{-# LANGUAGE PatternGuards #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE OverloadedStrings #-} -------------------------------------------------------------------------------- -- | Solve a system of horn-clause constraints --------------------------------- -------------------------------------------------------------------------------- module Language.Fixpoint.Solver.GradualSolve (solveGradual) where import Control.Monad (when, filterM, foldM) import Control.Monad.State.Strict (lift) import Language.Fixpoint.Misc import qualified Language.Fixpoint.Types as F import qualified Language.Fixpoint.Types.Solutions as Sol import qualified Language.Fixpoint.SortCheck as So import Language.Fixpoint.Types.PrettyPrint import Language.Fixpoint.Types.Config hiding (stats) import qualified Language.Fixpoint.Solver.GradualSolution as S import qualified Language.Fixpoint.Solver.Worklist as W import qualified Language.Fixpoint.Solver.Eliminate as E import Language.Fixpoint.Solver.Monad import Language.Fixpoint.Utils.Progress import Language.Fixpoint.Graph import Text.PrettyPrint.HughesPJ import Text.Printf import System.Console.CmdArgs.Verbosity (whenNormal, whenLoud) import Control.DeepSeq import qualified Data.HashMap.Strict as M import qualified Data.HashSet as S -------------------------------------------------------------------------------- -- | Progress Bar -------------------------------------------------------------------------------- withProgressFI :: SolverInfo a b -> IO b -> IO b withProgressFI = withProgress . fromIntegral . cNumScc . siDeps -------------------------------------------------------------------------------- printStats :: F.SInfo a -> W.Worklist a -> Stats -> IO () printStats fi w s = putStrLn "\n" >> ppTs [ ptable fi, ptable s, ptable w ] where ppTs = putStrLn . showpp . mconcat -------------------------------------------------------------------------------- solverInfo :: Config -> F.SInfo a -> SolverInfo a b -------------------------------------------------------------------------------- solverInfo cfg fI | useElim cfg = E.solverInfo cfg fI | otherwise = SI mempty fI cD (siKvars fI) where cD = elimDeps fI (kvEdges fI) mempty siKvars :: F.SInfo a -> S.HashSet F.KVar siKvars = S.fromList . M.keys . F.ws -------------------------------------------------------------------------------- -- | tidyResult ensures we replace the temporary kVarArg names introduced to -- ensure uniqueness with the original names in the given WF constraints. -------------------------------------------------------------------------------- tidyResult :: F.Result a -> F.Result a tidyResult r = r { F.resSolution = tidySolution (F.resSolution r) , F.gresSolution = gtidySolution (F.gresSolution r) } tidySolution :: F.FixSolution -> F.FixSolution tidySolution = fmap tidyPred gtidySolution :: F.GFixSolution -> F.GFixSolution gtidySolution = fmap tidyPred -- (\(e, es) -> (tidyPred e, tidyPred <$> es)) tidyPred :: F.Expr -> F.Expr tidyPred = F.substf (F.eVar . F.tidySymbol) predKs :: F.Expr -> [(F.KVar, F.Subst)] predKs (F.PAnd ps) = concatMap predKs ps predKs (F.PKVar k su) = [(k, su)] predKs _ = [] -------------------------------------------------------------------------------- minimizeResult :: Config -> M.HashMap F.KVar F.Expr -> SolveM (M.HashMap F.KVar F.Expr) -------------------------------------------------------------------------------- minimizeResult cfg s | minimalSol cfg = mapM minimizeConjuncts s | otherwise = return s minimizeConjuncts :: F.Expr -> SolveM F.Expr minimizeConjuncts p = F.pAnd <$> go (F.conjuncts p) [] where go [] acc = return acc go (p:ps) acc = do b <- isValid (F.pAnd (acc ++ ps)) p if b then go ps acc else go ps (p:acc) showUnsat :: Bool -> Integer -> F.Pred -> F.Pred -> IO () showUnsat u i lP rP = {- when u $ -} do putStrLn $ printf "UNSAT id %s %s" (show i) (show u) putStrLn $ showpp $ "LHS:" <+> pprint lP putStrLn $ showpp $ "RHS:" <+> pprint rP -------------------------------------------------------------------------------- -- | Predicate corresponding to RHS of constraint in current solution -------------------------------------------------------------------------------- rhsPred :: F.SimpC a -> F.Expr -------------------------------------------------------------------------------- rhsPred c | isTarget c = F.crhs c | otherwise = errorstar $ "rhsPred on non-target: " ++ show (F.sid c) isValid :: F.Expr -> F.Expr -> SolveM Bool isValid p q = (not . null) <$> filterValid p [(q, ())] ------------------------------------------------------------------------------- -- | solve with edits to allow Gradual types ---------------------------------- ------------------------------------------------------------------------------- solveGradual :: (NFData a, F.Fixpoint a) => Config -> F.SInfo a -> IO (F.Result (Integer, a)) solveGradual cfg fi = do (res, stat) <- withProgressFI sI $ runSolverM cfg sI n act when (solverStats cfg) $ printStats fi wkl stat return res where act = solveGradual_ cfg fi s0 ks wkl sI = solverInfo cfg fi wkl = W.init sI n = fromIntegral $ W.wRanks wkl s0 = siSol sI ks = siVars sI -------------------------------------------------------------------------------- solveGradual_ :: (NFData a, F.Fixpoint a) => Config -> F.SInfo a -> Sol.GSolution -> S.HashSet F.KVar -> W.Worklist a -> SolveM (F.Result (Integer, a), Stats) -------------------------------------------------------------------------------- solveGradual_ cfg fi s0 ks wkl = do let s1 = mappend s0 $ {-# SCC "sol-init" #-} S.init cfg fi ks s2 <- {-# SCC "sol-local" #-} filterLocal s1 s <- {-# SCC "sol-refine" #-} refine s2 wkl res <- {-# SCC "sol-result" #-} result cfg wkl s st <- stats let res' = {-# SCC "sol-tidy" #-} tidyResult res return $!! (res', st) filterLocal :: Sol.GSolution -> SolveM Sol.GSolution filterLocal sol = do gs' <- mapM (initGBind sol) gs return $ Sol.updateGMap sol $ M.fromList gs' where gs = M.toList $ Sol.gMap sol initGBind :: Sol.GSolution -> (F.KVar, (((F.Symbol, F.Sort), F.Expr), Sol.GBind)) -> SolveM (F.KVar, (((F.Symbol, F.Sort), F.Expr), Sol.GBind)) initGBind sol (k, (e, gb)) = do elems0 <- filterM (isLocal e) (Sol.gbEquals gb) elems <- sortEquals elems0 lattice <- makeLattice [] (map (:[]) elems) elems return $ ((k,) . (e,) . Sol.equalsGb) lattice where makeLattice acc new elems | null new = return acc | otherwise = do let cands = [e:es |e<-elems, es<-new] localCans <- filterM (isLocal e) cands newElems <- filterM (notTrivial (new ++ acc)) localCans makeLattice (acc ++ new) newElems elems notTrivial [] _ = return True notTrivial (x:xs) p = do v <- isValid (mkPred x) (mkPred p) if v then return False else notTrivial xs p mkPred eq = So.elaborate "initBGind.mkPred" (Sol.sEnv sol) (F.pAnd (Sol.eqPred <$> eq)) isLocal (v, e) eqs = do let pp = So.elaborate "filterLocal" (Sol.sEnv sol) $ F.PExist [v] $ F.pAnd (e:(Sol.eqPred <$> eqs)) isValid mempty pp root = Sol.trueEqual sortEquals xs = (bfs [0]) <$> makeEdges vs [] vs where vs = zip [0..] (root:(head <$> xs)) bfs [] _ = [] bfs (i:is) es = (snd $ (vs!!i)) : bfs (is++map snd (filter (\(j,k) -> (j==i && notElem k is)) es)) es makeEdges _ acc [] = return acc makeEdges vs acc (x:xs) = do ves <- concat <$> mapM (makeEdgesOne x) vs if any (\(i,j) -> elem (j,i) acc) ves then makeEdges (filter ((/= fst x) . fst) vs) (filter (\(i,j) -> ((i /= fst x) && (j /= fst x))) acc) xs else makeEdges vs (mergeEdges (ves ++ acc)) xs makeEdgesOne (i,_) (j,_) | i == j = return [] makeEdgesOne (i,x) (j,y) = do ij <- isValid (mkPred [x]) (mkPred [y]) return (if ij then [(j,i)] else []) mergeEdges es = filter (\(i,j) -> (not (any (\k -> ((i,k) `elem` es && (k,j) `elem` es)) (fst <$> es)))) es -------------------------------------------------------------------------------- refine :: Sol.GSolution -> W.Worklist a -> SolveM Sol.GSolution -------------------------------------------------------------------------------- refine s w | Just (c, w', newScc, rnk) <- W.pop w = do i <- tickIter newScc (b, s') <- refineC i s c lift $ writeLoud $ refineMsg i c b rnk let w'' = if b then W.push c w' else w' refine s' w'' | otherwise = return s where -- DEBUG refineMsg i c b rnk = printf "\niter=%d id=%d change=%s rank=%d\n" i (F.subcId c) (show b) rnk --------------------------------------------------------------------------- -- | Single Step Refinement ----------------------------------------------- --------------------------------------------------------------------------- refineC :: Int -> Sol.GSolution -> F.SimpC a -> SolveM (Bool, Sol.GSolution) --------------------------------------------------------------------------- refineC _i s c | null rhs = return (False, s) | otherwise = do be <- getBinds let lhss = snd <$> S.lhsPred be s c kqs <- filterValidGradual lhss rhs return $ S.update s ks kqs where _ci = F.subcId c (ks, rhs) = rhsCands s c -- msg = printf "refineC: iter = %d, sid = %s, soln = \n%s\n" -- _i (show (F.sid c)) (showpp s) _msg ks xs ys = printf "refineC: iter = %d, sid = %s, s = %s, rhs = %d, rhs' = %d \n" _i (show _ci) (showpp ks) (length xs) (length ys) rhsCands :: Sol.GSolution -> F.SimpC a -> ([F.KVar], Sol.Cand (F.KVar, Sol.EQual)) rhsCands s c = (fst <$> ks, kqs) where kqs = [ (p, (k, q)) | (k, su) <- ks, (p, q) <- cnd k su ] ks = predKs . F.crhs $ c cnd k su = Sol.qbPreds msg s su (Sol.lookupQBind s k) msg = "rhsCands: " ++ show (F.sid c) -------------------------------------------------------------------------------- -- | Gradual Convert Solution into Result ---------------------------------------------- -------------------------------------------------------------------------------- result :: (F.Fixpoint a) => Config -> W.Worklist a -> Sol.GSolution -> SolveM (F.Result (Integer, a)) -------------------------------------------------------------------------------- result cfg wkl s = do lift $ writeLoud "Computing Result" stat <- result_ wkl s lift $ whenNormal $ putStrLn $ "RESULT: " ++ show (F.sid <$> stat) F.Result (ci <$> stat) <$> solResult cfg s <*> solResultGradual wkl cfg s where ci c = (F.subcId c, F.sinfo c) result_ :: Fixpoint a => W.Worklist a -> Sol.GSolution -> SolveM (F.FixResult (F.SimpC a)) result_ w s = res <$> filterM (isUnsat s) cs where cs = W.unsatCandidates w res [] = F.Safe res cs' = F.Unsafe cs' solResult :: Config -> Sol.GSolution -> SolveM (M.HashMap F.KVar F.Expr) solResult cfg = minimizeResult cfg . Sol.result solResultGradual :: W.Worklist a -> Config -> Sol.GSolution -> SolveM F.GFixSolution solResultGradual w _cfg sol = F.toGFixSol . Sol.resultGradual <$> updateGradualSolution (W.unsatCandidates w) sol -------------------------------------------------------------------------------- updateGradualSolution :: [F.SimpC a] -> Sol.GSolution -> SolveM (Sol.GSolution) -------------------------------------------------------------------------------- updateGradualSolution cs sol = foldM f (Sol.emptyGMap sol) cs where f s c = do be <- getBinds let lpi = S.lhsPred be sol c let rp = rhsPred c gbs <- firstValid rp lpi return $ Sol.updateGMapWithKey gbs s firstValid :: Monoid a => F.Expr -> [(a, F.Expr)] -> SolveM a firstValid _ [] = return mempty firstValid rhs ((y,lhs):xs) = do v <- isValid lhs rhs if v then return y else firstValid rhs xs -------------------------------------------------------------------------------- isUnsat :: Fixpoint a => Sol.GSolution -> F.SimpC a -> SolveM Bool -------------------------------------------------------------------------------- isUnsat s c = do -- lift $ printf "isUnsat %s" (show (F.subcId c)) _ <- tickIter True -- newScc be <- getBinds let lpi = S.lhsPred be s c let rp = rhsPred c res <- (not . or) <$> mapM (`isValid` rp) (snd <$> lpi) lift $ whenLoud $ showUnsat res (F.subcId c) (F.pOr (snd <$> lpi)) rp return res