linear-accelerate-0.6.0.0: Lifting linear vector spaces into Accelerate

Copyright2014 Edward Kmett Charles Durham
[2015..2018] Trevor L. McDonell
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Array.Accelerate.Linear.V3

Contents

Description

3-D Vectors

Synopsis

Documentation

data V3 a :: * -> * #

A 3-dimensional vector

Constructors

V3 !a !a !a 

Instances

Monad V3 

Methods

(>>=) :: V3 a -> (a -> V3 b) -> V3 b #

(>>) :: V3 a -> V3 b -> V3 b #

return :: a -> V3 a #

fail :: String -> V3 a #

Functor V3 

Methods

fmap :: (a -> b) -> V3 a -> V3 b #

(<$) :: a -> V3 b -> V3 a #

MonadFix V3 

Methods

mfix :: (a -> V3 a) -> V3 a #

Applicative V3 

Methods

pure :: a -> V3 a #

(<*>) :: V3 (a -> b) -> V3 a -> V3 b #

liftA2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

(*>) :: V3 a -> V3 b -> V3 b #

(<*) :: V3 a -> V3 b -> V3 a #

Foldable V3 

Methods

fold :: Monoid m => V3 m -> m #

foldMap :: Monoid m => (a -> m) -> V3 a -> m #

foldr :: (a -> b -> b) -> b -> V3 a -> b #

foldr' :: (a -> b -> b) -> b -> V3 a -> b #

foldl :: (b -> a -> b) -> b -> V3 a -> b #

foldl' :: (b -> a -> b) -> b -> V3 a -> b #

foldr1 :: (a -> a -> a) -> V3 a -> a #

foldl1 :: (a -> a -> a) -> V3 a -> a #

toList :: V3 a -> [a] #

null :: V3 a -> Bool #

length :: V3 a -> Int #

elem :: Eq a => a -> V3 a -> Bool #

maximum :: Ord a => V3 a -> a #

minimum :: Ord a => V3 a -> a #

sum :: Num a => V3 a -> a #

product :: Num a => V3 a -> a #

Traversable V3 

Methods

traverse :: Applicative f => (a -> f b) -> V3 a -> f (V3 b) #

sequenceA :: Applicative f => V3 (f a) -> f (V3 a) #

mapM :: Monad m => (a -> m b) -> V3 a -> m (V3 b) #

sequence :: Monad m => V3 (m a) -> m (V3 a) #

Distributive V3 

Methods

distribute :: Functor f => f (V3 a) -> V3 (f a) #

collect :: Functor f => (a -> V3 b) -> f a -> V3 (f b) #

distributeM :: Monad m => m (V3 a) -> V3 (m a) #

collectM :: Monad m => (a -> V3 b) -> m a -> V3 (m b) #

Representable V3 

Associated Types

type Rep (V3 :: * -> *) :: * #

Methods

tabulate :: (Rep V3 -> a) -> V3 a #

index :: V3 a -> Rep V3 -> a #

Eq1 V3 

Methods

liftEq :: (a -> b -> Bool) -> V3 a -> V3 b -> Bool #

Ord1 V3 

Methods

liftCompare :: (a -> b -> Ordering) -> V3 a -> V3 b -> Ordering #

Read1 V3 

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V3 a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [V3 a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (V3 a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [V3 a] #

Show1 V3 

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V3 a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [V3 a] -> ShowS #

