Copyright | (c) 2015-2018 Rudy Matela |
---|---|

License | 3-Clause BSD (see the file LICENSE) |

Maintainer | Rudy Matela <rudy@matela.com.br> |

Safe Haskell | None |

Language | Haskell2010 |

This module is part of LeanCheck, a simple enumerative property-based testing library.

This module re-exports Test.LeanCheck but some test functions have been specialized to catch errors (see the explicit export list below).

This module is unsafe as it uses `unsafePerformIO`

to catch errors.

## Synopsis

- holds :: Testable a => Int -> a -> Bool
- fails :: Testable a => Int -> a -> Bool
- exists :: Testable a => Int -> a -> Bool
- counterExample :: Testable a => Int -> a -> Maybe [String]
- counterExamples :: Testable a => Int -> a -> [[String]]
- witness :: Testable a => Int -> a -> Maybe [String]
- witnesses :: Testable a => Int -> a -> [[String]]
- results :: Testable a => a -> [([String], Bool)]
- fromError :: a -> a -> a
- errorToNothing :: a -> Maybe a
- errorToFalse :: Bool -> Bool
- errorToTrue :: Bool -> Bool
- anyErrorToNothing :: a -> Maybe a
- class Testable a
- class Listable a where
- toTiers :: [a] -> [[a]]
- listIntegral :: (Ord a, Num a) => [a]
- tiersFractional :: Fractional a => [[a]]
- tiersFloating :: Fractional a => [[a]]
- mapT :: (a -> b) -> [[a]] -> [[b]]
- filterT :: (a -> Bool) -> [[a]] -> [[a]]
- concatT :: [[[[a]]]] -> [[a]]
- concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]]
- cons0 :: a -> [[a]]
- cons1 :: Listable a => (a -> b) -> [[b]]
- cons2 :: (Listable a, Listable b) => (a -> b -> c) -> [[c]]
- cons3 :: (Listable a, Listable b, Listable c) => (a -> b -> c -> d) -> [[d]]
- cons4 :: (Listable a, Listable b, Listable c, Listable d) => (a -> b -> c -> d -> e) -> [[e]]
- cons5 :: (Listable a, Listable b, Listable c, Listable d, Listable e) => (a -> b -> c -> d -> e -> f) -> [[f]]
- delay :: [[a]] -> [[a]]
- reset :: [[a]] -> [[a]]
- suchThat :: [[a]] -> (a -> Bool) -> [[a]]
- (+|) :: [a] -> [a] -> [a]
- (\/) :: [[a]] -> [[a]] -> [[a]]
- (\\//) :: [[a]] -> [[a]] -> [[a]]
- (><) :: [[a]] -> [[b]] -> [[(a, b)]]
- productWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
- (==>) :: Bool -> Bool -> Bool
- cons6 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => (a -> b -> c -> d -> e -> f -> g) -> [[g]]
- cons7 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => (a -> b -> c -> d -> e -> f -> g -> h) -> [[h]]
- cons8 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => (a -> b -> c -> d -> e -> f -> g -> h -> i) -> [[i]]
- cons9 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> [[j]]
- cons10 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k) -> [[k]]
- cons11 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l) -> [[l]]
- cons12 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m) -> [[m]]
- ofWeight :: [[a]] -> Int -> [[a]]
- addWeight :: [[a]] -> Int -> [[a]]
- deriveListable :: Name -> DecsQ
- deriveListableCascading :: Name -> DecsQ
- check :: Testable a => a -> IO ()
- checkFor :: Testable a => Int -> a -> IO ()
- checkResult :: Testable a => a -> IO Bool
- checkResultFor :: Testable a => Int -> a -> IO Bool
- bagCons :: Listable a => ([a] -> b) -> [[b]]
- setCons :: Listable a => ([a] -> b) -> [[b]]
- mapCons :: (Listable a, Listable b) => ([(a, b)] -> c) -> [[c]]
- noDupListCons :: Listable a => ([a] -> b) -> [[b]]
- product3With :: (a -> b -> c -> d) -> [[a]] -> [[b]] -> [[c]] -> [[d]]
- productMaybeWith :: (a -> b -> Maybe c) -> [[a]] -> [[b]] -> [[c]]
- listsOf :: [[a]] -> [[[a]]]
- products :: [[[a]]] -> [[[a]]]
- deleteT :: Eq a => a -> [[a]] -> [[a]]
- normalizeT :: [[a]] -> [[a]]
- noDupListsOf :: [[a]] -> [[[a]]]
- bagsOf :: [[a]] -> [[[a]]]
- setsOf :: [[a]] -> [[[a]]]
- listsOfLength :: Int -> [[a]] -> [[[a]]]

