{-# LANGUAGE DeriveDataTypeable, PatternGuards, ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Linear.Quaternion -- Copyright : (C) 2012-2013 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- Quaternions ---------------------------------------------------------------------------- module Linear.Quaternion ( Quaternion(..) , Complicated(..) , Hamiltonian(..) , slerp , asinq , acosq , atanq , asinhq , acoshq , atanhq , absi , pow , rotate , axisAngle ) where import Control.Applicative import Control.Lens import Data.Complex (Complex((:+))) import Data.Data import Data.Distributive import Data.Foldable import GHC.Arr (Ix(..)) import qualified Data.Foldable as F import Data.Monoid import Foreign.Ptr (castPtr, plusPtr) import Foreign.Storable (Storable(..)) import Linear.Epsilon import Linear.Conjugate import Linear.Metric import Linear.V3 import Linear.Vector import Prelude hiding (any) data Quaternion a = Quaternion a {-# UNPACK #-}!(V3 a) deriving (Eq,Ord,Read,Show,Data,Typeable) instance Functor Quaternion where fmap f (Quaternion e v) = Quaternion (f e) (fmap f v) {-# INLINE fmap #-} a <$ _ = Quaternion a (V3 a a a) {-# INLINE (<$) #-} instance Applicative Quaternion where pure a = Quaternion a (pure a) {-# INLINE pure #-} Quaternion f fv <*> Quaternion a v = Quaternion (f a) (fv <*> v) {-# INLINE (<*>) #-} instance Monad Quaternion where return = pure {-# INLINE return #-} (>>=) = bindRep -- the diagonal of a sedenion is super useful! {-# INLINE (>>=) #-} instance Ix a => Ix (Quaternion a) where {-# SPECIALISE instance Ix (Quaternion Int) #-} range (Quaternion l1 l2, Quaternion u1 u2) = [ Quaternion i1 i2 | i1 <- range (l1,u1), i2 <- range (l2,u2) ] {-# INLINE range #-} unsafeIndex (Quaternion l1 l2, Quaternion u1 u2) (Quaternion i1 i2) = unsafeIndex (l1,u1) i1 * unsafeRangeSize (l2,u2) + unsafeIndex (l2,u2) i2 {-# INLINE unsafeIndex #-} inRange (Quaternion l1 l2, Quaternion u1 u2) (Quaternion i1 i2) = inRange (l1,u1) i1 && inRange (l2,u2) i2 {-# INLINE inRange #-} instance Representable Quaternion where rep f = Quaternion (f _e) (V3 (f _i) (f _j) (f _k)) {-# INLINE rep #-} instance Foldable Quaternion where foldMap f (Quaternion e v) = f e `mappend` foldMap f v {-# INLINE foldMap #-} foldr f z (Quaternion e v) = f e (F.foldr f z v) {-# INLINE foldr #-} instance Traversable Quaternion where traverse f (Quaternion e v) = Quaternion <$> f e <*> traverse f v {-# INLINE traverse #-} instance forall a. Storable a => Storable (Quaternion a) where sizeOf _ = 4 * sizeOf (undefined::a) {-# INLINE sizeOf #-} alignment _ = alignment (undefined::a) {-# INLINE alignment #-} poke ptr (Quaternion e v) = poke (castPtr ptr) e >> poke (castPtr (ptr `plusPtr` sz)) v where sz = sizeOf (undefined::a) {-# INLINE poke #-} peek ptr = Quaternion <$> peek (castPtr ptr) <*> peek (castPtr (ptr `plusPtr` sz)) where sz = sizeOf (undefined::a) {-# INLINE peek #-} instance RealFloat a => Num (Quaternion a) where {-# SPECIALIZE instance Num (Quaternion Float) #-} {-# SPECIALIZE instance Num (Quaternion Double) #-} (+) = liftA2 (+) {-# INLINE (+) #-} (-) = liftA2 (-) {-# INLINE (-) #-} negate = fmap negate {-# INLINE negate #-} Quaternion s1 v1 * Quaternion s2 v2 = Quaternion (s1*s2 - (v1 `dot` v2)) $ (v1 `cross` v2) + s1*^v2 + s2*^v1 {-# INLINE (*) #-} fromInteger x = Quaternion (fromInteger x) 0 {-# INLINE fromInteger #-} abs z = Quaternion (norm z) 0 {-# INLINE abs #-} signum q@(Quaternion e (V3 i j k)) | m == 0.0 = q | not (isInfinite m || isNaN m) = q ^/ sqrt m | any isNaN q = qNaN | not (ii || ij || ik) = Quaternion 1 (V3 0 0 0) | not (ie || ij || ik) = Quaternion 0 (V3 1 0 0) | not (ie || ii || ik) = Quaternion 0 (V3 0 1 0) | not (ie || ii || ij) = Quaternion 0 (V3 0 0 1) | otherwise = qNaN where m = quadrance q ie = isInfinite e ii = isInfinite i ij = isInfinite j ik = isInfinite k {-# INLINE signum #-} qNaN :: RealFloat a => Quaternion a qNaN = Quaternion fNaN (V3 fNaN fNaN fNaN) where fNaN = 0/0 {-# INLINE qNaN #-} -- {-# RULES "abs/norm" abs x = Quaternion (norm x) 0 #-} -- {-# RULES "signum/signorm" signum = signorm #-} -- this will attempt to rewrite calls to abs to use norm intead when it is available. instance RealFloat a => Fractional (Quaternion a) where {-# SPECIALIZE instance Fractional (Quaternion Float) #-} {-# SPECIALIZE instance Fractional (Quaternion Double) #-} Quaternion q0 (V3 q1 q2 q3) / Quaternion r0 (V3 r1 r2 r3) = Quaternion (r0*q0+r1*q1+r2*q2+r3*q3) (V3 (r0*q1-r1*q0-r2*q3+r3*q2) (r0*q2+r1*q3-r2*q0-r3*q1) (r0*q3-r1*q2+r2*q1-r3*q0)) ^/ (r0*r0 + r1*r1 + r2*r2 + r3*r3) {-# INLINE (/) #-} recip q = q ^/ quadrance q {-# INLINE recip #-} fromRational x = Quaternion (fromRational x) 0 {-# INLINE fromRational #-} instance Metric Quaternion where Quaternion e v `dot` Quaternion e' v' = e*e' + (v `dot` v') {-# INLINE dot #-} class Complicated t where _e :: Functor f => (a -> f a) -> t a -> f (t a) _i :: Functor f => (a -> f a) -> t a -> f (t a) instance Complicated Complex where _e f (a :+ b) = (:+ b) <$> f a {-# INLINE _e #-} _i f (a :+ b) = (a :+) <$> f b {-# INLINE _i #-} instance Complicated Quaternion where _e f (Quaternion a v) = (\a' -> Quaternion a' v) <$> f a {-# INLINE _e #-} _i f (Quaternion a v) = Quaternion a <$> _x f v {-# INLINE _i #-} class Complicated t => Hamiltonian t where _j :: Functor f => (a -> f a) -> t a -> f (t a) _k :: Functor f => (a -> f a) -> t a -> f (t a) _ijk :: Functor f => (V3 a -> f (V3 a)) -> t a -> f (t a) instance Hamiltonian Quaternion where _j f (Quaternion a v) = Quaternion a <$> _y f v {-# INLINE _j #-} _k f (Quaternion a v) = Quaternion a <$> _z f v {-# INLINE _k #-} _ijk f (Quaternion a v) = Quaternion a <$> f v {-# INLINE _ijk #-} instance Distributive Quaternion where distribute = distributeRep {-# INLINE distribute #-} instance (Conjugate a, RealFloat a) => Conjugate (Quaternion a) where conjugate (Quaternion e v) = Quaternion (conjugate e) (negate v) {-# INLINE conjugate #-} reimagine :: RealFloat a => a -> a -> Quaternion a -> Quaternion a reimagine r s (Quaternion _ v) | isNaN s || isInfinite s = let aux 0 = 0 aux x = s * x in Quaternion r (aux <$> v) | otherwise = Quaternion r (v^*s) {-# INLINE reimagine #-} -- | quadrance