/* $Id: ClpNonLinearCost.hpp 1769 2011-07-26 09:31:51Z forrest $ */ // Copyright (C) 2002, International Business Machines // Corporation and others. All Rights Reserved. // This code is licensed under the terms of the Eclipse Public License (EPL). #ifndef ClpNonLinearCost_H #define ClpNonLinearCost_H #include "CoinPragma.hpp" class ClpSimplex; class CoinIndexedVector; /** Trivial class to deal with non linear costs I don't make any explicit assumptions about convexity but I am sure I do make implicit ones. One interesting idea for normal LP's will be to allow non-basic variables to come into basis as infeasible i.e. if variable at lower bound has very large positive reduced cost (when problem is infeasible) could it reduce overall problem infeasibility more by bringing it into basis below its lower bound. Another feature would be to automatically discover when problems are convex piecewise linear and re-formulate to use non-linear. I did some work on this many years ago on "grade" problems, but while it improved primal interior point algorithms were much better for that particular problem. */ /* status has original status and current status 0 - below lower so stored is upper 1 - in range 2 - above upper so stored is lower 4 - (for current) - same as original */ #define CLP_BELOW_LOWER 0 #define CLP_FEASIBLE 1 #define CLP_ABOVE_UPPER 2 #define CLP_SAME 4 inline int originalStatus(unsigned char status) { return (status & 15); } inline int currentStatus(unsigned char status) { return (status >> 4); } inline void setOriginalStatus(unsigned char & status, int value) { status = static_cast(status & ~15); status = static_cast(status | value); } inline void setCurrentStatus(unsigned char &status, int value) { status = static_cast(status & ~(15 << 4)); status = static_cast(status | (value << 4)); } inline void setInitialStatus(unsigned char &status) { status = static_cast(CLP_FEASIBLE | (CLP_SAME << 4)); } inline void setSameStatus(unsigned char &status) { status = static_cast(status & ~(15 << 4)); status = static_cast(status | (CLP_SAME << 4)); } // Use second version to get more speed //#define FAST_CLPNON #ifndef FAST_CLPNON #define CLP_METHOD1 ((method_&1)!=0) #define CLP_METHOD2 ((method_&2)!=0) #else #define CLP_METHOD1 (false) #define CLP_METHOD2 (true) #endif class ClpNonLinearCost { public: public: /**@name Constructors, destructor */ //@{ /// Default constructor. ClpNonLinearCost(); /** Constructor from simplex. This will just set up wasteful arrays for linear, but later may do dual analysis and even finding duplicate columns . */ ClpNonLinearCost(ClpSimplex * model, int method = 1); /** Constructor from simplex and list of non-linearities (columns only) First lower of each column has to match real lower Last lower has to be <= upper (if == then cost ignored) This could obviously be changed to make more user friendly */ ClpNonLinearCost(ClpSimplex * model, const int * starts, const double * lower, const double * cost); /// Destructor ~ClpNonLinearCost(); // Copy ClpNonLinearCost(const ClpNonLinearCost&); // Assignment ClpNonLinearCost& operator=(const ClpNonLinearCost&); //@} /**@name Actual work in primal */ //@{ /** Changes infeasible costs and computes number and cost of infeas Puts all non-basic (non free) variables to bounds and all free variables to zero if oldTolerance is non-zero - but does not move those <= oldTolerance away*/ void checkInfeasibilities(double oldTolerance = 0.0); /** Changes infeasible costs for each variable The indices are row indices and need converting to sequences */ void checkInfeasibilities(int numberInArray, const int * index); /** Puts back correct infeasible costs for each variable The input indices are row indices and need converting to sequences for costs. On input array is empty (but indices exist). On exit just changed costs will