# Documentation

errorToNothing :: a -> Maybe a Source #

errorToFalse :: Bool -> Bool Source #

errorToTrue :: Bool -> Bool Source #

anyErrorToNothing :: a -> Maybe a Source #

`Testable`

values are functions
of `Listable`

arguments that return boolean values.

Bool

Listable a => a -> Bool

(Listable a, Listable b) => a -> b -> Bool

(Listable a, Listable b, Listable c) => a -> b -> c -> Bool

(Listable a, Listable b, Listable c, ...) => a -> b -> c -> ... -> Bool

For example:

Int -> Bool

String -> [Int] -> Bool

class Listable a where Source #

A type is `Listable`

when there exists a function that
is able to list (ideally all of) its values.

Ideally, instances should be defined by a `tiers`

function that
returns a (potentially infinite) list of finite sub-lists (tiers):
the first sub-list contains elements of size 0,
the second sub-list contains elements of size 1
and so on.
Size here is defined by the implementor of the type-class instance.

For algebraic data types, the general form for `tiers`

is

tiers = cons<N> ConstructorA \/ cons<N> ConstructorB \/ ... \/ cons<N> ConstructorZ

where `N`

is the number of arguments of each constructor `A...Z`

.

Here is a datatype with 4 constructors and its listable instance:

data MyType = MyConsA | MyConsB Int | MyConsC Int Char | MyConsD String instance Listable MyType where tiers = cons0 MyConsA \/ cons1 MyConsB \/ cons2 MyConsC \/ cons1 MyConsD

The instance for Hutton's Razor is given by:

data Expr = Val Int | Add Expr Expr instance Listable Expr where tiers = cons1 Val \/ cons2 Add

Instances can be alternatively defined by `list`

.
In this case, each sub-list in `tiers`

is a singleton list
(each succeeding element of `list`

has +1 size).

The function `deriveListable`

from Test.LeanCheck.Derive
can automatically derive instances of this typeclass.

A `Listable`

instance for functions is also available but is not exported by
default. Import Test.LeanCheck.Function if you need to test higher-order
properties.

## Instances

Listable Bool Source # | tiers :: [[Bool]] = [[False,True]] list :: [[Bool]] = [False,True] |

Listable Char Source # | list :: [Char] = ['a', ' ', 'b', 'A', 'c', '\', 'n', 'd', ...] |

Listable Double Source # |
list :: [Double] = [0.0, 1.0, -1.0, Infinity, 0.5, 2.0, ...] |

Listable Float Source # |
list :: [Float] = [ 0.0 , 1.0, -1.0, Infinity , 0.5, 2.0, -Infinity, -0.5, -2.0 , 0.33333334, 3.0, -0.33333334, -3.0 , 0.25, 0.6666667, 1.5, 4.0, -0.25, -0.6666667, -1.5, -4.0 , ... ] |

Listable Int Source # | tiers :: [[Int]] = [[0], [1], [-1], [2], [-2], [3], [-3], ...] list :: [Int] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |

Listable Int8 Source # | list :: [Int8] = [0, 1, -1, 2, -2, 3, -3, ..., 127, -127, -128] |

Listable Int16 Source # | list :: [Int16] = [0, 1, -1, 2, -2, ..., 32767, -32767, -32768] |

Listable Int32 Source # | list :: [Int32] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |

