{-# LANGUAGE CPP #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #include "kan-extensions-common.h" ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Yoneda -- Copyright : (C) 2011-2016 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : MPTCs, fundeps -- -- The covariant form of the Yoneda lemma states that @f@ is naturally -- isomorphic to @Yoneda f@. -- -- This is described in a rather intuitive fashion by Dan Piponi in -- -- ---------------------------------------------------------------------------- module Data.Functor.Yoneda ( Yoneda(..) , liftYoneda, lowerYoneda , maxF, minF, maxM, minM -- * as a right Kan extension , yonedaToRan, ranToYoneda ) where import Control.Applicative import Control.Monad (MonadPlus(..), liftM) import Control.Monad.Fix import Control.Monad.Free.Class import Control.Monad.Trans.Class import Control.Comonad import Control.Comonad.Trans.Class import Data.Distributive import Data.Foldable import Data.Functor.Adjunction import Data.Functor.Bind import Data.Functor.Classes import Data.Functor.Extend import Data.Functor.Identity import Data.Functor.Kan.Ran import Data.Functor.Plus import Data.Functor.Rep import Data.Semigroup.Foldable import Data.Semigroup.Traversable import Data.Traversable import Text.Read hiding (lift) import Prelude hiding (sequence, lookup, zipWith) -- | @Yoneda f a@ can be viewed as the partial application of 'fmap' to its second argument. newtype Yoneda f a = Yoneda { runYoneda :: forall b. (a -> b) -> f b } -- | The natural isomorphism between @f@ and @'Yoneda' f@ given by the Yoneda lemma -- is witnessed by 'liftYoneda' and 'lowerYoneda' -- -- @ -- 'liftYoneda' . 'lowerYoneda' ≡ 'id' -- 'lowerYoneda' . 'liftYoneda' ≡ 'id' -- @ -- -- @ -- lowerYoneda (liftYoneda fa) = -- definition -- lowerYoneda (Yoneda (\f -> fmap f a)) -- definition -- (\f -> fmap f fa) id -- beta reduction -- fmap id fa -- functor law -- fa -- @ -- -- @ -- 'lift' = 'liftYoneda' -- @ liftYoneda :: Functor f => f a -> Yoneda f a liftYoneda a = Yoneda (\f -> fmap f a) lowerYoneda :: Yoneda f a -> f a lowerYoneda (Yoneda f) = f id -- {-# RULES "lower/lift=id" liftYoneda . lowerYoneda = id #-} -- {-# RULES "lift/lower=id" lowerYoneda . liftYoneda = id #-} -- | @Yoneda f@ can be viewed as the right Kan extension of @f@ along the 'Identity' functor. -- -- @ -- 'yonedaToRan' . 'ranToYoneda' ≡ 'id' -- 'ranToYoneda' . 'yonedaToRan' ≡ 'id' -- @ yonedaToRan :: Yoneda f a -> Ran Identity f a yonedaToRan (Yoneda m) = Ran (m . fmap runIdentity) ranToYoneda :: Ran Identity f a -> Yoneda f a ranToYoneda (Ran m) = Yoneda (m . fmap Identity) -- {-# RULES "yonedaToRan/ranToYoneda=id" yonedaToRan . ranToYoneda = id #-} -- {-# RULES "ranToYoneda/yonedaToRan=id" ranToYoneda . yonedaToRan = id #-} instance Functor (Yoneda f) where fmap f m = Yoneda (\k -> runYoneda m (k . f)) instance Apply f => Apply (Yoneda f) where Yoneda m <.> Yoneda n = Yoneda (\f -> m (f .) <.> n id) instance Applicative f => Applicative (Yoneda f) where pure a = Yoneda (\f -> pure (f a)) Yoneda m <*> Yoneda n = Yoneda (\f -> m (f .) <*> n id) instance Foldable f => Foldable (Yoneda f) where foldMap f = foldMap f . lowerYoneda instance Foldable1 f => Foldable1 (Yoneda f) where foldMap1 f = foldMap1 f . lowerYoneda instance Traversable f => Traversable (Yoneda f) where traverse f = fmap liftYoneda . traverse f . lowerYoneda instance Traversable1 f => Traversable1 (Yoneda f) where traverse1 f = fmap liftYoneda . traverse1 f . lowerYoneda instance Distributive f => Distributive (Yoneda f) where collect f = liftYoneda . collect (lowerYoneda . f) instance Representable g => Representable (Yoneda g) where type Rep (Yoneda g) = Rep g tabulate = liftYoneda . tabulate index = index . lowerYoneda instance Adjunction f