{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ScopedTypeVariables #-} -- {-# OPTIONS_GHC -fno-warn-name-shadowing #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} {-# LANGUAGE DeriveGeneric #-} #endif #ifndef MIN_VERSION_hashable #define MIN_VERSION_hashable(x,y,z) 1 #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2012-2013 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- 1-D Vectors ---------------------------------------------------------------------------- module Linear.V1 ( V1(..) , R1(..) , ex ) where import Control.Applicative import Control.Monad (liftM) import Control.Monad.Fix import Control.Monad.Zip import Control.Lens import Data.Data import Data.Distributive import Data.Foldable import Data.Functor.Bind import Data.Functor.Rep import Data.Hashable import Data.Semigroup.Foldable import Foreign.Storable (Storable) import GHC.Arr (Ix(..)) #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 import GHC.Generics (Generic) #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706 import GHC.Generics (Generic1) #endif import Linear.Metric import Linear.Epsilon import Linear.Vector import Prelude hiding (sum) import qualified Data.Vector.Generic.Mutable as M import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed.Base as U #ifdef HLINT -- HLint is delusional {-# ANN module "HLint: ignore Unused LANGUAGE pragma" #-} #endif -- $setup -- >>> import Control.Lens -- | A 1-dimensional vector -- -- >>> pure 1 :: V1 Int -- V1 1 -- -- >>> V1 2 + V1 3 -- V1 5 -- -- >>> V1 2 * V1 3 -- V1 6 -- -- >>> sum (V1 2) -- 2 --data V2 a = V2 !a !a deriving (Eq,Ord,Show,Read,Data,Typeable) newtype V1 a = V1 a deriving (Eq,Ord,Show,Read,Data,Typeable, Functor,Foldable,Traversable, Epsilon,Storable #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 ,Generic #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706 ,Generic1 #endif ) instance Foldable1 V1 where foldMap1 f (V1 a) = f a {-# INLINE foldMap1 #-} instance Traversable1 V1 where traverse1 f (V1 a) = V1 <$> f a {-# INLINE traverse1 #-} instance Apply V1 where V1 f <.> V1 x = V1 (f x) {-# INLINE (<.>) #-} instance Applicative V1 where pure = V1 {-# INLINE pure #-} V1 f <*> V1 x = V1 (f x) {-# INLINE (<*>) #-} instance Additive V1 where zero = pure 0 {-# INLINE zero #-} liftU2 = liftA2 {-# INLINE liftU2 #-} liftI2 = liftA2 {-# INLINE liftI2 #-} instance Bind V1 where V1 a >>- f = f a {-# INLINE (>>-) #-} instance Monad V1 where return = V1 {-# INLINE return #-} V1 a >>= f = f a {-# INLINE (>>=) #-} instance Num a => Num (V1 a) where (+) = liftA2 (+) {-# INLINE (+) #-} (-) = liftA2 (-) {-# INLINE (-) #-} (*) = liftA2 (*) {-# INLINE (*) #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance Fractional a => Fractional (V1 a) where recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} fromRational = pure . fromRational {-# INLINE fromRational #-} instance Hashable a => Hashable (V1 a) where #if (MIN_VERSION_hashable(1,2,1)) || !(MIN_VERSION_hashable(1,2,0)) hash (V1 a) = hash a #endif hashWithSalt s (V1 a) = s `hashWithSalt` a instance Metric V1 where dot (V1 a) (V1 b) = a * b {-# INLINE dot #-} -- | A space that has at least 1 basis vector '_x'. class R1 t where -- | -- >>> V1 2 ^._x -- 2 -- -- >>> V1 2 & _x .~ 3 -- V1 3 -- _x :: Lens' (t a) a ex :: R1 t => E t ex = E _x instance R1 V1 where _x f (V1 a) = V1 <$> f a {-# INLINE _x #-} instance R1 Identity where _x f (Identity a) = Identity <$> f a {-# INLINE _x #-} instance Distributive V1 where distribute f = V1 (fmap (\(V1 x) -> x) f) {-# INLINE distribute #-} instance Ix a => Ix (V1 a) where {-# SPECIALISE instance Ix (V1 Int) #-} range (V1 l1, V1 u1) = [ V1 i1 | i1 <- range (l1,u1) ] {-# INLINE range #-} unsafeIndex (V1 l1,V1 u1) (V1 i1) = unsafeIndex (l1,u1) i1 {-# INLINE unsafeIndex #-} inRange (V1 l1,V1 u1) (V1 i1) = inRange (l1,u1) i1 {-# INLINE inRange #-} instance Representable V1 where type Rep V1 = E V1 tabulate f = V1 (f ex) {-# INLINE tabulate #-} index xs (E l) = view l xs {-# INLINE index #-} instance FunctorWithIndex (E V1) V1 where imap f (V1 a) = V1 (f ex a) {-# INLINE imap #-} instance FoldableWithIndex (E V1) V1 where ifoldMap f (V1 a) = f ex a {-# INLINE ifoldMap #-} instance TraversableWithIndex (E V1) V1 where itraverse f (V1 a) = V1 <$> f ex a {-# INLINE itraverse #-} type instance Index (V1 a) = E V1 type instance IxValue (V1 a) = a instance Ixed (V1 a) where ix = el {-# INLINE ix #-} instance Each (V1 a) (V1 b) a b where each f (V1 x) = V1 <$> f x {-# INLINE each #-} newtype instance U.Vector (V1 a) = V_V1 (U.Vector a) newtype instance U.MVector s (V1 a) = MV_V1 (U.MVector s a) instance U.Unbox a => U.Unbox (V1 a) instance U.Unbox a => M.MVector U.MVector (V1 a) where basicLength (MV_V1 v) = M.basicLength v basicUnsafeSlice m n (MV_V1 v) = MV_V1 (M.basicUnsafeSlice m n v) basicOverlaps (MV_V1 v) (MV_V1 u) = M.basicOverlaps v u basicUnsafeNew n = liftM MV_V1 (M.basicUnsafeNew n) basicUnsafeRead (MV_V1 v) i = liftM V1 (M.basicUnsafeRead v i) basicUnsafeWrite (MV_V1 v) i (V1 x) = M.basicUnsafeWrite v i x instance U.Unbox a => G.Vector U.Vector (V1 a) where basicUnsafeFreeze (MV_V1 v) = liftM V_V1 (G.basicUnsafeFreeze v) basicUnsafeThaw (V_V1 v) = liftM MV_V1 (G.basicUnsafeThaw v) basicLength (V_V1 v) = G.basicLength v basicUnsafeSlice m n (V_V1 v) = V_V1 (G.basicUnsafeSlice m n v) basicUnsafeIndexM (V_V1 v) i = liftM V1 (G.basicUnsafeIndexM v i) instance MonadZip V1 where mzip (V1 a) (V1 b) = V1 (a, b) mzipWith f (V1 a) (V1 b) = V1 (f a b) munzip (V1 (a,b)) = (V1 a, V1 b) instance MonadFix V1 where mfix f = V1 (let V1 a = f a in a) instance Bounded a => Bounded (V1 a) where minBound = pure minBound {-# INLINE minBound #-} maxBound = pure maxBound {-# INLINE maxBound #-}