Listable Int64 Source # | list :: [Int64] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |

Listable Integer Source # | list :: [Int] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |

Listable Ordering Source # | list :: [Ordering] = [LT, EQ, GT] |

Listable Word Source # | list :: [Word] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |

Listable Word8 Source # | list :: [Word8] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ..., 255] |

Listable Word16 Source # | list :: [Word16] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ..., 65535] |

Listable Word32 Source # | list :: [Word32] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |

Listable Word64 Source # | list :: [Word64] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |

Listable () Source # | list :: [()] = [()] tiers :: [[()]] = [[()]] |

Listable ExitCode Source # | Only includes valid POSIX exit codes > list :: [ExitCode] [ExitSuccess, ExitFailure 1, ExitFailure 2, ..., ExitFailure 255] |

Listable BufferMode Source # | |

Defined in Test.LeanCheck.Basic tiers :: [[BufferMode]] Source # list :: [BufferMode] Source # | |

Listable SeekMode Source # | |

Listable CChar Source # | |

Listable CSChar Source # | |

Listable CUChar Source # | |

Listable CShort Source # | |

Listable CUShort Source # | |

Listable CInt Source # | |

Listable CUInt Source # | |

Listable CLong Source # | |

Listable CULong Source # | |

Listable CLLong Source # | |

Listable CULLong Source # | |

Listable CBool Source # | |

Listable CFloat Source # | |

Listable CDouble Source # | |

Listable CPtrdiff Source # | |

Listable CSize Source # | |

Listable CWchar Source # | |

Listable CSigAtomic Source # | |

Defined in Test.LeanCheck.Basic tiers :: [[CSigAtomic]] Source # list :: [CSigAtomic] Source # | |

Listable CClock Source # | |

Listable CTime Source # | |

Listable CUSeconds Source # | |

Listable CSUSeconds Source # | |

Defined in Test.LeanCheck.Basic tiers :: [[CSUSeconds]] Source # list :: [CSUSeconds] Source # | |

Listable CIntPtr Source # | |

Listable CUIntPtr Source # | |

Listable CIntMax Source # | |

Listable CUIntMax Source # | |

Listable IOMode Source # | |

Listable GeneralCategory Source # | |

Defined in Test.LeanCheck.Basic tiers :: [[GeneralCategory]] Source # list :: [GeneralCategory] Source # | |

Listable Letters Source # | |

Listable AlphaNums Source # | |

Listable Digits Source # | |

Listable Alphas Source # | |

Listable Uppers Source # | |

Listable Lowers Source # | |

Listable Spaces Source # | |

Listable Letter Source # | |

Listable AlphaNum Source # | |

Listable Digit Source # | |

Listable Alpha Source # | |

Listable Upper Source # | |

Listable Lower Source # | |

Listable Space Source # | |

Listable Nat7 Source # | |

Listable Nat6 Source # | |

Listable Nat5 Source # | |

Listable Nat4 Source # | |

Listable Nat3 Source # | |

Listable Nat2 Source # | |

Listable Nat1 Source # | |

Listable Nat Source # | |

Listable Natural Source # | |

Listable Word4 Source # | |

Listable Word3 Source # | |

Listable Word2 Source # | |

Listable Word1 Source # | |

Listable Int4 Source # | |

Listable Int3 Source # | |

Listable Int2 Source # | |

Listable Int1 Source # | |

Listable a => Listable [a] Source # | tiers :: [[ [Int] ]] = [ [ [] ] , [ [0] ] , [ [0,0], [1] ] , [ [0,0,0], [0,1], [1,0], [-1] ] , ... ] list :: [ [Int] ] = [ [], [0], [0,0], [1], [0,0,0], ... ] |

Listable a => Listable (Maybe a) Source # | tiers :: [[Maybe Int]] = [[Nothing], [Just 0], [Just 1], ...] tiers :: [[Maybe Bool]] = [[Nothing], [Just False, Just True]] |