of the imaginary component qi :: Num a => Quaternion a -> a qi (Quaternion _ v) = quadrance v {-# INLINE qi #-} -- | norm of the imaginary component absi :: Floating a => Quaternion a -> a absi = sqrt . qi {-# INLINE absi #-} -- | raise a 'Quaternion' to a scalar power pow :: RealFloat a => Quaternion a -> a -> Quaternion a pow q t = exp (t *^ log q) {-# INLINE pow #-} -- ehh.. instance RealFloat a => Floating (Quaternion a) where {-# SPECIALIZE instance Floating (Quaternion Float) #-} {-# SPECIALIZE instance Floating (Quaternion Double) #-} pi = Quaternion pi 0 {-# INLINE pi #-} exp q@(Quaternion e v) | qiq == 0 = Quaternion (exp e) v | ai <- sqrt qiq, ee <- exp e = reimagine (ee * cos ai) (ee * (sin ai / ai)) q where qiq = qi q {-# INLINE exp #-} log q@(Quaternion e v@(V3 _i j k)) | qiq == 0 = if e >= 0 then Quaternion (log e) v else Quaternion (log (negate e)) (V3 pi j k) -- mmm, pi | ai <- sqrt qiq, m <- sqrt (e*e + qiq) = reimagine (log m) (atan2 m e / ai) q where qiq = qi q {-# INLINE log #-} x ** y = exp (y * log x) {-# INLINE (**) #-} sqrt q@(Quaternion e v) | m == 0 = q | qiq == 0 = if e > 0 then Quaternion (sqrt e) 0 else Quaternion 0 (V3 (sqrt (negate e)) 0 0) | im <- sqrt (0.5*(m-e)) / sqrt qiq = Quaternion (0.5*(m+e)) (v^*im) where qiq = qi q m = sqrt (e*e + qiq) {-# INLINE sqrt #-} cos q@(Quaternion e v) | qiq == 0 = Quaternion (cos e) v | ai <- sqrt qiq = reimagine (cos e * cosh ai) (- sin e * (sinh ai / ai)) q where qiq = qi q {-# INLINE cos #-} sin q@(Quaternion e v) | qiq == 0 = Quaternion (sin e) v | ai <- sqrt qiq = reimagine (sin e * cosh ai) (cos e * (sinh ai / ai)) q where qiq = qi q {-# INLINE sin #-} tan q@(Quaternion e v) | qiq == 0 = Quaternion (tan e) v | ai <- sqrt qiq, ce <- cos e, sai <- sinh ai, d <- ce*ce + sai*sai = reimagine (ce * sin e / d) (cosh ai * (sai / ai) / d) q where qiq = qi q {-# INLINE tan #-} sinh q@(Quaternion e v) | qiq == 0 = Quaternion (sinh e) v | ai <- sqrt qiq = reimagine (sinh e * cos ai) (cosh e * (sin ai / ai)) q where qiq = qi q {-# INLINE sinh #-} cosh q@(Quaternion e v) | qiq == 0 = Quaternion (cosh e) v | ai <- sqrt qiq = reimagine (cosh e * cos ai) ((sinh e * sin ai) / ai) q where qiq = qi q {-# INLINE cosh #-} tanh q@(Quaternion e v) | qiq == 0 = Quaternion (tanh e) v | ai <- sqrt qiq, se <- sinh e, cai <- cos ai, d <- se*se + cai*cai = reimagine ((cosh e * se) / d) ((cai * (sin ai / ai)) / d) q where qiq = qi q {-# INLINE tanh #-} asin q = cut asin q {-# INLINE asin #-} acos q = cut acos q {-# INLINE acos #-} atan q = cut atan q {-# INLINE atan #-} asinh q = cut asinh q {-# INLINE asinh #-} acosh q = cut acosh q {-# INLINE acosh #-} atanh q = cut atanh q {-# INLINE atanh #-} -- | Helper for calculating with specific branch cuts cut :: RealFloat a => (Complex a -> Complex a) -> Quaternion a -> Quaternion a cut f q@(Quaternion e v) | qiq == 0 = Quaternion a (_x.