{-# LANGUAGE TemplateHaskell, CPP #-} -- | -- Module : Test.LeanCheck.Derive -- Copyright : (c) 2015-2017 Rudy Matela -- License : 3-Clause BSD (see the file LICENSE) -- Maintainer : Rudy Matela -- -- This module is part of LeanCheck, -- a simple enumerative property-based testing library. -- -- This is an experimental module for deriving 'Listable' instances. -- -- Needs GHC and Template Haskell -- (tested on GHC 7.4, 7.6, 7.8, 7.10 and 8.0). -- -- If LeanCheck does not compile under later GHCs, this module is probably the -- culprit. module Test.LeanCheck.Derive ( deriveListable , deriveListableIfNeeded , deriveListableCascading ) where import Language.Haskell.TH import Test.LeanCheck.Basic import Control.Monad (unless, liftM, liftM2, filterM) import Data.List (delete) #if __GLASGOW_HASKELL__ < 706 -- reportWarning was only introduced in GHC 7.6 / TH 2.8 reportWarning :: String -> Q () reportWarning = report False #endif -- | Derives a 'Listable' instance for a given type 'Name'. -- -- Consider the following @Stack@ datatype: -- -- > data Stack a = Stack a (Stack a) | Empty -- -- Writing -- -- > deriveListable ''Stack -- -- will automatically derive the following 'Listable' instance: -- -- > instance Listable a => Listable (Stack a) where -- > tiers = cons2 Stack \/ cons0 Empty -- -- Needs the @TemplateHaskell@ extension. deriveListable :: Name -> DecsQ deriveListable = deriveListableX True False -- | Same as 'deriveListable' but does not warn when instance already exists -- ('deriveListable' is preferable). deriveListableIfNeeded :: Name -> DecsQ deriveListableIfNeeded = deriveListableX False False -- | Derives a 'Listable' instance for a given type 'Name' -- cascading derivation of type arguments as well. deriveListableCascading :: Name -> DecsQ deriveListableCascading = deriveListableX True True deriveListableX :: Bool -> Bool -> Name -> DecsQ deriveListableX warnExisting cascade t = do is <- t `isInstanceOf` ''Listable if is then do unless (not warnExisting) (reportWarning $ "Instance Listable " ++ show t ++ " already exists, skipping derivation") return [] else if cascade then reallyDeriveListableCascading t else reallyDeriveListable t -- TODO: Somehow check if the enumeration has repetitions, then warn the user. reallyDeriveListable :: Name -> DecsQ reallyDeriveListable t = do (nt,vs) <- normalizeType t #if __GLASGOW_HASKELL__ >= 710 cxt <- sequence [[t| Listable $(return v) |] | v <- vs] #else cxt <- sequence [classP ''Listable [return v] | v <- vs] #endif #if __GLASGOW_HASKELL__ >= 708 cxt |=>| [d| instance Listable $(return nt) where tiers = $(conse =<< typeConstructors t) |] #else tiersE <- conse =<< typeConstructors t return [ InstanceD cxt (AppT (ConT ''Listable) nt) [ValD (VarP 'tiers) (NormalB tiersE) []] ] #endif where cone n as = do (Just consN) <- lookupValueName $ "cons" ++ show (length as) [| $(varE consN) $(conE n) |] conse = foldr1 (\e1 e2 -> [| $e1 \/ $e2 |]) . map (uncurry cone) -- Not only really derive Listable instances, -- but cascade through argument types. reallyDeriveListableCascading :: Name -> DecsQ reallyDeriveListableCascading t = return . concat =<< mapM reallyDeriveListable =<< filterM (liftM not . isTypeSynonym) =<< return . (t:) . delete t =<< t `typeConCascadingArgsThat` (`isntInstanceOf` ''Listable) -- * Template haskell utilities typeConArgs :: Name -> Q [Name] typeConArgs t = do is <- isTypeSynonym t if is then liftM typeConTs $ typeSynonymType t else liftM (nubMerges . map typeConTs . concat . map snd) $ typeConstructors t where typeConTs :: Type -> [Name] typeConTs (AppT t1 t2) = typeConTs t1 `nubMerge` typeConTs t2 typeConTs (SigT t _) = typeConTs t typeConTs (VarT _) = [] typeConTs (ConT n) = [n] #if __GLASGOW_HASKELL__ >= 800 -- typeConTs (PromotedT n) = [n] ? typeConTs (InfixT t1 n t2) = typeConTs t1 `nubMerge` typeConTs t2 typeConTs (UInfixT t1 n t2) = typeConTs t1 `nubMerge` typeConTs t2 typeConTs (ParensT t) = typeConTs t #endif typeConTs _ = [] typeConArgsThat :: Name -> (Name -> Q Bool) -> Q [Name] typeConArgsThat t p = do targs <- typeConArgs t tbs <- mapM (\t' -> do is <- p t'; return (t',is)) targs return [t' | (t',p) <- tbs, p] typeConCascadingArgsThat :: Name -> (Name -> Q Bool) -> Q [Name] t `typeConCascadingArgsThat` p = do ts <- t `typeConArgsThat` p let p' t' = do is <- p t'; return $ t' `notElem` (t:ts) && is tss <- mapM (`typeConCascadingArgsThat` p') ts return $ nubMerges (ts:tss) -- Normalizes a type by applying it to necessary type variables, making it -- accept "zero" parameters. The normalized type is tupled with a list of -- necessary type variables. -- -- Suppose: -- -- > data DT a b c ... = ... -- -- Then, in pseudo-TH: -- -- > normalizeType [t|DT|] == Q (DT a b c ..., [a, b, c, ...]) normalizeType :: Name -> Q (Type, [Type]) normalizeType t = do ar <- typeArity t vs <- newVarTs ar return (foldl AppT (ConT t) vs, vs) where newNames :: [String] -> Q [Name] newNames = mapM newName newVarTs :: Int -> Q [Type] newVarTs n = liftM (map VarT) $ newNames (take n . map (:[]) $ cycle ['a'..'z']) -- Normalizes a type by applying it to units (`()`) while possible. -- -- > normalizeTypeUnits ''Int === [t| Int |] -- > normalizeTypeUnits ''Maybe === [t| Maybe () |] -- > normalizeTypeUnits ''Either === [t| Either () () |] normalizeTypeUnits :: Name -> Q Type normalizeTypeUnits t = do ar <- typeArity t return (foldl AppT (ConT t) (replicate ar (TupleT 0))) -- Given a type name and a class name, -- returns whether the type is an instance of that class. isInstanceOf :: Name -> Name -> Q Bool isInstanceOf tn cl = do ty <- normalizeTypeUnits tn isInstance cl [ty] isntInstanceOf :: Name -> Name -> Q Bool isntInstanceOf tn cl = liftM not (isInstanceOf tn cl) -- | Given a type name, return the number of arguments taken by that type. -- Examples in partially broken TH: -- -- > arity ''Int === Q 0 -- > arity ''Int->Int === Q 0 -- > arity ''Maybe === Q 1 -- > arity ''Either === Q 2 -- > arity ''Int-> === Q 1 -- -- This works for Data's and Newtype's and it is useful when generating -- typeclass instances. typeArity :: Name -> Q Int typeArity t = do ti <- reify t return . length $ case ti of #if __GLASGOW_HASKELL__ < 800 TyConI (DataD _ _ ks _ _) -> ks TyConI (NewtypeD _ _ ks _ _) -> ks #else TyConI (DataD _ _ ks _ _ _) -> ks TyConI (NewtypeD _ _ ks _ _ _) -> ks #endif TyConI (TySynD _ ks _) -> ks _ -> error $ "error (typeArity): symbol " ++ show t ++ " is not a newtype, data or type synonym" -- Given a type name, returns a list of its type constructor names paired with -- the type arguments they take. -- -- > typeConstructors ''() === Q [('(),[])] -- -- > typeConstructors ''(,) === Q [('(,),[VarT a, VarT b])] -- -- > typeConstructors ''[] === Q [('[],[]),('(:),[VarT a,AppT ListT (VarT a)])] -- -- > data Pair a = P a a -- > typeConstructors ''Pair === Q [('P,[VarT a, VarT a])] -- -- > data Point = Pt Int Int -- > typeConstructors ''Point === Q [('Pt,[ConT Int, ConT Int])] typeConstructors :: Name -> Q [(Name,[Type])] typeConstructors t = do ti <- reify t return . map simplify $ case ti of #if __GLASGOW_HASKELL__ < 800 TyConI (DataD _ _ _ cs _) -> cs TyConI (NewtypeD _ _ _ c _) -> [c] #else TyConI (DataD _ _ _ _ cs _) -> cs TyConI (NewtypeD _ _ _ _ c _) -> [c] #endif _ -> error $ "error (typeConstructors): symbol " ++ show t ++ " is neither newtype nor data" where simplify (NormalC n ts) = (n,map snd ts) simplify (RecC n ts) = (n,map trd ts) simplify (InfixC t1 n t2) = (n,[snd t1,snd t2]) trd (x,y,z) = z isTypeSynonym :: Name -> Q Bool isTypeSynonym t = do ti <- reify t return $ case ti of TyConI (TySynD _ _ _) -> True _ -> False typeSynonymType :: Name -> Q Type typeSynonymType t = do ti <- reify t return $ case ti of TyConI (TySynD _ _ t') -> t' _ -> error $ "error (typeSynonymType): symbol " ++ show t ++ " is not a type synonym" -- Append to instance contexts in a declaration. -- -- > sequence [[|Eq b|],[|Eq c|]] |=>| [t|instance Eq a => Cl (Ty a) where f=g|] -- > == [t| instance (Eq a, Eq b, Eq c) => Cl (Ty a) where f = g |] (|=>|) :: Cxt -> DecsQ -> DecsQ c |=>| qds = do ds <- qds return $ map (`ac` c) ds #if __GLASGOW_HASKELL__ < 800 where ac (InstanceD c ts ds) c' = InstanceD (c++c') ts ds ac d _ = d #else where ac (InstanceD o c ts ds) c' = InstanceD o (c++c') ts ds ac d _ = d #endif -- > nubMerge xs ys == nub (merge xs ys) -- > nubMerge xs ys == nub (sort (xs ++ ys)) nubMerge :: Ord a => [a] -> [a] -> [a] nubMerge [] ys = ys nubMerge xs [] = xs nubMerge (x:xs) (y:ys) | x < y = x : xs `nubMerge` (y:ys) | x > y = y : (x:xs) `nubMerge` ys | otherwise = x : xs `nubMerge` ys nubMerges :: Ord a => [[a]] -> [a] nubMerges = foldr nubMerge []