(Integral a, Listable a) => Listable (Ratio a) Source # | list :: [Rational] = [ 0 % 1 , 1 % 1 , (-1) % 1 , 1 % 2, 2 % 1 , (-1) % 2, (-2) % 1 , 1 % 3, 3 % 1 , (-1) % 3, (-3) % 1 , 1 % 4, 2 % 3, 3 % 2, 4 % 1 , (-1) % 4, (-2) % 3, (-3) % 2, (-4) % 1 , 1 % 5, 5 % 1 , (-1) % 5, (-5) % 1 , ... ] |

(RealFloat a, Listable a) => Listable (Complex a) Source # | |

(Integral a, Bounded a) => Listable (Xs a) Source # | Lists with elements of the |

(Integral a, Bounded a) => Listable (X a) Source # | Extremily large integers are intercalated with small integers. list :: [X Int] = map X [ 0, 1, -1, maxBound, minBound , 2, -2, maxBound-1, minBound+1 , 3, -3, maxBound-2, minBound+2 , ... ] |

Listable a => Listable (Set a) Source # | |

Listable a => Listable (Bag a) Source # | |

Listable a => Listable (NoDup a) Source # | |

(Eq a, Listable a, Listable b) => Listable (a -> b) Source # | |

(Listable a, Listable b) => Listable (Either a b) Source # | tiers :: [[Either Bool Bool]] = [[Left False, Right False, Left True, Right True]] tiers :: [[Either Int Int]] = [ [Left 0, Right 0] , [Left 1, Right 1] , [Left (-1), Right (-1)] , [Left 2, Right 2] , ... ] |

(Listable a, Listable b) => Listable (a, b) Source # | tiers :: [[(Int,Int)]] = [ [(0,0)] , [(0,1),(1,0)] , [(0,-1),(1,1),(-1,0)] , ...] list :: [(Int,Int)] = [ (0,0), (0,1), (1,0), (0,-1), (1,1), ...] |

(Listable a, Listable b) => Listable (Map a b) Source # | |

(Listable a, Listable b, Listable c) => Listable (a, b, c) Source # | list :: [(Int,Int,Int)] = [ (0,0,0), (0,0,1), (0,1,0), ...] |

(Listable a, Listable b, Listable c, Listable d) => Listable (a, b, c, d) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e) => Listable (a, b, c, d, e) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => Listable (a, b, c, d, e, f) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => Listable (a, b, c, d, e, f, g) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => Listable (a, b, c, d, e, f, g, h) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => Listable (a, b, c, d, e, f, g, h, i) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => Listable (a, b, c, d, e, f, g, h, i, j) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => Listable (a, b, c, d, e, f, g, h, i, j, k) Source # | |

(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => Listable (a, b, c, d, e, f, g, h, i, j, k, l) Source # | |

toTiers :: [a] -> [[a]] Source #

Takes a list of values `xs`

and transform it into tiers on which each
tier is occupied by a single element from `xs`

.

> toTiers [x, y, z, ...] [ [x], [y], [z], ...]

To convert back to a list, just `concat`

.

listIntegral :: (Ord a, Num a) => [a] Source #

Tiers of `Integral`

values.
Can be used as a default implementation of `list`

for `Integral`

types.

For types with negative values, like `Int`

,
the list starts with 0 then intercalates between positives and negatives.

listIntegral = [0, 1, -1, 2, -2, 3, -3, 4, -4, ...]

For types without negative values, like `Word`

,
the list starts with 0 followed by positives of increasing magnitude.

listIntegral = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...]

