{-# OPTIONS_GHC -Wno-unused-imports #-} -- for liftA2, exported in 9.6 but not in earlier {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NamedFieldPuns #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} -- | Closed intervals in a space given by an arbitrary functor. module Data.Functor.Interval ( Interval(..) -- * Lenses , inf_ , sup_ -- * Constructors , (...) , point -- * Eliminators , diameter , midpoint , uncurryI , liftI -- * Enumerations , enum , liftEnum -- * Transformations , toUnit , fromUnit , transform , lerp , wrap -- * Traversals , foldMapInterval , mapInterval , traverseInterval -- * Predicates , member , isValid , isEmpty , isPoint -- * Relations , isSubintervalOf , isSuperintervalOf , isProperSubintervalOf , isProperSuperintervalOf , intersects -- * Semigroups , Union(..) , union , Intersection(..) , intersection ) where import Control.Applicative (liftA2) import Control.Monad.Trans.Class import Data.Coerce (coerce) import Data.Fixed (mod') import Data.Function (on) import Data.Semigroup import GHC.Generics (Generic, Generic1) -- | @f@-dimensional intervals with coordinates in @a@. data Interval f a = Interval { inf :: !(f a) -- ^ The infimum, or lower bound. , sup :: !(f a) -- ^ The supremum, or upper bound. } deriving ( Eq , Foldable -- ^ Folds over each coordinate of the endpoints. See 'foldMapInterval' for folding over the endpoints themselves. , Functor -- ^ Maps over each coordinate of the endpoints. See 'mapInterval' for mapping over the endpoints themselves. , Generic , Generic1 , Ord -- ^ The ordering is defined by @f@, with the infima taking precedence over the suprema. , Traversable -- ^ Traverses over each coordinate of the endpoints. See 'traverseInterval' for traversing over the endpoints themselves. ) instance Show (f a) => Show (Interval f a) where showsPrec p i = showParen (p > 3) $ showsPrec 4 (inf i) . showString "..." . showsPrec 4 (sup i) {-# INLINE showsPrec #-} instance Applicative f => Applicative (Interval f) where pure = point . pure {-# INLINE pure #-} f <*> a = Interval (inf f <*> inf a) (sup f <*> sup a) {-# INLINE (<*>) #-} a *> b = Interval (inf a *> inf b) (sup a *> sup b) {-# INLINE (*>) #-} a <* b = Interval (inf a <* inf b) (sup a <* sup b) {-# INLINE (<*) #-} liftA2 f a b = Interval (liftA2 f (inf a) (inf b)) (liftA2 f (sup a) (sup b)) {-# INLINE liftA2 #-} instance Monad f => Monad (Interval f) where m >>= f = Interval (inf m >>= inf . f) (sup m >>= sup . f) {-# INLINE (>>=) #-} instance MonadTrans Interval where lift = point {-# INLINE lift #-} instance (Applicative f, Num a) => Num (Interval f a) where (+) = liftA2 (+) {-# INLINE (+) #-} (*) = liftA2 (*) {-# INLINE (*) #-} (-) = liftA2 (-) {-# INLINE (-) #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} negate = fmap negate {-# INLINE negate #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance (Applicative f, Fractional a) => Fractional (Interval f a) where recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} fromRational = pure . fromRational {-# INLINE fromRational #-} instance (Applicative f, Floating a) => Floating (Interval f a) where pi = pure pi {-# INLINE pi #-} exp = fmap exp {-# INLINE exp #-} sqrt = fmap sqrt {-# INLINE sqrt #-} log = fmap log {-# INLINE log #-} (**) = liftA2 (**) {-# INLINE (**) #-} logBase = liftA2 logBase {-# INLINE logBase #-} sin = fmap sin {-# INLINE sin #-} tan = fmap tan {-# INLINE tan #-} cos = fmap cos {-# INLINE cos #-} asin = fmap asin {-# INLINE asin #-} atan = fmap atan {-# INLINE atan #-} acos = fmap acos {-# INLINE acos #-} sinh = fmap sinh {-# INLINE sinh #-} tanh = fmap tanh {-# INLINE tanh #-} cosh = fmap cosh {-# INLINE cosh #-} asinh = fmap asinh {-# INLINE asinh #-} atanh = fmap