show' env ind (LLet n v e) = "let " ++ show n ++ " = " ++ show' env ind v ++ " in " ++ show' (env ++ [show n]) ind e show' env ind (LLam args e) = "\\ " ++ showSep "," (map show args) ++ " => " ++ show' (env ++ (map show args)) ind e show' env ind (LProj t i) = show t ++ "!" ++ show i show' env ind (LCon loc i n args) = atloc loc ++ show n ++ "(" ++ showSep ", " (map (show' env ind) args) ++ ")" where atloc Nothing = "" atloc (Just l) = "@" ++ show (LV l) ++ ":" show' env ind (LCase up e alts) = "case" ++ update ++ show' env ind e ++ " of \n" ++ fmt alts where update = case up of Shared -> " " Updatable -> "! " fmt [] = "" fmt [alt] = "\t" ++ ind ++ "| " ++ showAlt env (ind ++ " ") alt fmt (alt:as) = "\t" ++ ind ++ "| " ++ showAlt env (ind ++ ". ") alt ++ "\n" ++ fmt as show' env ind (LConst c) = show c show' env ind (LForeign ty n args) = concat [ "foreign{ " , show n ++ "(" , showSep ", " (map (\(ty,x) -> show' env ind x ++ " : " ++ show ty) args) , ") : " , show ty , " }" ] show' env ind (LOp f args) = show f ++ "(" ++ showSep ", " (map (show' env ind) args) ++ ")" show' env ind (LError str) = "error " ++ show str show' env ind LNothing = "____" showAlt env ind (LConCase _ n args e) = show n ++ "(" ++ showSep ", " (map show args) ++ ") => " ++ show' env ind e showAlt env ind (LConstCase c e) = show c ++ " => " ++ show' env ind e showAlt env ind (LDefaultCase e) = "_ => " ++ show' env ind e