This function will not work for types that throw errors when the result of
an arithmetic operation is negative such as `Natural`

. For these, use
`[0..]`

as the `list`

implementation.

tiersFractional :: Fractional a => [[a]] Source #

Tiers of `Fractional`

values.
This can be used as the implementation of `tiers`

for `Fractional`

types.

tiersFractional :: [[Rational]] = [ [ 0 % 1] , [ 1 % 1] , [(-1) % 1] , [ 1 % 2, 2 % 1] , [(-1) % 2, (-2) % 1] , [ 1 % 3, 3 % 1] , [(-1) % 3, (-3) % 1] , [ 1 % 4, 2 % 3, 3 % 2, 4 % 1] , [(-1) % 4, (-2) % 3, (-3) % 2, (-4) % 1] , [ 1 % 5, 5 % 1] , [(-1) % 5, (-5) % 1] , [ 1 % 6, 2 % 5, 3 % 4, 4 % 3, 5 % 2, 6 % 1] , [(-1) % 6, (-2) % 5, (-3) % 4, (-4) % 3, (-5) % 2, (-6) % 1] , ... ]

tiersFloating :: Fractional a => [[a]] Source #

Tiers of `Floating`

values.
This can be used as the implementation of `tiers`

for `Floating`

types.

This function is equivalent to `tiersFractional`

with positive and negative infinities included: 1*0 and -1*0.

tiersFloating :: [[Float]] = [ [0.0] , [1.0] , [-1.0, Infinity] , [ 0.5, 2.0, -Infinity] , [-0.5, -2.0] , [ 0.33333334, 3.0] , [-0.33333334, -3.0] , [ 0.25, 0.6666667, 1.5, 4.0] , [-0.25, -0.6666667, -1.5, -4.0] , [ 0.2, 5.0] , [-0.2, -5.0] , [ 0.16666667, 0.4, 0.75, 1.3333334, 2.5, 6.0] , [-0.16666667, -0.4, -0.75, -1.3333334, -2.5, -6.0] , ... ]

`NaN`

and `-0`

are excluded from this enumeration.

mapT :: (a -> b) -> [[a]] -> [[b]] Source #

`map`

over tiers

mapT f [[x], [y,z], [w,...], ...] = [[f x], [f y, f z], [f w, ...], ...]

mapT f [xs, ys, zs, ...] = [map f xs, map f ys, map f zs]

filterT :: (a -> Bool) -> [[a]] -> [[a]] Source #

`filter`

tiers

filterT p [xs, yz, zs, ...] = [filter p xs, filter p ys, filter p zs]

filterT odd tiers = [[], [1], [-1], [], [], [3], [-3], [], [], [5], ...]

concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]] Source #

`concatMap`

over tiers

Given a constructor with no arguments,
returns `tiers`

of all possible applications of this constructor.
Since in this case there is only one possible application (to no
arguments), only a single value, of size/weight 0, will be present in the
resulting list of tiers.

cons3 :: (Listable a, Listable b, Listable c) => (a -> b -> c -> d) -> [[d]] Source #

Returns tiers of applications of a 3-argument constructor.

cons4 :: (Listable a, Listable b, Listable c, Listable d) => (a -> b -> c -> d -> e) -> [[e]] Source #

Returns tiers of applications of a 4-argument constructor.

cons5 :: (Listable a, Listable b, Listable c, Listable d, Listable e) => (a -> b -> c -> d -> e -> f) -> [[f]] Source #

Returns tiers of applications of a 5-argument constructor.

Test.LeanCheck.Basic defines
`cons6`

up to `cons12`

.
Those are exported by default from Test.LeanCheck,
but are hidden from the Haddock documentation.

delay :: [[a]] -> [[a]] Source #

Delays the enumeration of `tiers`

.
Conceptually this function adds to the weight of a constructor.

delay [xs, ys, zs, ... ] = [[], xs, ys, zs, ...]

delay [[x,...], [y,...], ...] = [[], [x,...], [y,...], ...]

Typically used when defining `Listable`

instances:

instance Listable <Type> where tiers = ... \/ delay (cons<N> <Constructor>) \/ ...

reset :: [[a]] -> [[a]] Source #

Resets any delays in a list-of `tiers`

.
Conceptually this function makes a constructor "weightless",
assuring the first tier is non-empty.

reset [[], [], ..., xs, ys, zs, ...] = [xs, ys, zs, ...]

reset [[], xs, ys, zs, ...] = [xs, ys, zs, ...]

reset [[], [], ..., [x], [y], [z], ...] = [[x], [y], [z], ...]