atanh {-# INLINE atanh #-} acosh = fmap acosh {-# INLINE acosh #-} -- | '<>' is a synonym for 'union'. instance (Applicative f, Ord a) => Semigroup (Interval f a) where (<>) = union {-# INLINE (<>) #-} stimes = stimesIdempotent {-# INLINE stimes #-} -- Lenses inf_, sup_ :: Lens' (Interval f a) (f a) -- | Access the infimum of an interval. inf_ = lens inf $ \ i inf -> i{ inf } {-# INLINE inf_ #-} -- | Access the supremum of an interval. sup_ = lens sup $ \ i sup -> i{ sup } {-# INLINE sup_ #-} -- Constructors -- | Construct a square interval in @f@ dimensions from the given coordinates. -- -- >>> 0...1 :: Interval Identity Int -- Identity 0...Identity 1 -- -- >>> 0...1 :: Interval V2 Int -- V2 0 0...V2 1 1 (...) :: Applicative f => a -> a -> Interval f a inf ... sup = Interval (pure inf) (pure sup) {-# INLINE (...) #-} infix 3 ... -- | Construct a point (or /degenerate/) interval from the given endpoint. -- -- >>> point (V2 0 1) -- V2 0 1...V2 0 1 point :: f a -> Interval f a point p = Interval p p {-# INLINE point #-} -- Eliminators -- | Compute the diameter of an interval, in @f@ dimensions, defined as the absolute difference between the endpoints. -- -- Note that the diameter of closed point intervals is zero, so this is not the interval’s /cardinality/. diameter :: (Applicative f, Num a) => Interval f a -> f a diameter = liftI (fmap abs . flip (-)) {-# INLINE diameter #-} -- | Compute the midpoint of an interval, halfway between the endpoints. -- -- @ -- midpoint (point x) = x -- @ midpoint :: (Applicative f, Fractional a) => Interval f a -> f a midpoint = lerp 0.5 {-# INLINE midpoint #-} -- | Apply a function to the endpoints of an interval. -- -- >>> uncurryI (,) (Interval a b) -- (a, b) uncurryI :: (f a -> f a -> b) -> Interval f a -> b uncurryI f i = f (inf i) (sup i) {-# INLINE uncurryI #-} -- | Lift a function over the coordinates in each dimension of @f@. -- -- >>> liftI (+) (Interval (V2 1 2) (V2 3 4)) -- V2 4 6 liftI :: Applicative f => (a -> a -> b) -> Interval f a -> f b liftI f = uncurryI (liftA2 f) {-# INLINE liftI #-} -- Enumerations -- | Enumerate the points in @f@ between the interval’s endpoints. -- -- >>> enum (0...1 :: Interval Identity Int) -- [Identity 0, Identity 1] enum :: Enum (f a) => Interval f a -> [f a] enum = uncurryI enumFromTo {-# INLINE enum #-} -- | Enumerate the coordinates in @a@ between the interval’s endpoints along each dimension of @f@. -- -- >>> liftEnum (Interval (V2 1 2) (V2 1 3)) -- V2 [1] [2, 3] liftEnum :: (Applicative f, Enum a) => Interval f a -> f [a] liftEnum = liftI enumFromTo {-# INLINE liftEnum #-} -- Transformations toUnit, fromUnit :: (Applicative f, Fractional a) => Interval f a -> f a -> f a -- | Linearly transform a point in @f@ from a non-point interval of @f@ to the unit interval. -- -- @ -- toUnit = (\`transform\` 0...1) -- @ -- @ -- toUnit i . fromUnit i = id -- @ toUnit i x = liftI (\ inf sup t -> (t - inf) / (sup - inf)) i <*> x {-# INLINE toUnit #-} -- | Linearly transform a point in @f@ from the unit interval to an interval of @f@. -- -- @ -- fromUnit = transform (0...1) -- @ -- @ -- fromUnit i . toUnit i = id -- @ fromUnit i x = liftI (\ inf sup t -> (1 - t) * inf + t * sup) i <*> x {-# INLINE fromUnit #-} -- | Transform a point linearly between the subspaces described by non-point intervals. -- -- @ -- transform i j (inf i) = inf j -- @ -- @ -- transform i j (midpoint i) = midpoint j -- @ -- @ -- transform i j (sup i) = sup j -- @ -- @ -- transform i i = id -- @ -- @ -- transform i j . transform j i = id -- @ -- @ -- transform (0...1) = fromUnit -- @ -- @ -- (\`transform\` 0...1) = toUnit -- @ transform :: (Applicative f, Fractional a) => Interval f a -> Interval f a -> f a -> f a transform