~b$v) | otherwise = reimagine a (b / ai) q where qiq = qi q ai = sqrt qiq a :+ b = f (e :+ ai) {-# INLINE cut #-} -- | Helper for calculating with specific branch cuts cutWith :: RealFloat a => Complex a -> Quaternion a -> Quaternion a cutWith (r :+ im) q@(Quaternion e v) | e /= 0 || qiq == 0 || isNaN qiq || isInfinite qiq = error "bad cut" | s <- im / sqrt qiq = Quaternion r (v^*s) where qiq = qi q {-# INLINE cutWith #-} -- | 'asin' with a specified branch cut. asinq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a asinq q@(Quaternion e _) u | qiq /= 0.0 || e >= -1 && e <= 1 = asin q | otherwise = cutWith (asin (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE asinq #-} -- | 'acos' with a specified branch cut. acosq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a acosq q@(Quaternion e _) u | qiq /= 0.0 || e >= -1 && e <= 1 = acos q | otherwise = cutWith (acos (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE acosq #-} -- | 'atan' with a specified branch cut. atanq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a atanq q@(Quaternion e _) u | e /= 0.0 || qiq >= -1 && qiq <= 1 = atan q | otherwise = cutWith (atan (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE atanq #-} -- | 'asinh' with a specified branch cut. asinhq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a asinhq q@(Quaternion e _) u | e /= 0.0 || qiq >= -1 && qiq <= 1 = asinh q | otherwise = cutWith (asinh (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE asinhq #-} -- | 'acosh' with a specified branch cut. acoshq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a acoshq q@(Quaternion e _) u | qiq /= 0.0 || e >= 1 = asinh q | otherwise = cutWith (acosh (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE acoshq #-} -- | 'atanh' with a specified branch cut. atanhq :: RealFloat a => Quaternion a -> Quaternion a -> Quaternion a atanhq q@(Quaternion e _) u | qiq /= 0.0 || e > -1 && e < 1 = atanh q | otherwise = cutWith (atanh (e :+ sqrt qiq)) u where qiq = qi q {-# INLINE atanhq #-} -- | Spherical linear interpolation between two quaternions. slerp :: RealFloat a => Quaternion a -> Quaternion a -> a -> Quaternion a slerp q p t | 1.0 - cosphi < 1e-8 = q | phi <- acos cosphi, r <- recip (sin phi) = (sin ((1-t)*phi)*r *^ q ^+^ f (sin (t*phi)*r) *^ p) ^/ sin phi where dqp = dot q p (cosphi, f) = if dqp < 0 then (-dqp, negate) else (dqp, id) {-# SPECIALIZE slerp :: Quaternion Float -> Quaternion Float -> Float -> Quaternion Float #-} {-# SPECIALIZE slerp :: Quaternion Double -> Quaternion Double -> Double -> Quaternion Double #-} -- | Apply a rotation to a vector. rotate :: (Conjugate a, RealFloat a) => Quaternion a -> V3 a -> V3 a rotate q v = (q * Quaternion 0 v * conjugate q)^._ijk {-# SPECIALIZE rotate :: Quaternion Float -> V3 Float -> V3 Float #-} {-# SPECIALIZE rotate :: Quaternion Double -> V3 Double -> V3 Double #-} instance (RealFloat a, Epsilon a) => Epsilon (Quaternion a) where nearZero = nearZero . quadrance {-# INLINE nearZero #-} -- | @'axisAngle' axis theta@ builds a 'Quaternion' representing a -- rotation of @theta@ radians about @axis@. axisAngle :: (Epsilon a, Floating a) => V3 a -> a -> Quaternion a axisAngle axis theta = normalize $ Quaternion (cos half) $ (sin half) *^ axis where half = theta / 2 {-# INLINE axisAngle #-}