{-# LANGUAGE Rank2Types #-} {-# LANGUAGE LiberalTypeSynonyms #-} {-# LANGUAGE ScopedTypeVariables #-} -- | A collection of properties that can be tested with QuickCheck, to guarantee -- that you are working with valid 'Lens'es, 'Setter's, 'Traversal's, 'Iso's and -- 'Prism's. module Control.Lens.Properties ( isLens , isTraversal , isSetter , isIso , isPrism ) where import Control.Applicative import Control.Lens import Data.Functor.Compose import Test.QuickCheck import Test.QuickCheck.Function -------------------------------------------------------------------------------- -- | A 'Setter' is only legal if the following 3 laws hold: -- -- 1. @set l y (set l x a) ≡ set l y a@ -- -- 2. @over l id ≡ id@ -- -- 3. @over l f . over l g ≡ over l (f . g)@ isSetter :: (Arbitrary s, Arbitrary a, CoArbitrary a, Show s, Show a, Eq s, Function a) => Setter' s a -> Property isSetter l = setter_id l .&. setter_composition l .&. setter_set_set l -------------------------------------------------------------------------------- -- | A 'Traversal' is only legal if it is a valid 'Setter' (see 'isSetter' for -- what makes a 'Setter' valid), and the following laws hold: -- -- 1. @t pure ≡ pure@ -- -- 2. @fmap (t f) . t g ≡ getCompose . t (Compose . fmap f . g)@ isTraversal :: (Arbitrary s, Arbitrary a, CoArbitrary a, Show s, Show a, Eq s, Function a) => Traversal' s a -> Property isTraversal l = isSetter l .&. traverse_pureMaybe l .&. traverse_pureList l .&. do as <- arbitrary bs <- arbitrary t <- arbitrary return $ traverse_compose l (\x -> as++[x]++bs) (\x -> if t then Just x else Nothing) -------------------------------------------------------------------------------- -- | A 'Lens' is only legal if it is a valid 'Traversal' (see 'isTraversal' for -- what this means), and if the following laws hold: -- -- 1. @view l (set l b a) ≡ b@ -- -- 2. @set l (view l a) a ≡ a@ -- -- 3. @set l c (set l b a) ≡ set l c a@ isLens :: (Arbitrary s, Arbitrary a, CoArbitrary a, Show s, Show a, Eq s, Eq a, Function a) => Lens' s a -> Property isLens l = lens_set_view l .&. lens_view_set l .&. isTraversal l -------------------------------------------------------------------------------- isIso :: (Arbitrary s, Arbitrary a, CoArbitrary s, CoArbitrary a, Show s, Show a, Eq s, Eq a, Function s, Function a) => Iso' s a -> Property isIso l = iso_hither l .&. iso_yon l .&. isLens l .&. isLens (from l) -------------------------------------------------------------------------------- isPrism :: (Arbitrary s, Arbitrary a, CoArbitrary a, Show s, Show a, Eq s, Eq a, Function a) => Prism' s a -> Property isPrism l = isTraversal l .&. prism_yin l .&. prism_yang l -------------------------------------------------------------------------------- -- The first setter law: setter_id :: Eq s => Setter' s a -> s -> Bool setter_id l s = over l id s == s -- The second setter law: setter_composition :: Eq s => Setter' s a -> s -> Fun a a -> Fun a a -> Bool setter_composition l s (Fun _ f) (Fun _ g) = over l f (over l g s) == over l (f . g) s lens_set_view :: Eq s => Lens' s a -> s -> Bool lens_set_view l s = set l (view l s) s == s lens_view_set :: Eq a => Lens' s a -> s -> a -> Bool lens_view_set l s a = view l (set l a s) == a setter_set_set :: Eq s => Setter' s a -> s -> a -> a -> Bool setter_set_set l s a b = set l b (set l a s) == set l b s iso_hither :: Eq s => AnIso' s a -> s -> Bool iso_hither l s = s ^.cloneIso l.from l == s iso_yon :: Eq a => AnIso' s a -> a -> Bool iso_yon l a = a^.from l.cloneIso l == a prism_yin :: Eq a => Prism' s a -> a -> Bool prism_yin l a = preview l (review l a) == Just a prism_yang :: Eq s => Prism' s a -> s -> Bool prism_yang l s = maybe s (review l) (preview l s) == s traverse_pure :: forall f s a. (Applicative f, Eq (f s)) => LensLike' f s a -> s -> Bool traverse_pure l s = l pure s == (pure s :: f s) traverse_pureMaybe :: Eq s => LensLike' Maybe s a -> s -> Bool traverse_pureMaybe = traverse_pure traverse_pureList :: Eq s => LensLike' [] s a -> s -> Bool traverse_pureList = traverse_pure traverse_compose :: (Applicative f, Applicative g, Eq (f (g s))) => Traversal' s a -> (a -> g a) -> (a -> f a) -> s -> Bool traverse_compose t f g s = (fmap (t f) . t g) s == (getCompose . t (Compose . fmap f . g)) s