{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies, DeriveFunctor #-} module Core.TT where import Control.Monad.State import Debug.Trace import qualified Data.Map as Map import Data.Char import Data.List import qualified Data.Binary as B import Data.Binary hiding (get, put) import Util.Pretty hiding (Str) {- The language has: * Full dependent types * A hierarchy of universes, with cumulativity: Type : Type1, Type1 : Type2, ... * Pattern matching letrec binding * (primitive types defined externally) Some technical stuff: * Typechecker is kept as simple as possible - no unification, just a checker for incomplete terms. * We have a simple collection of tactics which we use to elaborate source programs with implicit syntax into fully explicit terms. -} data Option = TTypeInTType | CheckConv deriving Eq data FC = FC { fc_fname :: String, fc_line :: Int } deriving Eq {-! deriving instance Binary FC !-} instance Sized FC where size (FC f l) = 1 + length f instance Show FC where show (FC f l) = f ++ ":" ++ show l data Err = Msg String | InternalMsg String | CantUnify Bool Term Term Err [(Name, Type)] Int -- Int is 'score' - how much we did unify -- Bool indicates recoverability, True indicates more info may make -- unification succeed | InfiniteUnify Name Term [(Name, Type)] | CantConvert Term Term [(Name, Type)] | NoSuchVariable Name | NoTypeDecl Name | NotInjective Term Term Term | CantResolve Term | CantResolveAlts [String] | IncompleteTerm Term | UniverseError | ProgramLineComment | Inaccessible Name | NonCollapsiblePostulate Name | AlreadyDefined Name | At FC Err deriving Eq instance Sized Err where size (Msg msg) = length msg size (InternalMsg msg) = length msg size (CantUnify _ left right err _ score) = size left + size right + size err size (InfiniteUnify _ right _) = size right size (CantConvert left right _) = size left + size right size (NoSuchVariable name) = size name size (NoTypeDecl name) = size name size (NotInjective l c r) = size l + size c + size r size (CantResolve trm) = size trm size (CantResolveAlts _) = 1 size (IncompleteTerm trm) = size trm size UniverseError = 1 size ProgramLineComment = 1 size (At fc err) = size fc + size err size _ = 1 score :: Err -> Int score (CantUnify _ _ _ m _ s) = s + score m score (CantResolve _) = 20 score (NoSuchVariable _) = 1000 score _ = 0 instance Show Err where show (Msg s) = s show (InternalMsg s) = "Internal error: " ++ show s show (CantUnify _ l r e sc i) = "CantUnify " ++ show l ++ " " ++ show r ++ " " ++ show e ++ " in " ++ show sc ++ " " ++ show i show (Inaccessible n) = show n ++ " is not an accessible pattern variable" show _ = "Error" instance Pretty Err where pretty (Msg m) = text m pretty (CantUnify _ l r e _ i) = if size l + size r > breakingSize then text "Cannot unify" <+> colon $$ nest nestingSize (pretty l <+> text "and" <+> pretty r) $$ nest nestingSize (text "where" <+> pretty e <+> text "with" <+> (text . show $ i)) else text "Cannot unify" <+> colon <+> pretty l <+> text "and" <+> pretty r $$ nest nestingSize (text "where" <+> pretty e <+> text "with" <+> (text . show $ i)) pretty _ = text "Error" data TC a = OK a | Error Err deriving (Eq, Functor) instance Pretty a => Pretty (TC a) where pretty (OK ok) = pretty ok pretty (Error err) = if size err > breakingSize then text "Error" <+> colon $$ (nest nestingSize $ pretty err) else text "Error" <+> colon <+> pretty err instance Show a => Show (TC a) where show (OK x) = show x show (Error