MonadZip V3 

Methods

mzip :: V3 a -> V3 b -> V3 (a, b) #

mzipWith :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

munzip :: V3 (a, b) -> (V3 a, V3 b) #

Serial1 V3 

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V3 a -> m () #

deserializeWith :: MonadGet m => m a -> m (V3 a) #

Apply V3 

Methods

(<.>) :: V3 (a -> b) -> V3 a -> V3 b #

(.>) :: V3 a -> V3 b -> V3 b #

(<.) :: V3 a -> V3 b -> V3 a #

liftF2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

Traversable1 V3 

Methods

traverse1 :: Apply f => (a -> f b) -> V3 a -> f (V3 b) #

sequence1 :: Apply f => V3 (f b) -> f (V3 b) #

Trace V3 

Methods

trace :: Num a => V3 (V3 a) -> a #

diagonal :: V3 (V3 a) -> V3 a #

R3 V3 

Methods

_z :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V3 a -> f (V3 a) #

R2 V3 

Methods

_y :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

_xy :: Functor f => (V2 a -> f (V2 a)) -> V3 a -> f (V3 a) #

R1 V3 

Methods

_x :: Functor f => (a -> f a) -> V3 a -> f (V3 a) #

Finite V3 

Associated Types

type Size (V3 :: * -> *) :: Nat #

Methods

toV :: V3 a -> V Nat (Size V3) a #

fromV :: V Nat (Size V3) a -> V3 a #

Metric V3 

Methods

dot :: Num a => V3 a -> V3 a -> a #

quadrance :: Num a => V3 a -> a #

qd :: Num a => V3 a -> V3 a -> a #

distance :: Floating a => V3 a -> V3 a -> a #

norm :: Floating a => V3 a -> a #

signorm :: Floating a => V3 a -> V3 a #

Additive V3 

Methods

zero :: Num a => V3 a #

(^+^) :: Num a => V3 a -> V3 a -> V3 a #

(^-^) :: Num a => V3 a -> V3 a -> V3 a #

lerp :: Num a => a -> V3 a -> V3 a -> V3 a #

liftU2 :: (a -> a -> a) -> V3 a -> V3 a -> V3 a #

liftI2 :: (a -> b -> c) -> V3 a -> V3 b -> V3 c #

Foldable1 V3 

Methods

fold1 :: Semigroup m => V3 m -> m #

foldMap1 :: Semigroup m => (a -> m) -> V3 a -> m #

toNonEmpty :: V3 a -> NonEmpty a #

Bind V3 

Methods

(>>-) :: V3 a -> (a -> V3 b) -> V3 b #

join :: V3 (V3 a) -> V3 a #

R3 V3 Source # 

Methods

_z :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp a) Source #

_xyz :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp (V3 a)) Source #

Trace V3 Source # 

Methods

trace :: (Num a, Box2 V3 V3 a) => Exp (V3 (V3 a)) -> Exp a Source #

diagonal :: Box2 V3 V3 a => Exp (V3 (V3 a)) -> Exp (V3 a) Source #

Unbox a => Vector Vector (V3 a) 

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (V3 a) -> m (Vector (V3 a)) #

basicUnsafeThaw :: PrimMonad m => Vector (V3 a) -> m (Mutable Vector (PrimState m) (V3 a)) #

basicLength :: Vector (V3 a) -> Int #

basicUnsafeSlice :: Int -> Int -> Vector (V3 a) -> Vector (V3 a) #

basicUnsafeIndexM :: Monad m => Vector (V3 a) -> Int -> m (V3 a) #

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (V3 a) -> Vector (V3 a) -> m () #

elemseq :: Vector (V3 a) -> V3 a -> b -> b #

Unbox a => MVector MVector (V3 a) 

Methods

basicLength :: MVector s (V3 a) -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s (V3 a) -> MVector s (V3 a) #

basicOverlaps :: MVector s (V3 a) -> MVector s (V3 a) -> Bool #

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (V3 a)) #

basicInitialize :: PrimMonad m => MVector (PrimState m) (V3 a) -> m () #

basicUnsafeReplicate :: PrimMonad m => Int -> V3 a -> m (MVector (PrimState m) (V3 a)) #

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> m (V3 a) #

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> V3 a -> m () #

basicClear :: PrimMonad m => MVector (PrimState m) (V3 a) -> m () #

basicSet :: PrimMonad m => MVector (PrimState m) (V3 a) -> V3 a -> m () #

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (V3 a) -> MVector (PrimState m) (V3 a) -> m () #

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (V3 a) -> MVector (PrimState m) (V3 a) -> m () #

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (V3 a) -> Int -> m (MVector (PrimState m) (V3 a)) #

Bounded a => Bounded (V3 a) 

Methods

minBound :: V3 a #

maxBound :: V3 a #

Eq a => Eq (V3 a) 

Methods

(==) :: V3 a -> V3 a -> Bool #

(/=) :: V3 a -> V3 a -> Bool #

Floating a => Floating (V3 a) 

Methods

pi :: V3 a #

exp :: V3 a -> V3 a #

log :: V3 a -> V3 a #

sqrt :: V3 a -> V3 a #

(**) :: V3 a -> V3 a -> V3 a #

logBase :: V3 a -> V3 a -> V3 a #

sin :: V3 a -> V3 a #

cos :: V3 a -> V3 a #

tan :: V3 a -> V3 a #

asin :: V3 a -> V3 a #

acos :: V3 a -> V3 a #

atan :: V3 a -> V3 a #

sinh :: V3 a -> V3 a #

cosh :: V3 a -> V3 a #

tanh :: V3 a -> V3 a #

asinh :: V3 a -> V3 a #

acosh :: V3 a -> V3 a #

atanh :: V3 a -> V3 a #

log1p :: V3 a -> V3 a #

expm1 :: V3 a -> V3 a #

log1pexp :: V3 a -> V3 a #

log1mexp :: V3 a -> V3 a #

Fractional a => Fractional (V3 a) 