g => Adjunction (Yoneda f) (Yoneda g) where unit = liftYoneda . fmap liftYoneda . unit counit (Yoneda m) = counit (m lowerYoneda) instance Show1 f => Show1 (Yoneda f) where #if LIFTED_FUNCTOR_CLASSES liftShowsPrec sp sl d (Yoneda f) = showsUnaryWith (liftShowsPrec sp sl) "liftYoneda" d (f id) #else showsPrec1 d (Yoneda f) = showParen (d > 10) $ showString "liftYoneda " . showsPrec1 11 (f id) #endif instance (Read1 f, Functor f) => Read1 (Yoneda f) where #if LIFTED_FUNCTOR_CLASSES liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp rl) "liftYoneda" liftYoneda #else readsPrec1 d = readParen (d > 10) $ \r' -> [ (liftYoneda f, t) | ("liftYoneda", s) <- lex r' , (f, t) <- readsPrec1 11 s ] #endif instance Show (f a) => Show (Yoneda f a) where showsPrec d (Yoneda f) = showParen (d > 10) $ showString "liftYoneda " . showsPrec 11 (f id) instance (Functor f, Read (f a)) => Read (Yoneda f a) where #ifdef __GLASGOW_HASKELL__ readPrec = parens $ prec 10 $ do Ident "liftYoneda" <- lexP liftYoneda <$> step readPrec #else readsPrec d = readParen (d > 10) $ \r' -> [ (liftYoneda f, t) | ("liftYoneda", s) <- lex r' , (f, t) <- readsPrec 11 s ] #endif infixl 0 `on1` on1 :: (g a -> g b -> c) -> (forall x. f x -> g x) -> f a -> f b -> c (.*.) `on1` f = \x y -> f x .*. f y instance Eq1 f => Eq1 (Yoneda f) where #if LIFTED_FUNCTOR_CLASSES liftEq eq = liftEq eq `on1` lowerYoneda #else eq1 = eq1 `on1` lowerYoneda #endif instance Ord1 f => Ord1 (Yoneda f) where #if LIFTED_FUNCTOR_CLASSES liftCompare cmp = liftCompare cmp `on1` lowerYoneda #else compare1 = compare1 `on1` lowerYoneda #endif instance (Eq1 f, Eq a) => Eq (Yoneda f a) where (==) = eq1 instance (Ord1 f, Ord a) => Ord (Yoneda f a) where compare = compare1 maxF :: (Functor f, Ord (f a)) => Yoneda f a -> Yoneda f a -> Yoneda f a Yoneda f `maxF` Yoneda g = liftYoneda $ f id `max` g id -- {-# RULES "max/maxF" max = maxF #-} {-# INLINE maxF #-} minF :: (Functor f, Ord (f a)) => Yoneda f a -> Yoneda f a -> Yoneda f a Yoneda f `minF` Yoneda g = liftYoneda $ f id `max` g id -- {-# RULES "min/minF" min = minF #-} {-# INLINE minF #-} maxM :: (Monad m, Ord (m a)) => Yoneda m a -> Yoneda m a -> Yoneda m a Yoneda f `maxM` Yoneda g = lift $ f id `max` g id -- {-# RULES "max/maxM" max = maxM #-} {-# INLINE maxM #-} minM :: (Monad m, Ord (m a)) => Yoneda m a -> Yoneda m a -> Yoneda m a Yoneda f `minM` Yoneda g = lift $ f id `min` g id -- {-# RULES "min/minM" min = minM #-} {-# INLINE minM #-} instance Alt f => Alt (Yoneda f) where Yoneda f Yoneda g = Yoneda (\k -> f k g k) instance Plus f => Plus (Yoneda f) where zero = Yoneda $ const zero instance Alternative f => Alternative (Yoneda f) where empty = Yoneda $ const empty Yoneda f <|> Yoneda g = Yoneda (\k -> f k <|> g k) instance Bind m => Bind (Yoneda m) where Yoneda m >>- k = Yoneda (\f -> m id >>- \a -> runYoneda (k a) f) instance Monad m => Monad (Yoneda m) where #if __GLASGOW_HASKELL__ < 710 return a = Yoneda (\f -> return (f a)) #endif Yoneda m >>= k = Yoneda (\f -> m id >>= \a -> runYoneda (k a) f) instance MonadFix m => MonadFix (Yoneda m) where mfix f = lift $ mfix (lowerYoneda . f) instance MonadPlus m => MonadPlus (Yoneda m) where mzero = Yoneda (const mzero) Yoneda f `mplus` Yoneda g = Yoneda (\k -> f k `mplus` g k) instance MonadTrans Yoneda where lift a = Yoneda (\f -> liftM f a) instance (Functor f, MonadFree f m) => MonadFree f (Yoneda m) where wrap = lift . wrap . fmap lowerYoneda instance Extend w => Extend (Yoneda w) where extended k (Yoneda m) = Yoneda (\f -> extended (f . k . liftYoneda) (m id)) instance Comonad w => Comonad (Yoneda w) where extend k (Yoneda m) = Yoneda (\f -> extend (f . k . liftYoneda) (m id)) extract = extract . lowerYoneda instance ComonadTrans Yoneda where lower = lowerYoneda