{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE CPP #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} {-# LANGUAGE DeriveGeneric #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2012-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- 4-D Vectors ---------------------------------------------------------------------------- module Linear.V4 ( V4(..) , vector, point, normalizePoint , R1(..) , R2(..) , _yx , R3(..) , _xz, _yz, _zx, _zy , _xzy, _yxz, _yzx, _zxy, _zyx , R4(..) , _xw, _yw, _zw, _wx, _wy, _wz , _xyw, _xzw, _xwy, _xwz, _yxw, _yzw, _ywx, _ywz, _zxw, _zyw, _zwx, _zwy , _wxy, _wxz, _wyx, _wyz, _wzx, _wzy , _xywz, _xzyw, _xzwy, _xwyz, _xwzy, _yxzw , _yxwz, _yzxw, _yzwx, _ywxz , _ywzx, _zxyw, _zxwy, _zyxw, _zywx, _zwxy, _zwyx, _wxyz, _wxzy, _wyxz , _wyzx, _wzxy, _wzyx , ex, ey, ez, ew ) where import Control.Applicative import Control.DeepSeq (NFData(rnf)) import Control.Monad (liftM) import Control.Monad.Fix import Control.Monad.Zip import Control.Lens hiding ((<.>)) import Data.Binary as Binary import Data.Bytes.Serial import Data.Data import Data.Distributive import Data.Foldable import Data.Functor.Bind import Data.Functor.Classes import Data.Functor.Rep import Data.Hashable import Data.Semigroup import Data.Semigroup.Foldable import Data.Serialize as Cereal import Foreign.Ptr (castPtr) import Foreign.Storable (Storable(..)) import GHC.Arr (Ix(..)) #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 import GHC.Generics (Generic) #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706 import GHC.Generics (Generic1) #endif import qualified Data.Vector.Generic.Mutable as M import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed.Base as U import Linear.Epsilon import Linear.Metric import Linear.V2 import Linear.V3 import Linear.Vector {-# ANN module "HLint: ignore Reduce duplication" #-} -- | A 4-dimensional vector. data V4 a = V4 !a !a !a !a deriving (Eq,Ord,Show,Read,Data,Typeable #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 ,Generic #endif #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706 ,Generic1 #endif ) instance Functor V4 where fmap f (V4 a b c d) = V4 (f a) (f b) (f c) (f d) {-# INLINE fmap #-} a <$ _ = V4 a a a a {-# INLINE (<$) #-} instance Foldable V4 where foldMap f (V4 a b c d) = f a `mappend` f b `mappend` f c `mappend` f d {-# INLINE foldMap #-} instance Traversable V4 where traverse f (V4 a b c d) = V4 <$> f a <*> f b <*> f c <*> f d {-# INLINE traverse #-} instance Foldable1 V4 where foldMap1 f (V4 a b c d) = f a <> f b <> f c <> f d {-# INLINE foldMap1 #-} instance Traversable1 V4 where traverse1 f (V4 a b c d) = V4 <$> f a <.> f b <.> f c <.