----------------------------------------------------------------------------- -- | -- Module : Linear.Matrix -- Copyright : (C) 2012-2013 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- Simple matrix operation for low-dimensional primitives. ---------------------------------------------------------------------------- module Linear.Matrix ( (!*!), (!*) , (*!), (!!*), (*!!) , adjoint , M22, M33, M44, M43, m33_to_m44, m43_to_m44 , det22, det33, inv22, inv33 , eye3, eye4 , trace , translation , fromQuaternion , mkTransformation ) where import Control.Applicative import Control.Lens import Data.Distributive import Data.Foldable as Foldable import Linear.Epsilon import Linear.Metric import Linear.Quaternion import Linear.V2 import Linear.V3 import Linear.V4 import Linear.Vector ((*^)) import Linear.Conjugate infixl 7 !*! -- | matrix product (!*!) :: (Functor m, Foldable r, Applicative r, Distributive n, Num a) => m (r a) -> r (n a) -> m (n a) f !*! g = fmap (\r -> Foldable.foldr (+) 0 . liftA2 (*) r <$> g') f where g' = distribute g -- | matrix * column vector infixl 7 *! (!*) :: (Functor m, Metric r, Num a) => m (r a) -> r a -> m a m !* v = dot v <$> m infixl 7 !* -- | row vector * matrix (*!) :: (Metric r, Distributive n, Num a) => r a -> r (n a) -> n a f *! g = dot f <$> distribute g infixl 7 *!! -- |Scalar-matrix product. (*!!) :: (Functor m, Functor r, Num a) => a -> m (r a) -> m (r a) s *!! m = fmap (s *^) m {-# INLINE (*!!) #-} infixl 7 !!* -- |Matrix-scalar product. (!!*) :: (Functor m, Functor r, Num a) => m (r a) -> a -> m (r a) (!!*) = flip (*!!) {-# INLINE (!!*) #-} -- | hermitian conjugate or conjugate transpose adjoint :: (Functor m, Distributive n, Conjugate a) => m (n a) -> n (m a) adjoint = collect (fmap conjugate) {-# INLINE adjoint #-} -- | Compute the trace of a matrix trace :: (Monad f, Foldable f, Num a) => f (f a) -> a trace m = Foldable.sum (m >>= id) {-# INLINE trace #-} -- | Matrices use a row-major representation. type M22 a = V2 (V2 a) type M33 a = V3 (V3 a) type M44 a = V4 (V4 a) type M43 a = V4 (V3 a) -- | Build a rotation matrix from a unit 'Quaternion'. fromQuaternion :: Num a => Quaternion a -> M33 a fromQuaternion (Quaternion w (V3 x y z)) = V3 (V3 (1-2*(y2+z2)) (2*(x*y-z*w)) (2*(x*z+y*w))) (V3 (2*(x*y+z*w)) (1-2*(x2+z2)) (2*(y*z-x*w))) (V3 (2*(x*z-y*w)) (2*(y*z+x*w)) (1-2*(x2+y2))) where x2 = x * x y2 = y * y z2 = z * z mkTransformationMat :: Num a => M33 a -> V3 a -> M44 a mkTransformationMat (V3 r1 r2 r3) (V3 tx ty tz) = V4 (snoc3 r1 tx) (snoc3 r2 ty) (snoc3 r3 tz) (set _w 1 0) where snoc3 (V3 x y z) w = V4 x y z w -- |Build a transformation matrix from a rotation expressed as a -- 'Quaternion' and a translation vector. mkTransformation :: Num a => Quaternion a -> V3 a -> M44 a mkTransformation = mkTransformationMat . fromQuaternion m43_to_m44 :: Num a => M43 a -> M44 a m43_to_m44 (V4 (V3 a b c) (V3 d e f) (V3 g h i) (V3 j k l)) = (V4 (V4 a b c 0) (V4 d e f 0) (V4 g h i 0) (V4 j k l 1)) m33_to_m44 :: Num a => M33 a -> M44 a m33_to_m44 (V3 r1 r2 r3) = V4 (vector r1) (vector r2) (vector r3) (point 0) -- |3x3 identity matrix. eye3 :: Num a => M33 a eye3 = V3 (set _x 1 0) (set _y 1 0) (set _z 1 0) -- |4x4 identity matrix. eye4 :: Num a => M44 a eye4 = V4 (set _x 1 0) (set _y 1 0) (set _z 1 0) (set _w 1 0) -- |Extract the translation vector (first three entries of the last -- column) from a 3x4 or 4x4 matrix translation :: (R3 t, R4 v, Functor f, Functor t) => (V3 a -> f (V3 a)) -> t (v a) -> f (t a) translation = (. fmap (^._w)) . _xyz -- |2x2 matrix determinant. det22 :: Num a => V2 (V2 a) -> a det22 (V2 (V2 a b) (V2 c d)) = a * d - b * c {-# INLINE det22 #-} -- |3x3 matrix determinant. det33 :: Num a => V3 (V3 a) -> a det33 (V3 (V3 a b c) (V3 d e f) (V3 g h i)) = a * (e*i-f*h) - d * (b*i-c*h) + g * (b*f-c*e) {-# INLINE det33 #-} -- |2x2 matrix inverse. inv22 :: (Epsilon a, Floating a) => M22 a -> Maybe (M22 a) inv22 m@(V2 (V2 a b) (V2 c d)) | nearZero det = Nothing | otherwise = Just $ (1 / det) *!! (V2 (V2 d (-b)) (V2 (-c) a)) where det = det22 m {-# INLINE inv22 #-} -- |3x3 matrix inverse. inv33 :: (Epsilon a, Floating a) => M33 a -> Maybe (M33 a) inv33 m@(V3 (V3 a b c) (V3 d e f) (V3 g h i)) | nearZero det = Nothing | otherwise = Just $ (1 / det) *!! (V3 (V3 a' b' c') (V3 d' e' f') (V3 g' h' i')) where a' = cofactor (e,f,h,i) b' = cofactor (c,b,i,h) c' = cofactor (b,c,e,f) d' = cofactor (f,d,i,g) e' = cofactor (a,c,g,i) f' = cofactor (c,a,f,d) g' = cofactor (d,e,g,h) h' = cofactor (b,a,h,g) i' = cofactor (a,b,d,e) cofactor (q,r,s,t) = det22 (V2 (V2 q r) (V2 s t)) det = det33 m {-# INLINE inv33 #-}