jord: Geographical Position Calculations

This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.


Please see the README on GitHub at

[Skip to ReadMe]


Dependenciesbase (>=4.9 && <5), haskeline (==0.7.*), jord [details]
Copyright2018 Cedric Liegeois
AuthorCedric Liegeois
MaintainerCedric Liegeois <>
Home page
Bug tracker
Source repositoryhead: git clone
UploadedWed Aug 22 12:36:10 UTC 2018 by CedricLiegeois




Maintainers' corner

For package maintainers and hackage trustees

Readme for jord-

[back to package description]

Jord - Geographical Position Calculations

travis build status Hackage license

Jord [Swedish] is Earth [English]

What is this?

Jord is a Haskell library that implements various geographical position calculations using the algorithms described in Gade, K. (2010). A Non-singular Horizontal Position Representation and in Shudde, Rex H. (1986). Some tactical algorithms for spherical geometry

How do I build it?

If you have Stack, then:

$ stack build --test

How do I use it?

See documentation on Hackage

import Data.Geo.Jord

-- Delta between positions in frameL
let p1 = decimalLatLongHeight 1 2 (metres (-3))
let p2 = decimalLatLongHeight 4 5 (metres (-6))
let w = decimalDegrees 5 -- wander azimuth
deltaBetween p1 p2 (frameL w) wgs84 -- deltaMetres 359490.579 302818.523 17404.272

-- destination position from 531914N0014347W having travelled 500Nm on a heading of 96.0217°
-- using mean earth radius derived from the WGS84 ellipsoid
destination84 (readLatLong "531914N0014347W") (decimalDegrees 96.0217) (nauticalMiles 500)
-- using mean earth radius derived from the GRS80 ellipsoid
destination (readLatLong "531914N0014347W") (decimalDegrees 96.0217) (nauticalMiles 500) r80

-- surface distance between 54°N,154°E and its antipodal position
let p = decimalLatLong 54 154
-- using mean earth radius derived from the WGS84 ellipsoid
surfaceDistance84 p (antipode p)
-- using mean earth radius derived from the GRS80 ellipsoid
surfaceDistance p (antipode p) r80

-- closest point of approach between tracks
let p1 = decimalLatLong 20 (-60)
let b1 = decimalDegrees 10
let s1 = knots 15
let p2 = decimalLatLong 34 (-50)
let b2 = decimalDegrees 220
let s2 = knots 300
let t1 = Track p1 b1 s1
let t2 = Track p2 b2 s2
-- using mean earth radius derived from the WGS84 ellipsoid
cpa84 t1 t2
-- using mean earth radius derived from the WGS72 ellipsoid
cpa t1 t2 r72

Jord comes with a REPL (built with haskeline):

$ jord-exe
jord> finalBearing (destination (antipode 54°N,154°E) 54° 1000m) 54°N,154°E
jord> angle: 126°0'0.0" (126.0)
jord> f = frameB 10d 20d 30d
jord> Body (vehicle) frame:
      yaw  : 10°0'0.000" (10.0)
      pitch: 20°0'0.000" (20.0)
      roll : 30°0'0.000" (30.0)
jord> d = delta 3000 2000 100
jord> Delta:
      x: 3000.0m <-> 3.0km <-> 1.6198704103671706nm <-> 9842.51968503937ft
      y: 2000.0m <-> 2.0km <-> 1.079913606911447nm <-> 6561.679790026246ft
      z: 100.0m <-> 0.1km <-> 5.399568034557235e-2nm <-> 328.0839895013123ft
jord> p0 = geo 49.66618 3.45063 0
jord> latlong: 49°39'58.248"N,3°27'2.268"E (49.66618, 3.45063)
      height : 0.0m <-> 0.0km <-> 0.0nm <-> 0.0ft
jord> target p0 f d wgs84
jord> latlong: 49°41'30.486"N,3°28'52.561"E (49.69180166666667, 3.4812669444444446)
      height : 6.0077m <-> 6.0077e-3km <-> 3.24389848812095e-3nm <-> 19.71030183727034ft