Typically used when defining `Listable`

instances:

instance Listable <Type> where tiers = ... \/ reset (cons<N> <Constructor>) \/ ...

Be careful: do not apply `reset`

to recursive data structure
constructors. In general this will make the list of size 0 infinite,
breaking the `tiers`

invariant (each tier must be finite).

suchThat :: [[a]] -> (a -> Bool) -> [[a]] Source #

Tiers of values that follow a property.

Typically used in the definition of `Listable`

tiers:

instance Listable <Type> where tiers = ... \/ cons<N> `suchThat` <condition> \/ ...

Examples:

> tiers `suchThat` odd [[], [1], [-1], [], [], [3], [-3], [], [], [5], ...]

> tiers `suchThat` even [[0], [], [], [2], [-2], [], [], [4], [-4], [], ...]

(+|) :: [a] -> [a] -> [a] infixr 5 Source #

Lazily interleaves two lists, switching between elements of the two. Union/sum of the elements in the lists.

[x,y,z,...] +| [a,b,c,...] = [x,a,y,b,z,c,...]

(\/) :: [[a]] -> [[a]] -> [[a]] infixr 7 Source #

Append tiers --- sum of two tiers enumerations.

[xs,ys,zs,...] \/ [as,bs,cs,...] = [xs++as, ys++bs, zs++cs, ...]

(\\//) :: [[a]] -> [[a]] -> [[a]] infixr 7 Source #

Interleave tiers --- sum of two tiers enumerations.
When in doubt, use `\/`

instead.

[xs,ys,zs,...] \/ [as,bs,cs,...] = [xs+|as, ys+|bs, zs+|cs, ...]

(><) :: [[a]] -> [[b]] -> [[(a, b)]] infixr 8 Source #

Take a tiered product of lists of tiers.

[t0,t1,t2,...] >< [u0,u1,u2,...] = [ t0**u0 , t0**u1 ++ t1**u0 , t0**u2 ++ t1**u1 ++ t2**u0 , ... ... ... ... ] where xs ** ys = [(x,y) | x <- xs, y <- ys]

Example:

[[0],[1],[2],...] >< [[0],[1],[2],...] = [ [(0,0)] , [(1,0),(0,1)] , [(2,0),(1,1),(0,2)] , [(3,0),(2,1),(1,2),(0,3)] , ... ]

productWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]] Source #

Take a tiered product of lists of tiers.
`productWith`

can be defined by `><`

, as:

productWith f xss yss = map (uncurry f) $ xss >< yss

(==>) :: Bool -> Bool -> Bool infixr 0 Source #

Boolean implication operator. Useful for defining conditional properties:

prop_something x y = condition x y ==> something x y

Examples:

> prop_addMonotonic x y = y > 0 ==> x + y > x > check prop_addMonotonic +++ OK, passed 200 tests.

cons6 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => (a -> b -> c -> d -> e -> f -> g) -> [[g]] Source #

cons7 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => (a -> b -> c -> d -> e -> f -> g -> h) -> [[h]] Source #

cons8 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => (a -> b -> c -> d -> e -> f -> g -> h -> i) -> [[i]] Source #

cons9 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> [[j]] Source #

cons10 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k) -> [[k]] Source #

cons11 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l) -> [[l]] Source #

cons12 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m) -> [[m]] Source #

ofWeight :: [[a]] -> Int -> [[a]] Source #

Resets the weight of a constructor or tiers.

> [ [], [], ..., xs, ys, zs, ... ] `ofWeight` 1 [ [], xs, ys, zs, ... ]

> [ xs, ys, zs, ... ] `ofWeight` 2 [ [], [], xs, ys, zs, ... ]

> [ [], xs, ys, zs, ... ] `ofWeight` 3 [ [], [], [], xs, ys, zs, ... ]

Typically used as an infix operator when defining `Listable`

instances:

instance Listable <Type> where tiers = ... \/ cons<N> <Cons> `ofWeight` <W> \/ ...

