{-# LANGUAGE DeriveDataTypeable, ScopedTypeVariables #-} {-# LANGUAGE CPP #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2012-2013 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- 4-D Vectors ---------------------------------------------------------------------------- module Linear.V4 ( V4(..) , vector, point, normalizePoint , R1(..) , R2(..) , R3(..) , R4(..) ) where import Control.Applicative import Data.Data import Data.Distributive import Data.Foldable import Data.Functor.Bind import Data.Semigroup import Data.Semigroup.Foldable import Data.Semigroup.Traversable import Data.Traversable import Foreign.Ptr (castPtr) import Foreign.Storable (Storable(..)) import GHC.Arr (Ix(..)) import Linear.Core import Linear.Epsilon import Linear.Metric import Linear.V2 import Linear.V3 import Linear.Vector {-# ANN module "HLint: ignore Reduce duplication" #-} -- | A 4-dimensional vector. data V4 a = V4 !a !a !a !a deriving (Eq,Ord,Show,Read,Data,Typeable) instance Functor V4 where fmap f (V4 a b c d) = V4 (f a) (f b) (f c) (f d) {-# INLINE fmap #-} a <$ _ = V4 a a a a {-# INLINE (<$) #-} instance Foldable V4 where foldMap f (V4 a b c d) = f a `mappend` f b `mappend` f c `mappend` f d {-# INLINE foldMap #-} instance Traversable V4 where traverse f (V4 a b c d) = V4 <$> f a <*> f b <*> f c <*> f d {-# INLINE traverse #-} instance Foldable1 V4 where foldMap1 f (V4 a b c d) = f a <> f b <> f c <> f d {-# INLINE foldMap1 #-} instance Traversable1 V4 where traverse1 f (V4 a b c d) = V4 <$> f a <.> f b <.> f c <.> f d {-# INLINE traverse1 #-} instance Applicative V4 where pure a = V4 a a a a {-# INLINE pure #-} V4 a b c d <*> V4 e f g h = V4 (a e) (b f) (c g) (d h) {-# INLINE (<*>) #-} instance Apply V4 where V4 a b c d <.> V4 e f g h = V4 (a e) (b f) (c g) (d h) {-# INLINE (<.>) #-} instance Additive V4 where zero = pure 0 {-# INLINE zero #-} liftU2 = liftA2 {-# INLINE liftU2 #-} liftI2 = liftA2 {-# INLINE liftI2 #-} instance Bind V4 where V4 a b c d >>- f = V4 a' b' c' d' where V4 a' _ _ _ = f a V4 _ b' _ _ = f b V4 _ _ c' _ = f c V4 _ _ _ d' = f d {-# INLINE (>>-) #-} instance Monad V4 where return a = V4 a a a a {-# INLINE return #-} V4 a b c d >>= f = V4 a' b' c' d' where V4 a' _ _ _ = f a V4 _ b' _ _ = f b V4 _ _ c' _ = f c V4 _ _ _ d' = f d {-# INLINE (>>=) #-} instance Num a => Num (V4 a) where (+) = liftA2 (+) {-# INLINE (+) #-} (*) = liftA2 (*) {-# INLINE (-) #-} (-) = liftA2 (-) {-# INLINE (*) #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} fromInteger = pure . fromInteger {-# INLINE fromInteger #-} instance Fractional a => Fractional (V4 a) where recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} fromRational = pure . fromRational {-# INLINE fromRational #-} instance Metric V4 where dot (V4 a b c d) (V4 e f g h) = a * e + b * f + c * g + d * h {-# INLINE dot #-} instance Distributive V4 where distribute f = V4 (fmap (\(V4 x _ _ _) -> x) f) (fmap (\(V4 _ y _ _) -> y) f) (fmap (\(V4 _ _ z _) -> z) f) (fmap (\(V4 _ _ _ w) -> w) f) {-# INLINE