Methods

(/) :: V3 a -> V3 a -> V3 a #

recip :: V3 a -> V3 a #

fromRational :: Rational -> V3 a #

Data a => Data (V3 a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V3 a -> c (V3 a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V3 a) #

toConstr :: V3 a -> Constr #

dataTypeOf :: V3 a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (V3 a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V3 a)) #

gmapT :: (forall b. Data b => b -> b) -> V3 a -> V3 a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V3 a -> r #

gmapQ :: (forall d. Data d => d -> u) -> V3 a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V3 a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V3 a -> m (V3 a) #

Num a => Num (V3 a) 

Methods

(+) :: V3 a -> V3 a -> V3 a #

(-) :: V3 a -> V3 a -> V3 a #

(*) :: V3 a -> V3 a -> V3 a #

negate :: V3 a -> V3 a #

abs :: V3 a -> V3 a #

signum :: V3 a -> V3 a #

fromInteger :: Integer -> V3 a #

Ord a => Ord (V3 a) 

Methods

compare :: V3 a -> V3 a -> Ordering #

(<) :: V3 a -> V3 a -> Bool #

(<=) :: V3 a -> V3 a -> Bool #

(>) :: V3 a -> V3 a -> Bool #

(>=) :: V3 a -> V3 a -> Bool #

max :: V3 a -> V3 a -> V3 a #

min :: V3 a -> V3 a -> V3 a #

Read a => Read (V3 a) 
Show a => Show (V3 a) 

Methods

showsPrec :: Int -> V3 a -> ShowS #

show :: V3 a -> String #

showList :: [V3 a] -> ShowS #

Ix a => Ix (V3 a) 

Methods

range :: (V3 a, V3 a) -> [V3 a] #

index :: (V3 a, V3 a) -> V3 a -> Int #

unsafeIndex :: (V3 a, V3 a) -> V3 a -> Int

inRange :: (V3 a, V3 a) -> V3 a -> Bool #

rangeSize :: (V3 a, V3 a) -> Int #

unsafeRangeSize :: (V3 a, V3 a) -> Int

Generic (V3 a) 

Associated Types

type Rep (V3 a) :: * -> * #

Methods

from :: V3 a -> Rep (V3 a) x #

to :: Rep (V3 a) x -> V3 a #

Storable a => Storable (V3 a) 

Methods

sizeOf :: V3 a -> Int #

alignment :: V3 a -> Int #

peekElemOff :: Ptr (V3 a) -> Int -> IO (V3 a) #

pokeElemOff :: Ptr (V3 a) -> Int -> V3 a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (V3 a) #

pokeByteOff :: Ptr b -> Int -> V3 a -> IO () #

peek :: Ptr (V3 a) -> IO (V3 a) #

poke :: Ptr (V3 a) -> V3 a -> IO () #

Binary a => Binary (V3 a) 

Methods

put :: V3 a -> Put #

get :: Get (V3 a) #

putList :: [V3 a] -> Put #

Serial a => Serial (V3 a) 

Methods

serialize :: MonadPut m => V3 a -> m () #

deserialize :: MonadGet m => m (V3 a) #

Serialize a => Serialize (V3 a) 

Methods

put :: Putter (V3 a) #

get :: Get (V3 a) #

NFData a => NFData (V3 a) 

Methods

rnf :: V3 a -> () #

Hashable a => Hashable (V3 a) 

Methods

hashWithSalt :: Int -> V3 a -> Int #

hash :: V3 a -> Int #

Unbox a => Unbox (V3 a) 
Ixed (V3 a) 

Methods

ix :: Index (V3 a) -> Traversal' (V3 a) (IxValue (V3 a)) #

Epsilon a => Epsilon (V3 a) 

Methods

nearZero :: V3 a -> Bool #

Generic1 * V3 

Associated Types

type Rep1 V3 (f :: V3 -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 V3 f a #

to1 :: Rep1 V3 f a -> f a #

FunctorWithIndex (E V3) V3 

Methods

imap :: (E V3 -> a -> b) -> V3 a -> V3 b #

imapped :: (Indexable (E V3) p, Settable f) => p a (f b) -> V3 a -> f (V3 b) #

FoldableWithIndex (E V3) V3 

Methods

ifoldMap :: Monoid m => (E V3 -> a -> m) -> V3 a -> m #

ifolded :: (Indexable (E V3) p, Contravariant f, Applicative f) => p a (f a) -> V3 a -> f (V3 a) #

ifoldr :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

ifoldr' :: (E V3 -> a -> b -> b) -> b -> V3 a -> b #

ifoldl' :: (E V3 -> b -> a -> b) -> b -> V3 a -> b #

TraversableWithIndex (E V3) V3 

Methods

itraverse :: Applicative f => (E V3 -> a -> f b) -> V3 a -> f (V3 b) #

itraversed :: (Indexable (E V3) p, Applicative f) => p a (f b) -> V3 a -> f (V3 b) #