str) = "Error: " ++ show str -- at some point, this instance should also carry type checking options -- (e.g. Type:Type) instance Monad TC where return = OK x >>= k = case x of OK v -> k v Error e -> Error e fail e = Error (InternalMsg e) tfail :: Err -> TC a tfail e = Error e trun :: FC -> TC a -> TC a trun fc (OK a) = OK a trun fc (Error e) = Error (At fc e) instance MonadPlus TC where mzero = fail "Unknown error" (OK x) `mplus` _ = OK x _ `mplus` (OK y) = OK y err `mplus` _ = err discard :: Monad m => m a -> m () discard f = f >> return () showSep :: String -> [String] -> String showSep sep [] = "" showSep sep [x] = x showSep sep (x:xs) = x ++ sep ++ showSep sep xs pmap f (x, y) = (f x, f y) traceWhen True msg a = trace msg a traceWhen False _ a = a -- RAW TERMS ---------------------------------------------------------------- -- Names are hierarchies of strings, describing scope (so no danger of -- duplicate names, but need to be careful on lookup). -- Also MN for machine chosen names data Name = UN String | NS Name [String] -- root, namespaces | MN Int String | NErased -- name of somethng which is never used in scope deriving (Eq, Ord) {-! deriving instance Binary Name !-} instance Sized Name where size (UN n) = 1 size (NS n els) = 1 + length els size (MN i n) = 1 size NErased = 1 instance Pretty Name where pretty (UN n) = text n pretty (NS n s) = pretty n pretty (MN i s) = lbrace <+> text s <+> (text . show $ i) <+> rbrace instance Show Name where show (UN n) = n show (NS n s) = showSep "." (reverse s) ++ "." ++ show n show (MN i s) = "{" ++ s ++ show i ++ "}" show NErased = "_" -- Contexts allow us to map names to things. A root name maps to a collection -- of things in different namespaces with that name. type Ctxt a = Map.Map Name (Map.Map Name a) emptyContext = Map.empty tcname (UN ('@':_)) = True tcname (NS n _) = tcname n tcname _ = False implicitable (NS n _) = implicitable n implicitable (UN (x:xs)) = isLower x implicitable _ = False nsroot (NS n _) = n nsroot n = n addDef :: Name -> a -> Ctxt a -> Ctxt a addDef n v ctxt = case Map.lookup (nsroot n) ctxt of Nothing -> Map.insert (nsroot n) (Map.insert n v Map.empty) ctxt Just xs -> Map.insert (nsroot n) (Map.insert n v xs) ctxt {- lookup a name in the context, given an optional namespace. The name (n) may itself have a (partial) namespace given. Rules for resolution: - if an explicit namespace is given, return the names which match it. If none match, return all names. - if the name has has explicit namespace given, return the names which match it and ignore the given namespace. - otherwise, return all names. -} lookupCtxtName :: Maybe [String] -> Name -> Ctxt a -> [(Name, a)] lookupCtxtName nspace n ctxt = case Map.lookup (nsroot n) ctxt of Just xs -> filterNS (Map.toList xs) Nothing -> [] where filterNS [] = [] filterNS ((found, v) : xs) | nsmatch n found = (found, v) : filterNS xs | otherwise = filterNS xs nsmatch (NS n ns) (NS p ps) = ns `isPrefixOf` ps nsmatch (NS _ _) _ = False nsmatch looking found = True lookupCtxt :: Maybe [String] -> Name -> Ctxt a -> [a] lookupCtxt ns n ctxt = map snd (lookupCtxtName ns n ctxt) updateDef :: Name -> (a -> a) -> Ctxt a -> Ctxt a updateDef n f ctxt = let ds = lookupCtxtName Nothing n ctxt in foldr (\ (n, t) c -> addDef n (f t) c) ctxt ds toAlist :: Ctxt a -> [(Name, a)] toAlist ctxt = let allns = map snd (Map.toList ctxt) in concat (map (Map.toList) allns) addAlist :: Show a => [(Name, a)] -> Ctxt a -> Ctxt a addAlist [] ctxt = ctxt addAlist ((n, tm) : ds) ctxt = addDef n tm (addAlist ds ctxt) data Const = I Int | BI Integer | Fl Double | Ch Char | Str String | IType | BIType | FlType | ChType | StrType | B8 Word8 | B16 Word16 | B32 Word32 | B64 Word64 | B8Type | B16Type | B32Type | B64Type | PtrType | VoidType | Forgot deriving (Eq, Ord) {-! deriving instance Binary Const !