i1 i2 x = uncurryI (\ inf1 sup1 -> uncurryI (\ inf2 sup2 -> liftA2 f inf1 sup1 <*> inf2 <*> sup2 <*> x) i2) i1 where f inf1 sup1 inf2 sup2 t = (-t * inf2 + sup1 * inf2 + t * sup2 - inf1 * sup2) / (sup1 - inf1) {-# INLINE transform #-} -- | Linearly interpolate between the endpoints of an interval. -- -- @ -- lerp 0 = inf -- @ -- @ -- lerp 0.5 = midpoint -- @ -- @ -- lerp 1 = sup -- @ -- @ -- lerp t i = fromUnit i (pure t) -- @ lerp :: (Applicative f, Num a) => a -> Interval f a -> f a lerp t = liftI (\ inf sup -> (1 - t) * inf + t * sup) {-# INLINE lerp #-} -- | Clamp a point in @f@ to the given interval, wrapping out-of-bounds values around. -- -- e.g. to wrap angles in radians to the interval [-pi, pi]: -- -- >>> wrap (-pi...pi) (pi + x) -- Identity (-pi + x) -- -- @ -- wrap i (lerp t i) = lerp (snd (properFraction t)) i -- @ wrap :: (Applicative f, Real a) => Interval f a -> f a -> f a wrap i x = liftI (\ inf sup x -> ((x - sup) `mod'` (sup - inf)) + inf) i <*> x {-# INLINE wrap #-} -- Traversals -- | Map and fold over an interval’s endpoints. -- -- Where 'foldMap' only folds over the individual coordinates, 'foldMapInterval' can interpret the structure of the space as well. -- -- >>> foldMapInterval (\ p -> [p]) (Interval a b) -- [a, b] -- -- @ -- foldMap f = foldMapInterval (foldMap f) -- @ foldMapInterval :: Semigroup s => (f a -> s) -> Interval f a -> s foldMapInterval f = uncurryI ((<>) `on` f) {-# INLINE foldMapInterval #-} -- | Map over an interval’s endpoints. -- -- Where 'fmap' only maps over the individual coordinates, 'mapInterval' can change the space as well. -- -- >>> mapInterval (\ (V2 x y) -> V3 x y 0) (Interval (V2 1 2) (V2 3 4)) -- V3 1 2 0...V3 3 4 0 -- -- @ -- fmap f = mapInterval (fmap f) -- @ mapInterval :: (f a -> g b) -> Interval f a -> Interval g b mapInterval f = uncurryI (Interval `on` f) {-# INLINE mapInterval #-} -- | Traverse over an interval’s endpoints. -- -- Where 'traverse' only traverses over the individual coordinates, 'traverseInterval' can change the space as well. -- -- >>> :t traverseInterval (\ (V2 x y) -> V3 x y) -- traverseInterval (\ (V2 x y) -> V3 x y) :: Interval V2 a -> a -> Interval V3 a -- -- >>> traverseInterval (\ (V2 x y) -> V3 x y) (Interval (V2 1 2) (V2 3 4)) 0 -- V3 1 2 0...V3 3 4 0 -- -- @ -- traverse f = traverseInterval (traverse f) -- @ -- @ -- foldMapInterval f ≅ getConst . traverseInterval (Const . f) -- @ -- @ -- mapInterval f = runIdentity . traverseInterval (Identity . f) -- @ traverseInterval :: Applicative m => (f a -> m (g b)) -> Interval f a -> m (Interval g b) traverseInterval f = uncurryI (liftA2 Interval `on` f) {-# INLINE traverseInterval #-} -- Predicates -- | Test a point for inclusion within an interval. member :: (Applicative f, Foldable f, Ord a) => f a -> Interval f a -> Bool member = isSubintervalOf . point {-# INLINE member #-} -- | Test an interval for validity, i.e. non-emptiness. isValid :: (Applicative f, Foldable f, Ord a) => Interval f a -> Bool isValid = uncurryI lte {-# INLINE isValid #-} -- | Test an interval for validity, i.e. non-emptiness. isEmpty :: (Applicative f, Foldable f, Ord a) => Interval f a -> Bool isEmpty = not . isValid {-# INLINE isEmpty #-} -- | Test whether an interval is a singleton. isPoint :: (Applicative f, Foldable f, Eq a) => Interval f a -> Bool isPoint = and . liftI (==) {-# INLINE isPoint #-} -- Relations -- | Test whether one interval is a subinterval of another. -- -- @ -- i \`isSubintervalOf\` i = True -- @ -- @ -- i \`isSubintervalOf\` j && j \`isSubintervalOf\` k => i \`isSubintervalOf\` k -- @ isSubintervalOf :: (Applicative f, Foldable f, Ord a) => Interval f a -> Interval f a -> Bool isSubintervalOf a b = inf a `gte` inf b && sup a `lte` sup b {-# INLINE isSubintervalOf #-} -- | Test whether one interval is a superinterval of another. -- -- @ -- i \`isSuperintervalOf\` i = True -- @ -- @ -- i \`isSuperintervalOf\` j && j \`isSuperintervalOf\` k => i \`isSuperintervalOf\` k -- @ isSuperintervalOf :: (Applicative f, Foldable f, Ord a) => Interval f a -> Interval f a -> Bool isSuperintervalOf = flip isSubintervalOf {-# INLINE isSuperintervalOf #-} -- | Test whether one interval is a proper subinterval of another (i.e. a subinterval, but not equal). -- -- @ -- i \`isProperSubintervalOf\` i = False -- @ -- @ -- i \`isProperSubintervalOf\` j && j \`isProperSubintervalOf\` k => i \`isProperSubintervalOf\` k -- @ isProperSubintervalOf :: (Applicative f, Foldable f, Ord a) => Interval f a -> Interval f a -> Bool isProperSubintervalOf a b = isSubintervalOf a b && or (liftA2 (/=) a b) {-# INLINE isProperSubintervalOf #-} -- | Test whether one interval is a proper superinterval of another (i.e. a superinterval, but not equal). -- -- @ -- i \`isProperSuperintervalOf\` i = False -- @ -- @ -- i \`isProperSuperintervalOf\` j && j \`isProperSuperintervalOf\` k => i \`isProperSuperintervalOf\` k -- @ isProperSuperintervalOf :: (Applicative f, Foldable f, Ord a) => Interval f a -> Interval f a -> Bool isProperSuperintervalOf = flip isProperSubintervalOf {-# INLINE isProperSuperintervalOf #-} -- | Test whether two intervals intersect. -- -- @ -- i \`intersects\` i = True -- @ -- @ -- i \`intersects\` j = j \`intersects\` i -- @ intersects :: (Applicative f, Foldable f, Ord a) => Interval f a -> Interval f a -> Bool intersects a b = isValid (intersection a b) {-# INLINE intersects #-} -- Semigroups -- | 'Interval's form a 'Semigroup' under the union. newtype Union f a = Union { getUnion :: Interval f a } deriving (Applicative, Eq, Foldable, Functor, Monad, Ord, Show, Traversable) instance (Applicative f, Ord a) => Semigroup (Union f a) where Union i1 <> Union i2 = Union ((min ... max) <*> i1 <*> i2) {-# INLINE (<>) #-} stimes = stimesIdempotent {-# INLINE stimes #-} -- | Take the union of two intervals. -- -- This is equivalent to the 'Semigroup' instance for 'Interval' (and for 'Union'), and is provided for clarity and convenience. union :: forall f a . (Applicative f, Ord a) => Interval f a -> Interval f a -> Interval f a union = coerce ((<>) :: Union f a -> Union f a -> Union f a) {-# INLINE union #-} -- | 'Interval's form a 'Semigroup' under intersection. newtype Intersection f a = Intersection { getIntersection :: Interval f a } deriving (Applicative, Eq, Foldable, Functor, Monad, Ord, Show, Traversable) instance (Applicative f, Ord a) => Semigroup (Intersection f a) where Intersection i1 <> Intersection i2 = Intersection ((max ... min) <*> i1 <*> i2) {-# INLINE (<>) #-} stimes = stimesIdempotent {-# INLINE stimes #-} -- | Take the intersection of two intervals. -- -- This is equivalent to the 'Semigroup' instance for 'Intersection', and is provided for clarity and convenience. intersection :: forall f a . (Applicative f, Ord a) => Interval f a -> Interval f a -> Interval f a intersection = coerce ((<>) :: Intersection f a -> Intersection f a -> Intersection f a) {-# INLINE intersection #-} -- Internal liftRelation :: (Applicative f, Foldable f) => (a -> b -> Bool) -> f a -> f b -> Bool liftRelation rel a b = and (liftA2 rel a b) {-# INLINE liftRelation #-} infix 4 `lte`, `gte` lte, gte :: (Applicative f, Foldable f, Ord a) => f a -> f a -> Bool lte = liftRelation (<=) {-# INLINE lte #-} gte = liftRelation (>=) {-# INLINE gte #-} type Lens' s a = forall f . Functor f => (a -> f a) -> (s -> f s) lens :: (s -> a) -> (s -> a -> s) -> Lens' s a lens get put afa s = fmap (put s) (afa (get s)) {-# INLINE lens #-}