Each (V3 a) (V3 b) a b 

Methods

each :: Traversal (V3 a) (V3 b) a b #

type Rep V3 
type Rep V3 = E V3
type Size V3 
type Size V3 = 3
data MVector s (V3 a) 
data MVector s (V3 a) = MV_V3 !Int !(MVector s a)
type Rep (V3 a) 
type EltRepr (V3 a) 
type EltRepr (V3 a) = EltRepr (a, a, a)
type ProdRepr (V3 a) 
type ProdRepr (V3 a) = ProdRepr (a, a, a)
type Plain (V3 a) # 
type Plain (V3 a) = V3 (Plain a)
data Vector (V3 a) 
data Vector (V3 a) = V_V3 !Int !(Vector a)
type Index (V3 a) 
type Index (V3 a) = E V3
type IxValue (V3 a) 
type IxValue (V3 a) = a
type Rep1 * V3 

cross :: forall a. Num a => Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) Source #

cross product

triple :: forall a. Num a => Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) -> Exp a Source #

scalar triple product

class R1 t => R1 t where Source #

A space that has at least 1 basis vector _x.

Methods

_x :: (Elt a, Box t a) => Lens' (Exp (t a)) (Exp a) Source #

>>> test $ lift (V1 2 :: V1 Int) ^._x
2
>>> test $ lift (V1 2 :: V1 Int) & _x .~ 3
V1 3

Instances

R1 V1 Source # 

Methods

_x :: (Elt a, Box V1 a) => Lens' (Exp (V1 a)) (Exp a) Source #

class (R2 t, R1 t) => R2 t where Source #

A space that distinguishes 2 orthogonal basis vectors _x and _y, but may have more.

Methods

_y :: (Elt a, Box t a) => Lens' (Exp (t a)) (Exp a) Source #

>>> test $ lift (V2 1 2 :: V2 Int) ^._y
2
>>> test $ lift (V2 1 2 :: V2 Int) & _y .~ 3
V2 1 3

_xy :: (Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

Instances

R2 V2 Source # 

Methods

_y :: (Elt a, Box V2 a) => Lens' (Exp (V2 a)) (Exp a) Source #

_xy :: (Elt a, Box V2 a) => Lens' (Exp (V2 a)) (Exp (V2 a)) Source #

_yx :: forall t a. (R2 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

>>> test $ lift (V2 1 2 :: V2 Int) ^. _yx
V2 2 1

class (R3 t, R2 t) => R3 t where Source #

A space that distinguishes 3 orthogonal basis vectors: _x, _y, and _z. (Although it may have more)

Methods

_z :: forall a. (Elt a, Box t a) => Lens' (Exp (t a)) (Exp a) Source #

>>> test $ lift (V3 1 2 3 :: V3 Int) ^. _z
3
>>> test $ lift (V3 1 2 3 :: V3 Int) & _z .~ 42
V3 1 2 42

_xyz :: forall a. (Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

Instances

R3 V3 Source # 

Methods

_z :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp a) Source #

_xyz :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp (V3 a)) Source #

_xz :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

_yz :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

_zx :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

_zy :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V2 a)) Source #

_xzy :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

_yxz :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

_yzx :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

_zxy :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

_zyx :: forall t a. (R3 t, Elt a, Box t a) => Lens' (Exp (t a)) (Exp (V3 a)) Source #

ex :: R1 t => E t Source #

ey :: R2 t => E t Source #

ez :: R3 t => E t Source #

Orphan instances

Functor V3 Source # 

Methods

fmap :: (Elt a, Elt b, Elt (V3 a), Elt (V3 b)) => (Exp a -> Exp b) -> Exp (V3 a) -> Exp (V3 b) #

(<$) :: (Elt a, Elt b, Elt (V3 a), Elt (V3 b)) => Exp a -> Exp (V3 b) -> Exp (V3 a) #

Additive V3 Source # 

Methods

zero :: (Elt (V3 a), Num a) => Exp (V3 a) Source #

(^+^) :: (Num a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) Source #

(^-^) :: (Num a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) Source #

lerp :: (Num a, Box V3 a) => Exp a -> Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) Source #

