{-# LANGUAGE CPP #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE GADTs #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ------------------------------------------------------------------------------------------- -- | -- Copyright : 2013 Edward Kmett and Dan Doel -- License : BSD -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : rank N types -- -- Right and Left Kan lifts for functors over Hask, where they exist. -- -- ------------------------------------------------------------------------------------------- module Data.Functor.Kan.Rift ( -- * Right Kan lifts Rift(..) , toRift, fromRift, grift , composeRift, decomposeRift , adjointToRift, riftToAdjoint , composedAdjointToRift, riftToComposedAdjoint , rap ) where import Control.Applicative import Data.Functor.Adjunction import Data.Functor.Composition import Data.Functor.Identity import Data.Pointed -- * Right Kan Lift -- | -- -- @g . 'Rift' g f => f@ -- -- This could alternately be defined directly from the (co)universal propertly -- in which case, we'd get 'toRift' = 'UniversalRift', but then the usage would -- suffer. -- -- @ -- data 'UniversalRift' g f a = forall z. 'Functor' z => -- 'UniversalRift' (forall x. g (z x) -> f x) (z a) -- @ -- -- We can witness the isomorphism between Rift and UniversalRift using: -- -- @ -- riftIso1 :: Functor g => UniversalRift g f a -> Rift g f a -- riftIso1 (UniversalRift h z) = Rift $ \g -> h $ fmap (\k -> k <$> z) g -- @ -- -- @ -- riftIso2 :: Rift g f a -> UniversalRift g f a -- riftIso2 (Rift e) = UniversalRift e id -- @ -- -- @ -- riftIso1 (riftIso2 (Rift h)) = -- riftIso1 (UniversalRift h id) = -- by definition -- Rift $ \g -> h $ fmap (\k -> k <$> id) g -- by definition -- Rift $ \g -> h $ fmap id g -- <$> = (.) and (.id) -- Rift $ \g -> h g -- by functor law -- Rift h -- eta reduction -- @ -- -- The other direction is left as an exercise for the reader. -- -- There are several monads that we can form from @Rift@. -- -- When @g@ is corepresentable (e.g. is a right adjoint) then there exists @x@ such that @g ~ (->) x@, then it follows that -- -- @ -- Rift g g a ~ -- forall r. (x -> a -> r) -> x -> r ~ -- forall r. (a -> x -> r) -> x -> r ~ -- forall r. (a -> g r) -> g r ~ -- Codensity g r -- @ -- -- When @f@ is a left adjoint, so that @f -| g@ then -- -- @ -- Rift f f a ~ -- forall r. f (a -> r) -> f r ~ -- forall r. (a -> r) -> g (f r) ~ -- forall r. (a -> r) -> Adjoint f g r ~ -- Yoneda (Adjoint f g r) -- @ -- -- An alternative way to view that is to note that whenever @f@ is a left adjoint then @f -| 'Rift' f 'Identity'@, and since @'Rift' f f@ is isomorphic to @'Rift' f 'Identity' (f a)@, this is the 'Monad' formed by the adjunction. -- -- @'Rift' w f ~ 'Control.Monad.Co.CoT' w f@ can be a 'Monad' for any 'Comonad' @w@. -- -- @'Rift' 'Identity' m@ can be a 'Monad' for any 'Monad' @m@, as it is isomorphic to @'Yoneda' m@. newtype Rift g h a = Rift { runRift :: forall r. g (a -> r) -> h r } instance Functor g => Functor (Rift g h) where fmap f (Rift g) = Rift (g . fmap (.f)) {-# INLINE fmap #-} instance (Functor g, g ~ h) => Pointed (Rift g h) where point a = Rift (fmap ($a)) {-# INLINE point #-} instance (Functor g, g ~ h) => Applicative (Rift g h) where pure a = Rift (fmap ($a)) {-# INLINE pure #-} Rift mf <*> Rift ma = Rift (ma . mf . fmap (.)) {-# INLINE (<*>) #-} -- | Indexed applicative composition of right Kan lifts. rap :: Functor f => Rift f g (a -> b) -> Rift g h a -> Rift f h b rap (Rift mf) (Rift ma) = Rift (ma . mf . fmap (.)) {-# INLINE rap #-} grift :: Adjunction f u => f (Rift f k a) -> k a grift = rightAdjunct (\r -> leftAdjunct (runRift r) id) {-# INLINE grift #-} -- | The universal property of 'Rift' toRift :: (Functor g, Functor k) => (forall x. g (k x) -> h x) -> k a -> Rift g h a toRift h z = Rift $ \g -> h $ fmap (<$> z) g {-# INLINE toRift #-} -- | -- When @f -| u@, then @f -| Rift f Identity@ and -- -- @ -- 'toRift' . 'fromRift' ≡ 'id' -- 'fromRift' . 'toRift' ≡ 'id' -- @ fromRift :: Adjunction f u => (forall a. k a -> Rift f h a) -> f (k b) -> h b fromRift f = grift . fmap f {-# INLINE fromRift #-} -- | @Rift f Identity a@ is isomorphic to the right adjoint to @f@ if one exists. -- -- @ -- 'adjointToRift' . 'riftToAdjoint' ≡ 'id' -- 'riftToAdjoint' . 'adjointToRift' ≡ 'id' -- @ adjointToRift :: Adjunction f u => u a -> Rift f Identity a adjointToRift ua = Rift (Identity . rightAdjunct (<$> ua)) {-# INLINE adjointToRift #-} -- | @Rift f Identity a@ is isomorphic to the right adjoint to @f@ if one exists. riftToAdjoint :: Adjunction f u => Rift f Identity a -> u a riftToAdjoint (Rift m) = leftAdjunct (runIdentity . m) id {-# INLINE riftToAdjoint #-} -- | -- -- @ -- 'composeRift' . 'decomposeRift' ≡ 'id' -- 'decomposeRift' . 'composeRift' ≡ 'id' -- @ composeRift :: (Composition compose, Adjunction g u) => Rift f (Rift g h) a -> Rift (compose g f) h a composeRift (Rift f) = Rift (grift . fmap f . decompose) {-# INLINE composeRift #-} decomposeRift :: (Composition compose, Functor f, Functor g) => Rift (compose g f) h a -> Rift f (Rift g h) a decomposeRift (Rift f) = Rift $ \far -> Rift (f . compose . fmap (\rs -> fmap (rs.) far)) {-# INLINE decomposeRift #-} -- | @Rift f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists. -- -- @ -- 'riftToComposedAdjoint' . 'composedAdjointToRift' ≡ 'id' -- 'composedAdjointToRift' . 'riftToComposedAdjoint' ≡ 'id' -- @ riftToComposedAdjoint :: Adjunction f u => Rift f h a -> u (h a) riftToComposedAdjoint (Rift m) = leftAdjunct m id {-# INLINE riftToComposedAdjoint #-} -- | @Rift f h a@ is isomorphic to the post-composition of the right adjoint of @f@ onto @h@ if such a right adjoint exists. composedAdjointToRift :: (Functor h, Adjunction f u) => u (h a) -> Rift f h a composedAdjointToRift uha = Rift $ rightAdjunct (\b -> fmap b <$> uha) {-# INLINE composedAdjointToRift #-}