-} instance Sized Const where size _ = 1 instance Pretty Const where pretty (I i) = text . show $ i pretty (BI i) = text . show $ i pretty (Fl f) = text . show $ f pretty (Ch c) = text . show $ c pretty (Str s) = text s pretty IType = text "Int" pretty BIType = text "BigInt" pretty FlType = text "Float" pretty ChType = text "Char" pretty StrType = text "String" pretty PtrType = text "Ptr" pretty VoidType = text "Void" pretty Forgot = text "Forgot" pretty B8Type = text "Bits8" pretty B16Type = text "Bits16" pretty B32Type = text "Bits32" pretty B64Type = text "Bits64" data Raw = Var Name | RBind Name (Binder Raw) Raw | RApp Raw Raw | RType | RForce Raw | RConstant Const deriving (Show, Eq) instance Sized Raw where size (Var name) = 1 size (RBind name bind right) = 1 + size bind + size right size (RApp left right) = 1 + size left + size right size RType = 1 size (RForce raw) = 1 + size raw size (RConstant const) = size const instance Pretty Raw where pretty = text . show {-! deriving instance Binary Raw !-} data Binder b = Lam { binderTy :: b } | Pi { binderTy :: b } | Let { binderTy :: b, binderVal :: b } | NLet { binderTy :: b, binderVal :: b } | Hole { binderTy :: b} | GHole { binderTy :: b} | Guess { binderTy :: b, binderVal :: b } | PVar { binderTy :: b } | PVTy { binderTy :: b } deriving (Show, Eq, Ord, Functor) {-! deriving instance Binary Binder !-} instance Sized a => Sized (Binder a) where size (Lam ty) = 1 + size ty size (Pi ty) = 1 + size ty size (Let ty val) = 1 + size ty + size val size (NLet ty val) = 1 + size ty + size val size (Hole ty) = 1 + size ty size (GHole ty) = 1 + size ty size (Guess ty val) = 1 + size ty + size val size (PVar ty) = 1 + size ty size (PVTy ty) = 1 + size ty fmapMB :: Monad m => (a -> m b) -> Binder a -> m (Binder b) fmapMB f (Let t v) = liftM2 Let (f t) (f v) fmapMB f (NLet t v) = liftM2 NLet (f t) (f v) fmapMB f (Guess t v) = liftM2 Guess (f t) (f v) fmapMB f (Lam t) = liftM Lam (f t) fmapMB f (Pi t) = liftM Pi (f t) fmapMB f (Hole t) = liftM Hole (f t) fmapMB f (GHole t) = liftM GHole (f t) fmapMB f (PVar t) = liftM PVar (f t) fmapMB f (PVTy t) = liftM PVTy (f t) raw_apply :: Raw -> [Raw] -> Raw raw_apply f [] = f raw_apply f (a : as) = raw_apply (RApp f a) as raw_unapply :: Raw -> (Raw, [Raw]) raw_unapply t = ua [] t where ua args (RApp f a) = ua (a:args) f ua args t = (t, args) data RawFun = RawFun { rtype :: Raw, rval :: Raw } deriving Show data RawDatatype = RDatatype Name Raw [(Name, Raw)] deriving Show data RDef = RFunction RawFun | RConst Raw | RData RawDatatype deriving Show type RProgram = [(Name, RDef)] -- WELL TYPED TERMS --------------------------------------------------------- data UExp = UVar Int -- universe variable | UVal Int -- explicit universe level deriving (Eq, Ord) instance Sized UExp where size _ = 1 -- We assume that universe levels have been checked, so anything external -- can just have the same universe variable and we won't get any new -- cycles. instance Binary UExp where put x = return () get = return (UVar (-1)) instance Show UExp where show (UVar x) | x < 26 = [toEnum (x + fromEnum 'a')] | otherwise = toEnum ((x `mod` 26) + fromEnum 'a') : show (x `div` 26) show (UVal x) = show x -- show (UMax l r) = "max(" ++ show l ++ ", " ++ show r ++")" data UConstraint = ULT UExp UExp | ULE UExp UExp deriving Eq instance Show UConstraint where show (ULT x y) = show x ++ " < " ++ show y show (ULE x y) = show x ++ " <= " ++ show y type UCs = (Int, [UConstraint]) data NameType = Bound | Ref | DCon Int Int | TCon Int Int deriving (Show, Ord) {-! deriving instance Binary NameType !