Metric V3 Source # 

Methods

dot :: (Num a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) -> Exp a Source #

quadrance :: (Num a, Box V3 a) => Exp (V3 a) -> Exp a Source #

qd :: (Num a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) -> Exp a Source #

distance :: (Floating a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) -> Exp a Source #

norm :: (Floating a, Box V3 a) => Exp (V3 a) -> Exp a Source #

signorm :: (Floating a, Box V3 a) => Exp (V3 a) -> Exp (V3 a) Source #

R1 V3 Source # 

Methods

_x :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp a) Source #

R2 V3 Source # 

Methods

_y :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp a) Source #

_xy :: (Elt a, Box V3 a) => Lens' (Exp (V3 a)) (Exp (V2 a)) Source #

cst a => IsProduct cst (V3 a) Source # 

Associated Types

type ProdRepr (V3 a) :: *

Methods

fromProd :: proxy cst -> V3 a -> ProdRepr (V3 a)

toProd :: proxy cst -> ProdRepr (V3 a) -> V3 a

prod :: proxy cst -> V3 a -> ProdR cst (ProdRepr (V3 a))

(Lift Exp a, Elt (Plain a)) => Lift Exp (V3 a) Source # 

Associated Types

type Plain (V3 a) :: * #

Methods

lift :: V3 a -> Exp (Plain (V3 a)) #

Elt a => Unlift Exp (V3 (Exp a)) Source # 

Methods

unlift :: Exp (Plain (V3 (Exp a))) -> V3 (Exp a) #

Bounded a => Bounded (Exp (V3 a)) Source # 

Methods

minBound :: Exp (V3 a) #

maxBound :: Exp (V3 a) #

Floating a => Floating (Exp (V3 a)) Source # 

Methods

pi :: Exp (V3 a) #

exp :: Exp (V3 a) -> Exp (V3 a) #

log :: Exp (V3 a) -> Exp (V3 a) #

sqrt :: Exp (V3 a) -> Exp (V3 a) #

(**) :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

logBase :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

sin :: Exp (V3 a) -> Exp (V3 a) #

cos :: Exp (V3 a) -> Exp (V3 a) #

tan :: Exp (V3 a) -> Exp (V3 a) #

asin :: Exp (V3 a) -> Exp (V3 a) #

acos :: Exp (V3 a) -> Exp (V3 a) #

atan :: Exp (V3 a) -> Exp (V3 a) #

sinh :: Exp (V3 a) -> Exp (V3 a) #

cosh :: Exp (V3 a) -> Exp (V3 a) #

tanh :: Exp (V3 a) -> Exp (V3 a) #

asinh :: Exp (V3 a) -> Exp (V3 a) #

acosh :: Exp (V3 a) -> Exp (V3 a) #

atanh :: Exp (V3 a) -> Exp (V3 a) #

log1p :: Exp (V3 a) -> Exp (V3 a) #

expm1 :: Exp (V3 a) -> Exp (V3 a) #

log1pexp :: Exp (V3 a) -> Exp (V3 a) #

log1mexp :: Exp (V3 a) -> Exp (V3 a) #

Floating a => Fractional (Exp (V3 a)) Source # 

Methods

(/) :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

recip :: Exp (V3 a) -> Exp (V3 a) #

fromRational :: Rational -> Exp (V3 a) #

Num a => Num (Exp (V3 a)) Source # 

Methods

(+) :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

(-) :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

(*) :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

negate :: Exp (V3 a) -> Exp (V3 a) #

abs :: Exp (V3 a) -> Exp (V3 a) #

signum :: Exp (V3 a) -> Exp (V3 a) #

fromInteger :: Integer -> Exp (V3 a) #

Ord a => Ord (V3 a) Source # 

Methods

(<) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

(>) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

(<=) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

(>=) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

min :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

max :: Exp (V3 a) -> Exp (V3 a) -> Exp (V3 a) #

compare :: Exp (V3 a) -> Exp (V3 a) -> Exp Ordering #

Eq a => Eq (V3 a) Source # 

Methods

(==) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

(/=) :: Exp (V3 a) -> Exp (V3 a) -> Exp Bool #

Elt a => Elt (V3 a) Source # 

Methods

eltType :: V3 a -> TupleType (EltRepr (V3 a))

fromElt :: V3 a -> EltRepr (V3 a)

toElt :: EltRepr (V3 a) -> V3 a

Epsilon a => Epsilon (V3 a) Source # 

Methods

nearZero :: Exp (V3 a) -> Exp Bool Source #

(Elt a, Elt b) => Each (Exp (V3 a)) (Exp (V3 b)) (Exp a) (Exp b) Source # 

Methods

each :: Traversal (Exp (V3 a)) (Exp (V3 b)) (Exp a) (Exp b) #