> f d {-# INLINE traverse1 #-} instance Applicative V4 where pure a = V4 a a a a {-# INLINE pure #-} V4 a b c d <*> V4 e f g h = V4 (a e) (b f) (c g) (d h) {-# INLINE (<*>) #-} instance Apply V4 where V4 a b c d <.> V4 e f g h = V4 (a e) (b f) (c g) (d h) {-# INLINE (<.>) #-} instance Additive V4 where zero = pure 0 {-# INLINE zero #-} liftU2 = liftA2 {-# INLINE liftU2 #-} liftI2 = liftA2 {-# INLINE liftI2 #-} instance Bind V4 where V4 a b c d >>- f = V4 a' b' c' d' where V4 a' _ _ _ = f a V4 _ b' _ _ = f b V4 _ _ c' _ = f c V4 _ _ _ d' = f d {-# INLINE (>>-) #-} instance Monad V4 where return a = V4 a a a a {-# INLINE return #-} V4 a b c d >>= f = V4 a' b' c' d' where V4 a' _ _ _ = f a V4 _ b' _ _ = f b V4 _ _ c' _ = f c V4 _ _ _ d' = f d {-# INLINE (>>=) #-} instance Num a => Num (V4 a) where (+) = liftA2 (+) {-# INLINE (+) #-} (*) = liftA2 (*) {-# INLINE (-) #-} (-) = liftA2 (-) {-# INLINE (*) #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance Fractional a => Fractional (V4 a) where recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} fromRational = pure . fromRational {-# INLINE fromRational #-} instance Floating a => Floating (V4 a) where pi = pure pi {-# INLINE pi #-} exp = fmap exp {-# INLINE exp #-} sqrt = fmap sqrt {-# INLINE sqrt #-} log = fmap log {-# INLINE log #-} (**) = liftA2 (**) {-# INLINE (**) #-} logBase = liftA2 logBase {-# INLINE logBase #-} sin = fmap sin {-# INLINE sin #-} tan = fmap tan {-# INLINE tan #-} cos = fmap cos {-# INLINE cos #-} asin = fmap asin {-# INLINE asin #-} atan = fmap atan {-# INLINE atan #-} acos = fmap acos {-# INLINE acos #-} sinh = fmap sinh {-# INLINE sinh #-} tanh = fmap tanh {-# INLINE tanh #-} cosh = fmap cosh {-# INLINE cosh #-} asinh = fmap asinh {-# INLINE asinh #-} atanh = fmap atanh {-# INLINE atanh #-} acosh = fmap acosh {-# INLINE acosh #-} instance Metric V4 where dot (V4 a b c d) (V4 e f g h) = a * e + b * f + c * g + d * h {-# INLINE dot #-} instance Distributive V4 where distribute f = V4 (fmap (\(V4 x _ _ _) -> x) f) (fmap (\(V4 _ y _ _) -> y) f) (fmap (\(V4 _ _ z _) -> z) f) (fmap (\(V4 _ _ _ w) -> w) f) {-# INLINE distribute #-} instance Hashable a => Hashable (V4 a) where hashWithSalt s (V4 a b c d) = s `hashWithSalt` a `hashWithSalt` b `hashWithSalt` c `hashWithSalt` d {-# INLINE hashWithSalt #-} -- | A space that distinguishes orthogonal basis vectors '_x', '_y', '_z', '_w'. (It may have more.) class R3 t => R4 t where -- | -- >>> V4 1 2 3 4 ^._w -- 4 _w :: Lens' (t a) a _xyzw :: Lens' (t a) (V4 a) _xw, _yw, _zw, _wx, _wy, _wz :: R4 t => Lens' (t a) (V2 a) _xw f = _xyzw $ \(V4 a b c d) -> f (V2 a d) <&> \(V2 a' d') -> V4 a' b c d' {-# INLINE _xw #-} _yw f = _xyzw $ \(V4 a b c d) -> f (V2 b d) <&> \(V2 b' d') -> V4 a b' c