-} instance Sized NameType where size _ = 1 instance Pretty NameType where pretty = text . show instance Eq NameType where Bound == Bound = True Ref == Ref = True DCon _ a == DCon _ b = (a == b) -- ignore tag TCon _ a == TCon _ b = (a == b) -- ignore tag _ == _ = False data TT n = P NameType n (TT n) -- embed type | V Int | Bind n (Binder (TT n)) (TT n) | App (TT n) (TT n) -- function, function type, arg | Constant Const | Proj (TT n) Int -- argument projection; runtime only | Erased | Impossible -- special case for totality checking | TType UExp deriving (Ord, Functor) {-! deriving instance Binary TT !-} class TermSize a where termsize :: Name -> a -> Int instance TermSize a => TermSize [a] where termsize n [] = 0 termsize n (x : xs) = termsize n x + termsize n xs instance TermSize (TT Name) where termsize n (P _ x _) | x == n = 1000000 -- recursive => really big | otherwise = 1 termsize n (V _) = 1 termsize n (Bind n' (Let t v) sc) = let rn = if n == n' then MN 0 "noname" else n in termsize rn v + termsize rn sc termsize n (App f a) = termsize n f + termsize n a termsize n _ = 1 instance Sized a => Sized (TT a) where size (P name n trm) = 1 + size name + size n + size trm size (V v) = 1 size (Bind nm binder bdy) = 1 + size nm + size binder + size bdy size (App l r) = 1 + size l + size r size (Constant c) = size c size Erased = 1 size (TType u) = 1 + size u instance Pretty a => Pretty (TT a) where pretty _ = text "test" type EnvTT n = [(n, Binder (TT n))] data Datatype n = Data { d_typename :: n, d_typetag :: Int, d_type :: (TT n), d_cons :: [(n, TT n)] } deriving (Show, Functor, Eq) instance Eq n => Eq (TT n) where (==) (P xt x _) (P yt y _) = x == y (==) (V x) (V y) = x == y (==) (Bind _ xb xs) (Bind _ yb ys) = xb == yb && xs == ys (==) (App fx ax) (App fy ay) = fx == fy && ax == ay (==) (TType _) (TType _) = True -- deal with constraints later (==) (Constant x) (Constant y) = x == y (==) (Proj x i) (Proj y j) = x == y && i == j (==) Erased _ = True (==) _ Erased = True (==) _ _ = False -- A few handy operations on well typed terms: isInjective :: TT n -> Bool isInjective (P (DCon _ _) _ _) = True isInjective (P (TCon _ _) _ _) = True isInjective (Constant _) = True isInjective (TType x) = True isInjective (Bind _ (Pi _) sc) = True isInjective (App f a) = isInjective f isInjective _ = False -- Count the number of instances of a de Bruijn index in a term vinstances :: Int -> TT n -> Int vinstances i (V x) | i == x = 1 vinstances i (App f a) = vinstances i f + vinstances i a vinstances i (Bind x b sc) = instancesB b + vinstances (i + 1) sc where instancesB (Let t v) = vinstances i v instancesB _ = 0 vinstances i t = 0 instantiate :: TT n -> TT n -> TT n instantiate e = subst 0 where subst i (V x) | i == x = e subst i (Bind x b sc) = Bind x (fmap (subst i) b) (subst (i+1) sc) subst i (App f a) = App (subst i f) (subst i a) subst i (Proj x idx) = Proj (subst i x) idx subst i t = t explicitNames :: TT n -> TT n explicitNames (Bind x b