be stored as normal CoinIndexedVector */ void checkChanged(int numberInArray, CoinIndexedVector * update); /** Goes through one bound for each variable. If multiplier*work[iRow]>0 goes down, otherwise up. The indices are row indices and need converting to sequences Temporary offsets may be set Rhs entries are increased */ void goThru(int numberInArray, double multiplier, const int * index, const double * work, double * rhs); /** Takes off last iteration (i.e. offsets closer to 0) */ void goBack(int numberInArray, const int * index, double * rhs); /** Puts back correct infeasible costs for each variable The input indices are row indices and need converting to sequences for costs. At the end of this all temporary offsets are zero */ void goBackAll(const CoinIndexedVector * update); /// Temporary zeroing of feasible costs void zapCosts(); /// Refreshes costs always makes row costs zero void refreshCosts(const double * columnCosts); /// Puts feasible bounds into lower and upper void feasibleBounds(); /// Refresh - assuming regions OK void refresh(); /** Sets bounds and cost for one variable Returns change in cost May need to be inline for speed */ double setOne(int sequence, double solutionValue); /** Sets bounds and infeasible cost and true cost for one variable This is for gub and column generation etc */ void setOne(int sequence, double solutionValue, double lowerValue, double upperValue, double costValue = 0.0); /** Sets bounds and cost for outgoing variable may change value Returns direction */ int setOneOutgoing(int sequence, double &solutionValue); /// Returns nearest bound double nearest(int sequence, double solutionValue); /** Returns change in cost - one down if alpha >0.0, up if <0.0 Value is current - new */ inline double changeInCost(int sequence, double alpha) const { double returnValue = 0.0; if (CLP_METHOD1) { int iRange = whichRange_[sequence] + offset_[sequence]; if (alpha > 0.0) returnValue = cost_[iRange] - cost_[iRange-1]; else returnValue = cost_[iRange] - cost_[iRange+1]; } if (CLP_METHOD2) { returnValue = (alpha > 0.0) ? infeasibilityWeight_ : -infeasibilityWeight_; } return returnValue; } inline double changeUpInCost(int sequence) const { double returnValue = 0.0; if (CLP_METHOD1) { int iRange = whichRange_[sequence] + offset_[sequence]; if (iRange + 1 != start_[sequence+1] && !infeasible(iRange + 1)) returnValue = cost_[iRange] - cost_[iRange+1]; else returnValue = -1.0e100; } if (CLP_METHOD2) { returnValue = -infeasibilityWeight_; } return returnValue; } inline double changeDownInCost(int sequence) const { double returnValue = 0.0; if (CLP_METHOD1) { int iRange = whichRange_[sequence] + offset_[sequence]; if (iRange != start_[sequence] && !infeasible(iRange - 1)) returnValue = cost_[iRange] - cost_[iRange-1]; else returnValue = 1.0e100; } if (CLP_METHOD2) { returnValue = infeasibilityWeight_; } return returnValue; } /// This also updates next bound inline double changeInCost(int sequence, double alpha, double &rhs) { double returnValue = 0.0; #ifdef NONLIN_DEBUG double saveRhs = rhs; #endif if (CLP_METHOD1) { int iRange = whichRange_[sequence] + offset_[sequence]; if (alpha > 0.0) { assert(iRange - 1 >= start_[sequence]); offset_[sequence]--; rhs += lower_[iRange] - lower_[iRange-1]; returnValue = alpha * (cost_[iRange] - cost_[iRange-1]); } else { assert(iRange + 1 < start_[sequence+1] - 1); offset_[sequence]++; rhs += lower_[iRange+2] - lower_[iRange+1]; returnValue = alpha * (cost_[iRange] - cost_[iRange+1]); } } if (CLP_METHOD2) { #ifdef NONLIN_DEBUG double saveRhs1 = rhs; rhs = saveRhs; #endif unsigned char iStatus = status_[sequence]; int iWhere = currentStatus(iStatus); if (iWhere == CLP_SAME) iWhere = originalStatus(iStatus); // rhs always increases if (iWhere == CLP_FEASIBLE) { if (alpha > 0.0) { // going below iWhere = CLP_BELOW_LOWER; rhs = COIN_DBL_MAX; } else { // going above iWhere = CLP_ABOVE_UPPER; rhs = COIN_DBL_MAX; } } else if (iWhere == CLP_BELOW_LOWER) { assert (alpha < 0); // going feasible iWhere = CLP_FEASIBLE; rhs += bound_[sequence] - model_->upperRegion()[sequence]; } else { assert (iWhere == CLP_ABOVE_UPPER); // going feasible iWhere = CLP_FEASIBLE; rhs += model_->lowerRegion()[sequence] - bound_[sequence]; } setCurrentStatus(status_[sequence], iWhere); #ifdef NONLIN_DEBUG assert(saveRhs1 == rhs); #endif returnValue = fabs(alpha) * infeasibilityWeight_; } return returnValue; } /// Returns current lower bound inline double lower(int sequence) const { return lower_[whichRange_[sequence] + offset_[sequence]]; } /// Returns current upper bound inline double upper(int sequence) const { return lower_[whichRange_[sequence] + offset_[sequence] + 1]; } /// Returns current cost inline double cost(int sequence) const { return cost_[whichRange_[sequence] + offset_[sequence]]; } //@} /**@name Gets and sets */ //@{ /// Number of infeasibilities inline int numberInfeasibilities() const { return numberInfeasibilities_; } /// Change in cost inline double changeInCost() const { return changeCost_; } /// Feasible cost inline double feasibleCost() const { return feasibleCost_; } /// Feasible cost with offset and direction (i.e. for reporting) double feasibleReportCost() const; /// Sum of infeasibilities inline double sumInfeasibilities() const { return sumInfeasibilities_; } /// Largest infeasibility inline double largestInfeasibility() const { return largestInfeasibility_; } /// Average theta inline double averageTheta() const { return averageTheta_; } inline void setAverageTheta(double value) { averageTheta_ = value; } inline void setChangeInCost(double value) { changeCost_ = value; } inline void setMethod(int value) { method_ = value; } /// See if may want to look both ways inline bool lookBothWays() const { return bothWays_; } //@} ///@name Private functions to deal with infeasible regions inline bool infeasible(int i) const { return ((infeasible_[i>>5] >> (i & 31)) & 1) != 0; } inline void setInfeasible(int i, bool trueFalse) { unsigned int & value = infeasible_[i>>5]; int bit = i & 31; if (trueFalse) value |= (1 << bit); else value &= ~(1 << bit); } inline unsigned char * statusArray() const { return status_; } /// For debug void validate(); //@} private: /**@name Data members */ //@{ /// Change in cost because of infeasibilities double changeCost_; /// Feasible cost double feasibleCost_; /// Current infeasibility weight double infeasibilityWeight_; /// Largest infeasibility double largestInfeasibility_; /// Sum of infeasibilities double sumInfeasibilities_; /// Average theta - kept here as only for primal double averageTheta_; /// Number of rows (mainly for checking and copy) int numberRows_; /// Number of columns (mainly for checking and copy) int numberColumns_; /// Starts for each entry (columns then rows) int * start_; /// Range for each entry (columns then rows) int * whichRange_; /// Temporary range offset for each entry (columns then rows) int * offset_; /** Lower bound for each range (upper bound is next lower). For various reasons there is always an infeasible range at bottom - even if lower bound is - infinity */ double * lower_; /// Cost for each range double * cost_; /// Model ClpSimplex * model_; // Array to say which regions are infeasible unsigned int * infeasible_; /// Number of infeasibilities found int numberInfeasibilities_; // new stuff /// Contains status at beginning and current unsigned char * status_; /// Bound which has been replaced in lower_ or upper_ double * bound_; /// Feasible cost array double * cost2_; /// Method 1 old, 2 new, 3 both! int method_; /// If all non-linear costs convex bool convex_; /// If we should look both ways for djs bool bothWays_; //@} }; #endif