{-# LANGUAGE TemplateHaskell, CPP #-} {-# OPTIONS_GHC -w #-} ----------------------------------------------------------------------------- -- | -- Module : Generics.Instant.TH -- Copyright : (c) 2010 Universiteit Utrecht -- License : BSD3 -- -- Maintainer : generics@haskell.org -- Stability : experimental -- Portability : non-portable -- -- This module contains Template Haskell code that can be used to -- automatically generate the boilerplate code for the generic deriving -- library. ----------------------------------------------------------------------------- -- Adapted from Generics.Deriving.TH module Generics.Instant.TH ( deriveAll , deriveConstructors , deriveRepresentable , deriveRep , simplInstance ) where import Generics.Instant.Base import Language.Haskell.TH hiding (Fixity()) import Language.Haskell.TH.Syntax (Lift(..)) import Data.List (intercalate) import Control.Monad -- | Given the names of a generic class, a type to instantiate, a function in -- the class and the default implementation, generates the code for a basic -- generic instance. simplInstance :: Name -> Name -> Name -> Name -> Q [Dec] simplInstance cl ty fn df = do i <- reify (genRepName ty) x <- newName "x" fmap (: []) $ instanceD (cxt []) (conT cl `appT` conT ty) [funD fn [clause [] (normalB (varE df)) []]] -- | Given the type and the name (as string) for the type to derive, -- generate the 'Constructor' instances and the 'Representable' instance. deriveAll :: Name -> Q [Dec] deriveAll n = do a <- deriveConstructors n b <- deriveRepresentable n return (a ++ b) -- | Given a datatype name, derive datatypes and -- instances of class 'Constructor'. deriveConstructors :: Name -> Q [Dec] deriveConstructors = constrInstance -- | Given the type and the name (as string) for the Representable type -- synonym to derive, generate the 'Representable' instance. deriveRepresentable :: Name -> Q [Dec] deriveRepresentable n = do rep <- deriveRep n inst <- deriveInst n return $ rep ++ inst -- | Derive only the 'Rep' type synonym. Not needed if 'deriveRepresentable' -- is used. deriveRep :: Name -> Q [Dec] deriveRep n = do i <- reify n fmap (:[]) $ tySynD (genRepName n) (typeVariables i) (repType n) deriveInst :: Name -> Q [Dec] deriveInst t = do i <- reify t let typ q = return $ foldl (\a -> AppT a . VarT . tyVarBndrToName) (ConT q) (typeVariables i) fcs <- mkFrom t 1 0 t tcs <- mkTo t 1 0 t liftM (:[]) $ instanceD (cxt []) (conT ''Representable `appT` typ t) [ tySynInstD ''Rep [typ t] (typ (genRepName t)) , funD 'from fcs, funD 'to tcs] constrInstance :: Name -> Q [Dec] constrInstance n = do i <- reify n case i of TyConI (DataD _ n _ cs _) -> mkInstance n cs TyConI (NewtypeD _ n _ c _) -> mkInstance n [c] _ -> return [] where mkInstance n cs = do ds <- mapM (mkConstrData n) cs is <- mapM (mkConstrInstance n) cs return $ ds ++ is typeVariables :: Info -> [TyVarBndr] typeVariables (TyConI (DataD _ _ tv _ _)) = tv typeVariables (TyConI (NewtypeD _ _ tv _ _)) = tv typeVariables _ = [] tyVarBndrToName :: TyVarBndr -> Name tyVarBndrToName (PlainTV name) = name tyVarBndrToName (KindedTV name _) = name stripRecordNames :: Con -> Con stripRecordNames (RecC n f) = NormalC n (map (\(_, s, t) -> (s, t)) f) stripRecordNames c = c genName :: [Name] -> Name genName = mkName . (++"_") . intercalate "_" . map nameBase genRepName :: Name -> Name genRepName = mkName . (++"_") . ("Rep" ++) . nameBase mkConstrData :: Name -> Con -> Q Dec mkConstrData dt (NormalC n _) = dataD (cxt []) (genName [dt, n]) [] [] [] mkConstrData dt r@(RecC _ _) = mkConstrData dt (stripRecordNames r) mkConstrData dt (InfixC t1 n t2) = mkConstrData dt (NormalC n [t1,t2]) instance Lift Fixity where lift Prefix = conE 'Prefix lift (Infix a n) = conE 'Infix `appE` [| a |] `appE` [| n |] instance Lift Associativity where lift LeftAssociative = conE 'LeftAssociative lift RightAssociative = conE 'RightAssociative lift NotAssociative = conE 'NotAssociative mkConstrInstance :: Name -> Con -> Q Dec mkConstrInstance dt (NormalC n _) = mkConstrInstanceWith dt n [] mkConstrInstance dt (RecC n _) = mkConstrInstanceWith dt n [ funD 'conIsRecord [clause [wildP] (normalB (conE 'True)) []]] mkConstrInstance dt (InfixC t1 n t2) = do i <- reify n let fi = case i of DataConI _ _ _ f -> convertFixity f _ -> Prefix instanceD (cxt []) (appT (conT ''Constructor) (conT $ genName [dt, n])) [funD 'conName [clause [wildP] (normalB (stringE (nameBase n))) []], funD 'conFixity [clause [wildP] (normalB [| fi |]) []]] where convertFixity (Fixity n d) = Infix (convertDirection d) n convertDirection InfixL = LeftAssociative convertDirection InfixR = RightAssociative convertDirection InfixN = NotAssociative mkConstrInstanceWith :: Name -> Name -> [Q Dec] -> Q Dec mkConstrInstanceWith dt n extra = instanceD (cxt []) (appT (conT ''Constructor) (conT $ genName [dt, n])) (funD 'conName [clause [wildP] (normalB (stringE (nameBase n))) []] : extra) repType :: Name -> Q Type repType n = do -- runIO $ putStrLn $ "processing " ++ show n i <- reify n let b = case i of TyConI (DataD _ dt vs cs _) -> (foldr1' sum (error "Empty datatypes are not supported.") (map (repCon (dt, map tyVarBndrToName vs)) cs)) TyConI (NewtypeD _ dt vs c _) -> repCon (dt, map tyVarBndrToName vs) c TyConI (TySynD t _ _) -> error "type synonym?" _ -> error "unknown construct" --appT b (conT $ mkName (nameBase n)) b where sum :: Q Type -> Q Type -> Q Type sum a b = conT ''(:+:) `appT` a `appT` b repCon :: (Name, [Name]) -> Con -> Q Type repCon (dt, vs) (NormalC n []) = conT ''C `appT` (conT $ genName [dt, n]) `appT` conT ''U repCon (dt, vs) (NormalC n fs) = conT ''C `appT` (conT $ genName [dt, n]) `appT` (foldr1 prod (map (repField (dt, vs) . snd) fs)) where prod :: Q Type -> Q Type -> Q Type prod a b = conT ''(:*:) `appT` a `appT` b repCon (dt, vs) r@(RecC n []) = conT ''C `appT` (conT $ genName [dt, n]) `appT` conT ''U repCon (dt, vs) r@(RecC n fs) = conT ''C `appT` (conT $ genName [dt, n]) `appT` (foldr1 prod (map (repField' (dt, vs) n) fs)) where prod :: Q Type -> Q Type -> Q Type prod a b = conT ''(:*:) `appT` a `appT` b repCon d (InfixC t1 n t2) = repCon d (NormalC n [t1,t2]) --dataDeclToType :: (Name, [Name]) -> Type --dataDeclToType (dt, vs) = foldl (\a b -> AppT a (VarT b)) (ConT dt) vs repField :: (Name, [Name]) -> Type -> Q Type --repField d t | t == dataDeclToType d = conT ''I repField d t = conT ''Rec `appT` return t repField' :: (Name, [Name]) -> Name -> (Name, Strict, Type) -> Q Type --repField' d ns (_, _, t) | t == dataDeclToType d = conT ''I repField' (dt, vs) ns (f, _, t) = conT ''Rec `appT` return t -- Note: we should generate Var too, at some point mkFrom :: Name -> Int -> Int -> Name -> Q [Q Clause] mkFrom ns m i n = do -- runIO $ putStrLn $ "processing " ++ show n let wrapE e = lrE m i e i <- reify n let b = case i of TyConI (DataD _ dt vs cs _) -> zipWith (fromCon wrapE ns (dt, map tyVarBndrToName vs) (length cs)) [0..] cs TyConI (NewtypeD _ dt vs c _) -> [fromCon wrapE ns (dt, map tyVarBndrToName vs) 1 0 