sc) = let b' = fmap explicitNames b in Bind x b' (explicitNames (instantiate (P Bound x (binderTy b')) sc)) explicitNames (App f a) = App (explicitNames f) (explicitNames a) explicitNames (Proj x idx) = Proj (explicitNames x) idx explicitNames t = t pToV :: Eq n => n -> TT n -> TT n pToV n = pToV' n 0 pToV' n i (P _ x _) | n == x = V i pToV' n i (Bind x b sc) -- We can assume the inner scope has been pToVed already, so continue to -- resolve names from the *outer* scope which may happen to have the same id. -- | n == x = Bind x (fmap (pToV' n i) b) sc | otherwise = Bind x (fmap (pToV' n i) b) (pToV' n (i+1) sc) pToV' n i (App f a) = App (pToV' n i f) (pToV' n i a) pToV' n i (Proj t idx) = Proj (pToV' n i t) idx pToV' n i t = t -- Convert several names. First in the list comes out as V 0 pToVs :: Eq n => [n] -> TT n -> TT n pToVs ns tm = pToVs' ns tm 0 where pToVs' [] tm i = tm pToVs' (n:ns) tm i = pToV' n i (pToVs' ns tm (i+1)) vToP :: TT n -> TT n vToP = vToP' [] where vToP' env (V i) = let (n, b) = (env !! i) in P Bound n (binderTy b) vToP' env (Bind n b sc) = let b' = fmap (vToP' env) b in Bind n b' (vToP' ((n, b'):env) sc) vToP' env (App f a) = App (vToP' env f) (vToP' env a) vToP' env t = t finalise :: Eq n => TT n -> TT n finalise (Bind x b sc) = Bind x (fmap finalise b) (pToV x (finalise sc)) finalise (App f a) = App (finalise f) (finalise a) finalise t = t subst :: Eq n => n -> TT n -> TT n -> TT n subst n v tm = instantiate v (pToV n tm) substNames :: Eq n => [(n, TT n)] -> TT n -> TT n substNames [] t = t substNames ((n, tm) : xs) t = subst n tm (substNames xs t) substTerm :: Eq n => TT n -> TT n -> TT n -> TT n substTerm old new = st where st t | t == old = new st (App f a) = App (st f) (st a) st (Bind x b sc) = Bind x (fmap st b) (st sc) st t = t -- Returns true if V 0 and bound name n do not occur in the term noOccurrence :: Eq n => n -> TT n -> Bool noOccurrence n t = no' 0 t where no' i (V x) = not (i == x) no' i (P Bound x _) = not (n == x) no' i (Bind n b sc) = noB' i b && no' (i+1) sc where noB' i (Let t v) = no' i t && no' i v noB' i (Guess t v) = no' i t && no' i v noB' i b = no' i (binderTy b) no' i (App f a) = no' i f && no' i a no' i (Proj x _) = no' i x no' i _ = True -- Returns all names used free in the term freeNames :: Eq n => TT n -> [n] freeNames (P _ n _) = [n] freeNames (Bind n (Let t v) sc) = nub $ freeNames v ++ (freeNames sc \\ [n]) ++ freeNames t freeNames (Bind n b sc) = nub $ freeNames (binderTy b) ++ (freeNames sc \\ [n]) freeNames (App f a) = nub $ freeNames f ++ freeNames a freeNames (Proj x i) = nub $ freeNames x freeNames _ = [] -- Return the arity of a (normalised) type arity :: TT n -> Int arity (Bind n (Pi t) sc) = 1 + arity sc arity _ = 0 -- deconstruct an application; returns the function and a list of arguments unApply :: TT n -> (TT n, [TT n]) unApply t = ua [] t where ua args (App f a) = ua (a:args) f ua args t = (t, args) mkApp :: TT n -> [TT n] -> TT n mkApp f [] = f mkApp f (a:as) = mkApp (App f a) as forget :: TT Name -> Raw forget tm = fe [] tm where fe env (P _ n _) = Var n fe env (V i) = Var (env !! i) fe env (Bind n b sc) = RBind n (fmap (fe env) b) (fe (n:env) sc) fe env (App f a) = RApp (fe env f) (fe env a) fe env (Constant c) = RConstant c fe env (TType i) = RType fe env Erased = RConstant Forgot bindAll :: [(n, Binder (TT n))] -> TT n -> TT n bindAll [] t =t bindAll ((n, b) : bs) t = Bind n b (bindAll bs t) bindTyArgs :: (TT n -> Binder (TT n)) -> [(n, TT