*Warning:* do not apply ` `ofWeight` 0 `

to recursive data structure
constructors. In general this will make the list of size 0 infinite,
breaking the tier invariant (each tier must be finite).

` `ofWeight` `

is equivalent to *n* `reset`

followed
by

applications of *n*`delay`

.

addWeight :: [[a]] -> Int -> [[a]] Source #

Adds to the weight of a constructor or tiers.

instance Listable <Type> where tiers = ... \/ cons<N> <Cons> `addWeight` <W> \/ ...

Typically used as an infix operator when defining `Listable`

instances:

> [ xs, ys, zs, ... ] `addWeight` 1 [ [], xs, ys, zs, ... ]

> [ xs, ys, zs, ... ] `addWeight` 2 [ [], [], xs, ys, zs, ... ]

> [ [], xs, ys, zs, ... ] `addWeight` 3 [ [], [], [], [], xs, ys, zs, ... ]

` `addWeight` `

is equivalent to *n*

applications of *n*`delay`

.

deriveListable :: Name -> DecsQ Source #

Derives a `Listable`

instance for a given type `Name`

.

Consider the following `Stack`

datatype:

data Stack a = Stack a (Stack a) | Empty

Writing

deriveListable ''Stack

will automatically derive the following `Listable`

instance:

instance Listable a => Listable (Stack a) where tiers = cons2 Stack \/ cons0 Empty

**Warning:** if the values in your type need to follow a data invariant, the
derived instance won't respect it. Use this only on "free"
datatypes.

Needs the `TemplateHaskell`

extension.

deriveListableCascading :: Name -> DecsQ Source #

Derives a `Listable`

instance for a given type `Name`

cascading derivation of type arguments as well.

Consider the following series of datatypes:

data Position = CEO | Manager | Programmer data Person = Person { name :: String , age :: Int , position :: Position } data Company = Company { name :: String , employees :: [Person] }

Writing

deriveListableCascading ''Company

will automatically derive the following three `Listable`

instances:

instance Listable Position where tiers = cons0 CEO \/ cons0 Manager \/ cons0 Programmer instance Listable Person where tiers = cons3 Person instance Listable Company where tiers = cons2 Company

check :: Testable a => a -> IO () Source #

Checks a property printing results on `stdout`

> check $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 200 tests. > check $ \xs ys -> xs `union` ys == ys `union` (xs::[Int]) *** Failed! Falsifiable (after 4 tests): [] [0,0]

checkFor :: Testable a => Int -> a -> IO () Source #

Check a property for a given number of tests
printing results on `stdout`

> checkFor 1000 $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 1000 tests.

checkResult :: Testable a => a -> IO Bool Source #

Check a property
printing results on `stdout`

and
returning `True`

on success.

> p <- checkResult $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 200 tests. > q <- checkResult $ \xs ys -> xs `union` ys == ys `union` (xs::[Int]) *** Failed! Falsifiable (after 4 tests): [] [0,0] > p && q False

There is no option to silence this function:
for silence, you should use `holds`

.

bagCons :: Listable a => ([a] -> b) -> [[b]] Source #

Given a constructor that takes a bag of elements (as a list), lists tiers of applications of this constructor.

For example, a `Bag`

represented as a list.

bagCons Bag

setCons :: Listable a => ([a] -> b) -> [[b]] Source #

Given a constructor that takes a set of elements (as a list), lists tiers of applications of this constructor.

A naive `Listable`

instance for the `Set`

(of Data.Set)
would read:

instance Listable a => Listable (Set a) where tiers = cons0 empty \/ cons2 insert

The above instance has a problem: it generates repeated sets. A more efficient implementation that does not repeat sets is given by:

tiers = setCons fromList

Alternatively, you can use `setsOf`

direclty.

mapCons :: (Listable a, Listable b) => ([(a, b)] -> c) -> [[c]] Source #

Given a constructor that takes a map of elements (encoded as a list), lists tiers of applications of this constructor

So long as the underlying `Listable`

enumerations have no repetitions,
this will generate no repetitions.

