criterion performance measurements

overview

want to understand this report?

fromList/HashMap.Strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.823798239025967e-2 5.9465569626123836e-2 6.0694053281797784e-2
Standard deviation 1.6944658578048838e-3 2.112252319987771e-3 2.7417215018326795e-3

Outlying measurements have slight (7.638888888888887e-2%) effect on estimated standard deviation.

fromList/LinkedHashMap.Seq

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.10609368783234072 0.10741278217800422 0.10878098875918617
Standard deviation 1.470629283793434e-3 2.177175578188104e-3 3.1821417017396407e-3

Outlying measurements have slight (9.876543209876543e-2%) effect on estimated standard deviation.

fromList/LinkedHashMap.IntMap

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.1419488462850627 0.14398421525034588 0.14570120007874124
Standard deviation 1.6606168785365059e-3 2.46836135133423e-3 3.8754143338653735e-3

Outlying measurements have moderate (0.12244897959183672%) effect on estimated standard deviation.

fromList/LinkedHashSet

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.11078549811760263 0.11302955501645821 0.11555986785536974
Standard deviation 2.4100957998699573e-3 3.5384903020810893e-3 5.039968462750431e-3

Outlying measurements have moderate (0.10937500000000001%) effect on estimated standard deviation.

insert/HashMap.Strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 9.66336663500253e-2 9.805565911400033e-2 0.10169472698842674
Standard deviation 1.1675552235736965e-3 3.484700388495005e-3 5.382121244429772e-3

Outlying measurements have slight (9.876543209876543e-2%) effect on estimated standard deviation.

insert/LinkedHashMap.Seq

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.2025353848814711 0.20345971933705315 0.2040105427529429
Standard deviation 5.210753868301209e-4 9.459630195315161e-4 1.336499212402788e-3

Outlying measurements have moderate (0.13888888888888867%) effect on estimated standard deviation.

insert/LinkedHashMap.IntMap

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.1450154283838266 0.14934753241199314 0.15289369478044953
Standard deviation 2.923149843639434e-3 4.974364358895773e-3 7.327519016203888e-3

Outlying measurements have moderate (0.12244897959183673%) effect on estimated standard deviation.

insert/LinkedHashSet

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.17667107898713286 0.18105530125365907 0.18455605071288272
Standard deviation 3.797947273162578e-3 5.192148211293511e-3 6.460445519273326e-3

Outlying measurements have moderate (0.13888888888888876%) effect on estimated standard deviation.

toList/HashMap.Strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.0986631386483989e-2 1.1313557825852036e-2 1.164065580285678e-2
Standard deviation 6.512792102167961e-4 8.981265209645694e-4 1.3803696126366038e-3

Outlying measurements have moderate (0.39915408748273007%) effect on estimated standard deviation.

toList/LinkedHashMap.Seq

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.316210535862285e-3 7.712936779412751e-3 8.352414291846506e-3
Standard deviation 8.878397022384322e-4 1.3654877505479197e-3 2.224516357372639e-3

Outlying measurements have severe (0.8135853625809822%) effect on estimated standard deviation.

toList/LinkedHashMap.IntMap

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.457266993651209e-3 5.8983559099956145e-3 6.548090342030358e-3
Standard deviation 1.1952569119041787e-3 1.63354360340212e-3 2.493605304861085e-3

Outlying measurements have severe (0.9186261885277799%) effect on estimated standard deviation.

toList/LinkedHashSet

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.833669556858998e-3 8.499252838938794e-3 9.521341117716452e-3
Standard deviation 1.7282944199500537e-3 2.3990190362993507e-3 3.7117266247703473e-3

Outlying measurements have severe (0.9341495406611672%) effect on estimated standard deviation.

lookup/HashMap.Strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.489899337265906e-2 2.5099465869095842e-2 2.5270911792373504e-2
Standard deviation 2.5311471539792393e-4 4.1923359279769426e-4 6.362718379228563e-4

Outlying measurements have slight (4.986149584487534e-2%) effect on estimated standard deviation.

lookup/LinkedHashMap.Seq

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.131436702754379e-2 3.1670726626938255e-2 3.1926745996675436e-2
Standard deviation 4.7097470024281657e-4 6.365485988152492e-4 8.215187597577873e-4

Outlying measurements have slight (5.536332179930796e-2%) effect on estimated standard deviation.

lookup/LinkedHashMap.IntMap

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.296754303406223e-2 3.324609867908928e-2 3.345123926528852e-2
Standard deviation 3.4113036713684933e-4 4.982019145900714e-4 7.059837291481826e-4

Outlying measurements have slight (5.859375e-2%) effect on estimated standard deviation.

lookup/LinkedHashSet

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.774921111186316e-2 1.7907792508456342e-2 1.808260369159567e-2
Standard deviation 3.7003447632050164e-4 4.3620364011790386e-4 5.389477858021622e-4

Outlying measurements have slight (4.158790170132314e-2%) effect on estimated standard deviation.

delete/HashMap.Strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.564812154217825e-2 6.996261943265925e-2 7.454172138274426e-2
Standard deviation 4.813357130653396e-3 7.819464531132397e-3 1.2066551604678682e-2

Outlying measurements have moderate (0.3486000959853333%) effect on estimated standard deviation.

delete/LinkedHashMap.Seq

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.31174286131219 0.32376926768186787 0.33100393725365035
Standard deviation 5.566456097511906e-3 1.202011762004601e-2 1.6707753699066505e-2

Outlying measurements have moderate (0.16%) effect on estimated standard deviation.

delete/LinkedHashMap.IntMap

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.3032040686980184 0.3120361126816615 0.32156761120577176
Standard deviation 4.8044378714013625e-3 1.1486830727845178e-2 1.4849044889087004e-2

Outlying measurements have moderate (0.16%) effect on estimated standard deviation.

delete/LinkedHashSet

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.32236446230697285 0.3298588115774167 0.3340062524635349
Standard deviation 1.8487506216196886e-3 7.187402823015662e-3 9.578104448193504e-3

Outlying measurements have moderate (0.16%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.