n)] -> TT n -> TT n bindTyArgs b xs = bindAll (map (\ (n, ty) -> (n, b ty)) xs) getArgTys :: TT n -> [(n, TT n)] getArgTys (Bind n (Pi t) sc) = (n, t) : getArgTys sc getArgTys _ = [] getRetTy :: TT n -> TT n getRetTy (Bind n (PVar _) sc) = getRetTy sc getRetTy (Bind n (PVTy _) sc) = getRetTy sc getRetTy (Bind n (Pi _) sc) = getRetTy sc getRetTy sc = sc uniqueName :: Name -> [Name] -> Name uniqueName n hs | n `elem` hs = uniqueName (nextName n) hs | otherwise = n uniqueBinders :: [Name] -> TT Name -> TT Name uniqueBinders ns (Bind n b sc) = let n' = uniqueName n ns in Bind n' (fmap (uniqueBinders (n':ns)) b) (uniqueBinders ns sc) uniqueBinders ns (App f a) = App (uniqueBinders ns f) (uniqueBinders ns a) uniqueBinders ns t = t nextName (NS x s) = NS (nextName x) s nextName (MN i n) = MN (i+1) n nextName (UN x) = let (num', nm') = span isDigit (reverse x) nm = reverse nm' num = readN (reverse num') in UN (nm ++ show (num+1)) where readN "" = 0 readN x = read x type Term = TT Name type Type = Term type Env = EnvTT Name -- an environment with de Bruijn indices 'normalised' so that they all refer to -- this environment newtype WkEnvTT n = Wk (EnvTT n) type WkEnv = WkEnvTT Name instance (Eq n, Show n) => Show (TT n) where show t = showEnv [] t instance Show Const where show (I i) = show i show (BI i) = show i ++ "L" show (Fl f) = show f show (Ch c) = show c show (Str s) = show s show (B8 x) = show x show (B16 x) = show x show (B32 x) = show x show (B64 x) = show x show IType = "Int" show BIType = "Integer" show FlType = "Float" show ChType = "Char" show StrType = "String" show PtrType = "Ptr" show B8Type = "Bits8" show B16Type = "Bits16" show B32Type = "Bits32" show B64Type = "Bits64" show VoidType = "Void" showEnv env t = showEnv' env t False showEnvDbg env t = showEnv' env t True prettyEnv env t = prettyEnv' env t False where prettyEnv' env t dbg = prettySe 10 env t dbg bracket outer inner p | inner > outer = lparen <> p <> rparen | otherwise = p prettySe p env (P nt n t) debug = pretty n <+> if debug then lbrack <+> pretty nt <+> colon <+> prettySe 10 env t debug <+> rbrack else empty prettySe p env (V i) debug | i < length env = if debug then text . show . fst $ env!!i else lbrack <+> text (show i) <+> rbrack | otherwise = text "unbound" <+> text (show i) <+> text "!" prettySe p env (Bind n b@(Pi t) sc) debug | noOccurrence n sc && not debug = bracket p 2 $ prettySb env n b debug <> prettySe 10 ((n, b):env) sc debug prettySe p env (Bind n b sc) debug = bracket p 2 $ prettySb env n b debug <> prettySe 10 ((n, b):env) sc debug prettySe p env (App f a) debug = bracket p 1 $ prettySe 1 env f debug <+> prettySe 0 env a debug prettySe p env (Proj x i) debug = prettySe 1 env x debug <+> text ("!" ++ show i) prettySe p env (Constant c) debug = pretty c prettySe p env Erased debug = text "[_]" prettySe p env (TType i) debug = text "Type" <+> (text . show $ i) prettySb env n (Lam t) = prettyB env "λ" "=>" n t prettySb env n (Hole t) = prettyB env "?defer" "." n t prettySb env n (Pi t) = prettyB env "(" ") ->" n t prettySb env n (PVar t) = prettyB env "pat" "." n t prettySb env n (PVTy t) = prettyB env "pty" "." n t prettySb env n (Let t v) = prettyBv env "let" "in" n t v prettySb env n (Guess t v) = prettyBv env "??" "in" n t v prettyB env op sc n t debug = text op <> pretty n <+> colon <+> prettySe 10 env t debug <> text sc prettyBv env op sc n t v debug = text op <> pretty n <+> colon <+> prettySe 10 env t debug <+> text "=" <+> prettySe 10 env v debug <> text sc showEnv' env t dbg = se 10 env t where se p env (P nt n t) = show n ++ if dbg then "{" ++ show nt ++ " : " ++ se 10 env t ++ "}" else "" se p env (V i) | i < length env = (show $ fst $ env!!i) ++ if dbg then "{" ++ show i ++ "}" else "" | otherwise = "!!V " ++ show i ++ "!!" se p env (Bind n b@(Pi t) sc) | noOccurrence n sc && not dbg = bracket p 2 $ se 1 env t ++ " -> " ++ se 10 ((n,b):env) sc se p env (Bind n b sc) = bracket p 2 $ sb env n b ++ se 10 ((n,b):env) sc se p env (App f a) = bracket p 1 $ se 1 env f ++ " " ++ se 0 env a se p env (Proj x i) = se 1 env x ++ "!" ++ show i se p env (Constant c) = show c se p env Erased = "[__]" se p env Impossible = "[impossible]" se p env (TType i) = "Type " ++ show i sb env n (Lam t) = showb env "\\ " " => " n t sb env n (Hole t) = showb env "? " ". " n t sb env n (GHole t) = showb env "?defer " ". " n t sb env n (Pi t) = showb env "(" ") -> " n t sb env n (PVar t) = showb env "pat " ". " n t sb env n (PVTy t) = showb env "pty " ". " n t sb env n (Let t v) = showbv env "let " " in " n t v sb env n (Guess t v) = showbv env "?? " " in " n t v showb env op sc n t = op ++ show n ++ " : " ++ se 10 env t ++ sc showbv env op sc n t v = op ++ show n ++ " : " ++ se 10 env t ++ " = " ++ se 10 env v ++ sc bracket outer inner str | inner > outer = "(" ++ str ++ ")" | otherwise = str -- Check whether a term has any holes in it - impure if so pureTerm :: TT Name -> Bool pureTerm (App f a) = pureTerm f && pureTerm a pureTerm (Bind n b sc) = notClassName n && pureBinder b && pureTerm sc where pureBinder (Hole _) = False pureBinder (Guess _ _) = False pureBinder (Let t v) = pureTerm t && pureTerm v pureBinder t = pureTerm (binderTy t) notClassName (MN _ "class") = False notClassName _ = True pureTerm _ = True -- weaken a term by adding i to each de Bruijn index (i.e. lift it over i bindings) weakenTm :: Int -> TT n -> TT n weakenTm i t = wk i 0 t where wk i min (V x) | x >= min = V (i + x) wk i m (App f a) = App (wk i m f) (wk i m a) wk i m (Bind x b sc) = Bind x (wkb i m b) (wk i (m + 1) sc) wk i m t = t wkb i m t = fmap (wk i m) t -- weaken an environment so that all the de Bruijn indices are correct according -- to the latest bound variable weakenEnv :: EnvTT n -> EnvTT n weakenEnv env = wk (length env - 1) env where wk i [] = [] wk i ((n, b) : bs) = (n, weakenTmB i b) : wk (i - 1) bs weakenTmB i (Let t v) = Let (weakenTm i t) (weakenTm i v) weakenTmB i (Guess t v) = Guess (weakenTm i t) (weakenTm i v) weakenTmB i t = t { binderTy = weakenTm i (binderTy t) } weakenTmEnv :: Int -> EnvTT n -> EnvTT n weakenTmEnv i = map (\ (n, b) -> (n, fmap (weakenTm i) b)) orderPats :: Term -> Term orderPats tm = op [] tm where op ps (Bind n (PVar t) sc) = op ((n, PVar t) : ps) sc op ps (Bind n (Hole t) sc) = op ((n, Hole t) : ps) sc op ps sc = bindAll (map (\ (n, t) -> (n, t)) (sortP ps)) sc sortP ps = pick [] (reverse ps) namesIn (P _ n _) = [n] namesIn (Bind n b t) = nub $ nb b ++ (namesIn t \\ [n]) where nb (Let t v) = nub (namesIn t) ++ nub (namesIn v) nb (Guess t v) = nub (namesIn t) ++ nub (namesIn v) nb t = namesIn (binderTy t) namesIn (App f a) = nub (namesIn f ++ namesIn a) namesIn _ = [] pick acc [] = reverse acc pick acc ((n, t) : ps) = pick (insert n t acc) ps insert n t [] = [(n, t)] insert n t ((n',t') : ps) | n `elem` (namesIn (binderTy t') ++ concatMap namesIn (map (binderTy . snd) ps)) = (n', t') : insert n t ps | otherwise = (n,t):(n',t'):ps