c] TyConI (TySynD t _ _) -> error "type synonym?" -- [clause [varP (field 0)] (normalB (wrapE $ conE 'K1 `appE` varE (field 0))) []] _ -> error "unknown construct" return b mkTo :: Name -> Int -> Int -> Name -> Q [Q Clause] mkTo ns m i n = do -- runIO $ putStrLn $ "processing " ++ show n let wrapP p = lrP m i p i <- reify n let b = case i of TyConI (DataD _ dt vs cs _) -> zipWith (toCon wrapP ns (dt, map tyVarBndrToName vs) (length cs)) [0..] cs TyConI (NewtypeD _ dt vs c _) -> [toCon wrapP ns (dt, map tyVarBndrToName vs) 1 0 c] TyConI (TySynD t _ _) -> error "type synonym?" -- [clause [wrapP $ conP 'K1 [varP (field 0)]] (normalB $ varE (field 0)) []] _ -> error "unknown construct" return b fromCon :: (Q Exp -> Q Exp) -> Name -> (Name, [Name]) -> Int -> Int -> Con -> Q Clause fromCon wrap ns (dt, vs) m i (NormalC cn []) = clause [conP cn []] (normalB $ wrap $ lrE m i $ appE (conE 'C) $ conE 'U) [] fromCon wrap ns (dt, vs) m i (NormalC cn fs) = -- runIO (putStrLn ("constructor " ++ show ix)) >> clause [conP cn (map (varP . field) [0..length fs - 1])] (normalB $ wrap $ lrE m i $ conE 'C `appE` foldr1 prod (zipWith (fromField (dt, vs)) [0..] (map snd fs))) [] where prod x y = conE '(:*:) `appE` x `appE` y fromCon wrap ns (dt, vs) m i r@(RecC cn []) = clause [conP cn []] (normalB $ wrap $ lrE m i $ conE 'C `appE` (conE 'U)) [] fromCon wrap ns (dt, vs) m i r@(RecC cn fs) = clause [conP cn (map (varP . field) [0..length fs - 1])] (normalB $ wrap $ lrE m i $ conE 'C `appE` foldr1 prod (zipWith (fromField (dt, vs)) [0..] (map trd fs))) [] where prod x y = conE '(:*:) `appE` x `appE` y fromCon wrap ns (dt, vs) m i (InfixC t1 cn t2) = fromCon wrap ns (dt, vs) m i (NormalC cn [t1,t2]) fromField :: (Name, [Name]) -> Int -> Type -> Q Exp --fromField (dt, vs) nr t | t == dataDeclToType (dt, vs) = conE 'I `appE` varE (field nr) fromField (dt, vs) nr t = conE 'Rec `appE` varE (field nr) toCon :: (Q Pat -> Q Pat) -> Name -> (Name, [Name]) -> Int -> Int -> Con -> Q Clause toCon wrap ns (dt, vs) m i (NormalC cn []) = clause [wrap $ lrP m i $ conP 'C [conP 'U []]] (normalB $ conE cn) [] toCon wrap ns (dt, vs) m i (NormalC cn fs) = -- runIO (putStrLn ("constructor " ++ show ix)) >> clause [wrap $ lrP m i $ conP 'C [foldr1 prod (zipWith (toField (dt, vs)) [0..] (map snd fs))]] (normalB $ foldl appE (conE cn) (map (varE . field) [0..length fs - 1])) [] where prod x y = conP '(:*:) [x,y] toCon wrap ns (dt, vs) m i r@(RecC cn []) = clause [wrap $ lrP m i $ conP 'U []] (normalB $ conE cn) [] toCon wrap ns (dt, vs) m i r@(RecC cn fs) = clause [wrap $ lrP m i $ conP 'C [foldr1 prod (zipWith (toField (dt, vs)) [0..] (map trd fs))]] (normalB $ foldl appE (conE cn) (map (varE . field) [0..length fs - 1])) [] where prod x y = conP '(:*:) [x,y] toCon wrap ns (dt, vs) m i (InfixC t1 cn t2) = toCon wrap ns (dt, vs) m i (NormalC cn [t1,t2]) toField :: (Name, [Name]) -> Int -> Type -> Q Pat --toField (dt, vs) nr t | t == dataDeclToType (dt, vs) = conP 'I [varP (field nr)] toField (dt, vs) nr t = conP 'Rec [varP (field nr)] field :: Int -> Name field n = mkName $ "f" ++ show n lrP :: Int -> Int -> (Q Pat -> Q Pat) lrP 1 0 p = p lrP m 0 p = conP 'L [p] lrP m i p = conP 'R [lrP (m-1) (i-1) p] lrE :: Int -> Int -> (Q Exp -> Q Exp) lrE 1 0 e = e lrE m 0 e = conE 'L `appE` e lrE m i e = conE 'R `appE` lrE (m-1) (i-1) e trd (_,_,c) = c -- | Variant of foldr1 which returns a special element for empty lists foldr1' f x [] = x foldr1' _ _ [x] = x foldr1' f x (h:t) = f h (foldr1' f x t)