This allows defining an efficient implementation of `tiers`

that does not
repeat maps given by:

tiers = mapCons fromList

noDupListCons :: Listable a => ([a] -> b) -> [[b]] Source #

Given a constructor that takes a list with no duplicate elements, return tiers of applications of this constructor.

product3With :: (a -> b -> c -> d) -> [[a]] -> [[b]] -> [[c]] -> [[d]] Source #

Like `productWith`

, but over 3 lists of tiers.

productMaybeWith :: (a -> b -> Maybe c) -> [[a]] -> [[b]] -> [[c]] Source #

listsOf :: [[a]] -> [[[a]]] Source #

Takes as argument tiers of element values; returns tiers of lists of elements.

listsOf [[]] = [[[]]]

listsOf [[x]] = [ [[]] , [[x]] , [[x,x]] , [[x,x,x]] , ... ]

listsOf [[x],[y]] = [ [[]] , [[x]] , [[x,x],[y]] , [[x,x,x],[x,y],[y,x]] , ... ]

products :: [[[a]]] -> [[[a]]] Source #

Takes the product of N lists of tiers, producing lists of length N.

Alternatively, takes as argument a list of lists of tiers of elements; returns lists combining elements of each list of tiers.

products [xss] = mapT (:[]) xss products [xss,yss] = mapT (\(x,y) -> [x,y]) (xss >< yss) products [xss,yss,zss] = product3With (\x y z -> [x,y,z]) xss yss zss

deleteT :: Eq a => a -> [[a]] -> [[a]] Source #

Delete the first occurence of an element in a tier.

For normalized lists-of-tiers without repetitions, the following holds:

deleteT x = normalizeT . (`suchThat` (/= x))

normalizeT :: [[a]] -> [[a]] Source #

Normalizes tiers by removing up to 12 empty tiers from the end of a list of tiers.

normalizeT [xs0,xs1,...,xsN,[]] = [xs0,xs1,...,xsN] normalizeT [xs0,xs1,...,xsN,[],[]] = [xs0,xs1,...,xsN]

The arbitrary limit of 12 tiers is necessary as this function would loop if there is an infinite trail of empty tiers.

noDupListsOf :: [[a]] -> [[[a]]] Source #

Takes as argument tiers of element values; returns tiers of lists with no repeated elements.

noDupListsOf [[0],[1],[2],...] == [ [[]] , [[0]] , [[1]] , [[0,1],[1,0],[2]] , [[0,2],[2,0],[3]] , ... ]

bagsOf :: [[a]] -> [[[a]]] Source #

Takes as argument tiers of element values; returns tiers of size-ordered lists of elements possibly with repetition.

bagsOf [[0],[1],[2],...] = [ [[]] , [[0]] , [[0,0],[1]] , [[0,0,0],[0,1],[2]] , [[0,0,0,0],[0,0,1],[0,2],[1,1],[3]] , [[0,0,0,0,0],[0,0,0,1],[0,0,2],[0,1,1],[0,3],[1,2],[4]] , ... ]

setsOf :: [[a]] -> [[[a]]] Source #

Takes as argument tiers of element values; returns tiers of size-ordered lists of elements without repetition.

setsOf [[0],[1],[2],...] = [ [[]] , [[0]] , [[1]] , [[0,1],[2]] , [[0,2],[3]] , [[0,3],[1,2],[4]] , [[0,1,2],[0,4],[1,3],[5]] , ... ]

Can be used in the constructor of specialized `Listable`

instances.
For `Set`

(from Data.Set), we would have:

instance Listable a => Listable (Set a) where tiers = mapT fromList $ setsOf tiers

listsOfLength :: Int -> [[a]] -> [[[a]]] Source #

Takes as argument an integer length and tiers of element values; returns tiers of lists of element values of the given length.

listsOfLength 3 [[0],[1],[2],[3],[4]...] = [ [[0,0,0]] , [[0,0,1],[0,1,0],[1,0,0]] , [[0,0,2],[0,1,1],[0,2,0],[1,0,1],[1,1,0],[2,0,0]] , ... ]