d' {-# INLINE _yw #-} _zw f = _xyzw $ \(V4 a b c d) -> f (V2 c d) <&> \(V2 c' d') -> V4 a b c' d' {-# INLINE _zw #-} _wx f = _xyzw $ \(V4 a b c d) -> f (V2 d a) <&> \(V2 d' a') -> V4 a' b c d' {-# INLINE _wx #-} _wy f = _xyzw $ \(V4 a b c d) -> f (V2 d b) <&> \(V2 d' b') -> V4 a b' c d' {-# INLINE _wy #-} _wz f = _xyzw $ \(V4 a b c d) -> f (V2 d c) <&> \(V2 d' c') -> V4 a b c' d' {-# INLINE _wz #-} _xyw, _xzw, _xwy, _xwz, _yxw, _yzw, _ywx, _ywz, _zxw, _zyw, _zwx, _zwy, _wxy, _wxz, _wyx, _wyz, _wzx, _wzy :: R4 t => Lens' (t a) (V3 a) _xyw f = _xyzw $ \(V4 a b c d) -> f (V3 a b d) <&> \(V3 a' b' d') -> V4 a' b' c d' {-# INLINE _xyw #-} _xzw f = _xyzw $ \(V4 a b c d) -> f (V3 a c d) <&> \(V3 a' c' d') -> V4 a' b c' d' {-# INLINE _xzw #-} _xwy f = _xyzw $ \(V4 a b c d) -> f (V3 a d b) <&> \(V3 a' d' b') -> V4 a' b' c d' {-# INLINE _xwy #-} _xwz f = _xyzw $ \(V4 a b c d) -> f (V3 a d c) <&> \(V3 a' d' c') -> V4 a' b c' d' {-# INLINE _xwz #-} _yxw f = _xyzw $ \(V4 a b c d) -> f (V3 b a d) <&> \(V3 b' a' d') -> V4 a' b' c d' {-# INLINE _yxw #-} _yzw f = _xyzw $ \(V4 a b c d) -> f (V3 b c d) <&> \(V3 b' c' d') -> V4 a b' c' d' {-# INLINE _yzw #-} _ywx f = _xyzw $ \(V4 a b c d) -> f (V3 b d a) <&> \(V3 b' d' a') -> V4 a' b' c d' {-# INLINE _ywx #-} _ywz f = _xyzw $ \(V4 a b c d) -> f (V3 b d c) <&> \(V3 b' d' c') -> V4 a b' c' d' {-# INLINE _ywz #-} _zxw f = _xyzw $ \(V4 a b c d) -> f (V3 c a d) <&> \(V3 c' a' d') -> V4 a' b c' d' {-# INLINE _zxw #-} _zyw f = _xyzw $ \(V4 a b c d) -> f (V3 c b d) <&> \(V3 c' b' d') -> V4 a b' c' d' {-# INLINE _zyw #-} _zwx f = _xyzw $ \(V4 a b c d) -> f (V3 c d a) <&> \(V3 c' d' a') -> V4 a' b c' d' {-# INLINE _zwx #-} _zwy f = _xyzw $ \(V4 a b c d) -> f (V3 c d b) <&> \(V3 c' d' b') -> V4 a b' c' d' {-# INLINE _zwy #-} _wxy f = _xyzw $ \(V4 a b c d) -> f (V3 d a b) <&> \(V3 d' a' b') -> V4 a' b' c d' {-# INLINE _wxy #-} _wxz f = _xyzw $ \(V4 a b c d) -> f (V3 d a c) <&> \(V3 d' a' c') -> V4 a' b c' d' {-# INLINE _wxz #-} _wyx f = _xyzw $ \(V4 a b c d) -> f (V3 d b a) <&> \(V3 d' b' a') -> V4 a' b' c d' {-# INLINE _wyx #-} _wyz f = _xyzw $ \(V4 a b c d) -> f (V3 d b c) <&> \(V3 d' b' c') -> V4 a b' c' d' {-# INLINE _wyz #-} _wzx f = _xyzw $ \(V4 a b c d) -> f (V3 d c a) <&> \(V3 d' c' a') -> V4 a' b c' d' {-# INLINE _wzx #-} _wzy f = _xyzw $ \(V4 a b c d) -> f (V3 d c b) <&> \(V3 d' c' b') -> V4 a b' c' d' {-# INLINE _wzy #-} _xywz, _xzyw, _xzwy, _xwyz, _xwzy, _yxzw , _yxwz, _yzxw, _yzwx, _ywxz , _ywzx, _zxyw, _zxwy, _zyxw, _zywx, _zwxy, _zwyx, _wxyz, _wxzy, _wyxz , _wyzx, _wzxy, _wzyx :: R4 t => Lens' (t a) (V4 a) _xywz f = _xyzw $ \(V4 a b c d) -> f (V4 a b d c) <&> \(V4 a' b' d' c') -> V4 a' b' c' d' {-# INLINE _xywz #-} _xzyw f = _xyzw $ \(V4 a b c d) -> f (V4 a c b d) <&> \(V4 a' c' b' d') -> V4 a' b' c' d' {-# INLINE _xzyw #-} _xzwy f = _xyzw $ \(V4 a b c d) -> f (V4 a c d b) <&> \(V4 a' c' d' b') -> V4 a' b' c' d' {-# INLINE _xzwy #-} _xwyz f = _xyzw $ \(V4 a b c d) -> f (V4 a d b c) <&> \(V4 a' d' b' c') -> V4 a' b' c' d' {-# INLINE _xwyz #-} _xwzy f = _xyzw $ \(V4 a b c d) -> f (V4 a d c b) <&> \(V4 a' d' c' b') -> V4 a' b' c' d' {-# INLINE _xwzy #-} _yxzw f = _xyzw $ \(V4 a b c d) -> f (V4 b a c d) <&> \(V4 b' a' c' d') -> V4 a' b' c' d' {-# INLINE _yxzw #-} _yxwz f = _xyzw $ \(V4 a b c d) -> f (V4 b a d c) <&> \(V4 b' a' d' c') -> V4 a' b' c' d' {-# INLINE _yxwz #-} _yzxw f = _xyzw $ \(V4 a b c d) -> f (V4 b c a d) <&> \(V4 b' c' a' d') -> V4 a' b' c' d' {-# INLINE _yzxw #-} _yzwx f = _xyzw $ \(V4 a b c d) -> f (V4 b c d a) <&> \(V4 b' c' d' a') -> V4 a' b' c' d' {-# INLINE _yzwx #-} _ywxz f = _xyzw $ \(V4 a b c d) -> f (V4 b d a c) <&> \(V4 b' d' a' c') -> V4 a' b' c' d' {-# INLINE _ywxz #-} _ywzx f = _xyzw $ \(V4 a b c d) -> f (V4 b d c a) <&> \(V4 b' d' c' a') -> V4 a' b' c' d' {-# INLINE _ywzx #-} _zxyw f = _xyzw $ \(V4 a b c d) -> f (V4 c a b d) <&> \(V4 c' a' b' d') -> V4 a' b' c' d' {-# INLINE _zxyw #-} _zxwy f = _xyzw $ \(V4 a b c d) -> f (V4 c a d b) <&> \(V4 c' a' d' b') -> V4 a' b' c' d' {-# INLINE _zxwy #-} _zyxw f = _xyzw $ \(V4 a b c d) -> f (V4 c b a d) <&> \(V4 c' b' a' d') -> V4 a' b' c' d' {-# INLINE _zyxw #-} _zywx f = _xyzw $ \(V4 a b c d) -> f (V4 c b d a) <&> \(V4 c' b' d' a') -> V4 a' b' c' d' {-# INLINE _zywx #-} _zwxy f = _xyzw $ \(V4 a b c d) -> f (V4 c d a b) <&> \(V4 c' d' a' b') -> V4 a' b' c' d' {-# INLINE _zwxy #-} _zwyx f = _xyzw $ \(V4 a b c d) -> f (V4 c d b a) <&> \(V4 c' d' b' a') -> V4 a' b' c' d' {-# INLINE _zwyx #-} _wxyz f = _xyzw $ \(V4 a b c d) -> f (V4 d a b c) <&> \(V4 d' a' b' c') -> V4 a' b' c' d' {-# INLINE _wxyz #-} _wxzy f = _xyzw $ \(V4 a b c d) -> f (V4 d a c b) <&> \(V4 d' a' c' b') -> V4 a' b' c' d' {-# INLINE _wxzy #-} _wyxz f = _xyzw $ \(V4 a b c d) -> f (V4 d b a c) <&> \(V4 d' b' a' c') -> V4 a' b' c' d' {-# INLINE _wyxz #-} _wyzx f = _xyzw $ \(V4 a b c d) -> f (V4 d b c a) <&> \(V4 d' b' c' a') -> V4 a' b' c' d' {-# INLINE _wyzx #-} _wzxy f = _xyzw $ \(V4 a b c d) -> f (V4 d c a b) <&> \(V4 d' c' a' b') -> V4 a' b' c' d' {-# INLINE _wzxy #-} _wzyx f = _xyzw $ \(V4 a b c d) -> f (V4 d c b a) <&> \(V4 d' c' b' a') -> V4 a' b' c' d' {-# INLINE _wzyx #-} ew :: R4 t => E t ew = E _w instance R1 V4 where _x f (V4 a b c d) = (\a' -> V4 a' b c d) <$> f a {-# INLINE _x #-} instance R2 V4 where _y f (V4 a b c d) = (\b' -> V4 a b' c d) <$> f b {-# INLINE _y #-} _xy f (V4 a b c d) = (\(V2 a' b') -> V4 a' b' c d) <$> f (V2 a b) {-# INLINE _xy #-} instance R3 V4 where _z f (V4 a b c d) = (\c' -> V4 a b c' d) <$> f c {-# INLINE _z #-} _xyz f (V4 a b c d) = (\(V3 a' b' c') -> V4 a' b' c' d) <$> f (V3 a b c) {-# INLINE _xyz #-} instance R4 V4 where _w f (V4 a b c d) = V4 a b c <$> f d {-# INLINE _w #-} _xyzw = id {-# INLINE _xyzw #-} instance Storable a => Storable (V4 a) where sizeOf _ = 4 * sizeOf (undefined::a) {-# INLINE sizeOf #-} alignment _ = alignment (undefined::a) {-# INLINE alignment #-} poke ptr (V4 x y z w) = do poke ptr' x pokeElemOff ptr' 1 y pokeElemOff ptr' 2 z pokeElemOff ptr' 3 w where ptr' = castPtr ptr {-# INLINE poke #-} peek ptr = V4 <$> peek ptr' <*> peekElemOff ptr' 1 <*> peekElemOff ptr' 2 <*> peekElemOff ptr' 3 where ptr' = castPtr ptr {-# INLINE peek #-} -- | Convert a 3-dimensional affine vector into a 4-dimensional homogeneous vector. vector :: Num a => V3 a -> V4 a vector (V3 a b c) = V4 a b c 0 {-# INLINE vector #-} -- | Convert a 3-dimensional affine point into a 4-dimensional homogeneous vector. point :: Num a => V3 a -> V4 a point (V3 a b c) = V4 a b c 1 {-# INLINE point #-} -- | Convert 4-dimensional projective coordinates to a 3-dimensional -- point. This operation may be denoted, @euclidean [x:y:z:w] = (x\/w, -- y\/w, z\/w)@ where the projective, homogenous, coordinate -- @[x:y:z:w]@ is one of many associated with a single point @(x\/w, -- y\/w, z\/w)@. normalizePoint :: Fractional a => V4 a -> V3 a normalizePoint (V4 a b c w) = (1/w) *^ V3 a b c {-# INLINE normalizePoint #-} instance Epsilon a => Epsilon (V4 a) where nearZero = nearZero . quadrance {-# INLINE nearZero #-} instance Ix a => Ix (V4 a) where {-# SPECIALISE instance Ix (V4 Int) #-} range (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) = [V4 i1 i2 i3 i4 | i1 <- range (l1,u1) , i2 <- range (l2,u2) , i3 <- range (l3,u3) , i4 <- range (l4,u4) ] {-# INLINE range #-} unsafeIndex (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) = unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * ( unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * ( unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * unsafeIndex (l1,u1) i1)) {-# INLINE unsafeIndex #-} inRange (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) = inRange (l1,u1) i1 && inRange (l2,u2) i2 && inRange (l3,u3) i3 && inRange (l4,u4) i4 {-# INLINE inRange #-} instance Representable V4 where type Rep V4 = E V4 tabulate f = V4 (f ex) (f ey) (f ez) (f ew) {-# INLINE tabulate #-} index xs (E l) = view l xs {-# INLINE index #-} instance FunctorWithIndex (E V4) V4 where imap f (V4 a b c d) = V4 (f ex a) (f ey b) (f ez c) (f ew d) {-# INLINE imap #-} instance FoldableWithIndex (E V4) V4 where ifoldMap f (V4 a b c d) = f ex a `mappend` f ey b `mappend` f ez c `mappend` f ew d {-# INLINE ifoldMap #-} instance TraversableWithIndex (E V4) V4 where itraverse f (V4 a b c d) = V4 <$> f ex a <*> f ey b <*> f ez c <*> f ew d {-# INLINE itraverse #-} type instance Index (V4 a) = E V4 type instance IxValue (V4 a) = a instance Ixed (V4 a) where ix = el instance Each (V4 a) (V4 b) a b where each = traverse data instance U.Vector (V4 a) = V_V4 !Int (U.Vector a) data instance U.MVector s (V4 a) = MV_V4 !Int (U.MVector s a) instance U.Unbox a => U.Unbox (V4 a) instance U.Unbox a => M.MVector U.MVector (V4 a) where basicLength (MV_V4 n _) = n basicUnsafeSlice m n (MV_V4 _ v) = MV_V4 n (M.basicUnsafeSlice (4*m) (4*n) v) basicOverlaps (MV_V4 _ v) (MV_V4 _ u) = M.basicOverlaps v u basicUnsafeNew n = liftM (MV_V4 n) (M.basicUnsafeNew (4*n)) basicUnsafeRead (MV_V4 _ v) i = do let o = 4*i x <- M.basicUnsafeRead v o y <- M.basicUnsafeRead v (o+1) z <- M.basicUnsafeRead v (o+2) w <- M.basicUnsafeRead v (o+3) return (V4 x y z w) basicUnsafeWrite (MV_V4 _ v) i (V4 x y z w) = do let o = 4*i M.basicUnsafeWrite v o x M.basicUnsafeWrite v (o+1) y M.basicUnsafeWrite v (o+2) z M.basicUnsafeWrite v (o+3) w instance U.Unbox a => G.Vector U.Vector (V4 a) where basicUnsafeFreeze (MV_V4 n v) = liftM ( V_V4 n) (G.basicUnsafeFreeze v) basicUnsafeThaw ( V_V4 n v) = liftM (MV_V4 n) (G.basicUnsafeThaw v) basicLength ( V_V4 n _) = n basicUnsafeSlice m n (V_V4 _ v) = V_V4 n (G.basicUnsafeSlice (4*m) (4*n) v) basicUnsafeIndexM (V_V4 _ v) i = do let o = 4*i x <- G.basicUnsafeIndexM v o y <- G.basicUnsafeIndexM v (o+1) z <- G.basicUnsafeIndexM v (o+2) w <- G.basicUnsafeIndexM v (o+3) return (V4 x y z w) instance MonadZip V4 where mzipWith = liftA2 instance MonadFix V4 where mfix f = V4 (let V4 a _ _ _ = f a in a) (let V4 _ a _ _ = f a in a) (let V4 _ _ a _ = f a in a) (let V4 _ _ _ a = f a in a) instance Bounded a => Bounded (V4 a) where minBound = pure minBound {-# INLINE minBound #-} maxBound = pure maxBound {-# INLINE maxBound #-} instance NFData a => NFData (V4 a) where rnf (V4 a b c d) = rnf a `seq` rnf b `seq` rnf c `seq` rnf d instance Serial1 V4 where serializeWith = traverse_ deserializeWith k = V4 <$> k <*> k <*> k <*> k instance Serial a => Serial (V4 a) where serialize = serializeWith serialize deserialize = deserializeWith deserialize instance Binary a => Binary (V4 a) where put = serializeWith Binary.put get = deserializeWith Binary.get instance Serialize a => Serialize (V4 a) where put = serializeWith Cereal.put get = deserializeWith Cereal.get instance Eq1 V4 where eq1 = (==) instance Ord1 V4 where compare1 = compare instance Show1 V4 where showsPrec1 = showsPrec instance Read1 V4 where readsPrec1 = readsPrec