distribute #-} -- | A space that distinguishes orthogonal basis vectors '_x', '_y', '_z', '_w'. (It may have more.) class R3 t => R4 t where -- | -- @ -- '_w' :: Lens' (t a) a -- @ _w :: Functor f => (a -> f a) -> t a -> f (t a) -- | -- @ -- '_xyzw' :: Lens' (t a) ('V4' a) -- @ _xyzw :: Functor f => (V4 a -> f (V4 a)) -> t a -> f (t a) instance R1 V4 where _x f (V4 a b c d) = (\a' -> V4 a' b c d) <$> f a {-# INLINE _x #-} instance R2 V4 where _y f (V4 a b c d) = (\b' -> V4 a b' c d) <$> f b {-# INLINE _y #-} _xy f (V4 a b c d) = (\(V2 a' b') -> V4 a' b' c d) <$> f (V2 a b) {-# INLINE _xy #-} instance R3 V4 where _z f (V4 a b c d) = (\c' -> V4 a b c' d) <$> f c {-# INLINE _z #-} _xyz f (V4 a b c d) = (\(V3 a' b' c') -> V4 a' b' c' d) <$> f (V3 a b c) {-# INLINE _xyz #-} instance R4 V4 where _w f (V4 a b c d) = V4 a b c <$> f d {-# INLINE _w #-} _xyzw = id {-# INLINE _xyzw #-} instance Core V4 where core f = V4 (f _x) (f _y) (f _z) (f _w) {-# INLINE core #-} instance Storable a => Storable (V4 a) where sizeOf _ = 4 * sizeOf (undefined::a) {-# INLINE sizeOf #-} alignment _ = alignment (undefined::a) {-# INLINE alignment #-} poke ptr (V4 x y z w) = do poke ptr' x pokeElemOff ptr' 1 y pokeElemOff ptr' 2 z pokeElemOff ptr' 3 w where ptr' = castPtr ptr {-# INLINE poke #-} peek ptr = V4 <$> peek ptr' <*> peekElemOff ptr' 1 <*> peekElemOff ptr' 2 <*> peekElemOff ptr' 3 where ptr' = castPtr ptr {-# INLINE peek #-} -- | Convert a 3-dimensional affine vector into a 4-dimensional homogeneous vector. vector :: Num a => V3 a -> V4 a vector (V3 a b c) = V4 a b c 0 {-# INLINE vector #-} -- | Convert a 3-dimensional affine point into a 4-dimensional homogeneous vector. point :: Num a => V3 a -> V4 a point (V3 a b c) = V4 a b c 1 {-# INLINE point #-} -- | Convert 4-dimensional projective coordinates to a 3-dimensional -- point. This operation may be denoted, @euclidean [x:y:z:w] = (x\/w, -- y\/w, z\/w)@ where the projective, homogenous, coordinate -- @[x:y:z:w]@ is one of many associated with a single point @(x\/w, -- y\/w, z\/w)@. normalizePoint :: Fractional a => V4 a -> V3 a normalizePoint (V4 a b c w) = (1/w) *^ V3 a b c {-# INLINE normalizePoint #-} instance Epsilon a => Epsilon (V4 a) where nearZero = nearZero . quadrance {-# INLINE nearZero #-} instance Ix a => Ix (V4 a) where {-# SPECIALISE instance Ix (V4 Int) #-} range (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) = [V4 i1 i2 i3 i4 | i1 <- range (l1,u1) , i2 <- range (l2,u2) , i3 <- range (l3,u3) , i4 <- range (l4,u4) ] {-# INLINE range #-} unsafeIndex (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) = unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * ( unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * ( unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) * unsafeIndex (l1,u1) i1)) {-# INLINE unsafeIndex #-} inRange (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) = inRange (l1,u1) i1 && inRange (l2,u2) i2 && inRange (l3,u3) i3 && inRange (l4,u4) i4 {-# INLINE inRange #-}