{-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TemplateHaskell #-} -- | This module should contain all the global type definitions and basic instances. module Language.Haskell.Liquid.Types ( -- * Options Config (..) , HasConfig (..) , hasOpt -- * Ghc Information , GhcInfo (..) , GhcSpec (..) , TargetVars (..) -- * Located Things , Located (..) , dummyLoc -- * Symbols , LocSymbol , LocText -- * Default unknown name , dummyName, isDummy -- * Refined Type Constructors , RTyCon (RTyCon, rtc_tc, rtc_info) , TyConInfo(..), defaultTyConInfo , rTyConPVs , rTyConPropVs , isClassRTyCon, isClassType, isEqType -- * Refinement Types , RType (..), Ref(..), RTProp, rPropP , RTyVar (..) , RTAlias (..) -- * Worlds , HSeg (..) , World (..) -- * Classes describing operations on `RTypes` , TyConable (..) , RefTypable (..) , SubsTy (..) -- * Predicate Variables , PVar (PV, pname, parg, ptype, pargs), isPropPV, pvType , PVKind (..) , Predicate (..) -- * Refinements , UReft(..) -- * Parse-time entities describing refined data types , DataDecl (..) , DataConP (..) , TyConP (..) -- * Pre-instantiated RType , RRType, BRType, RRProp , BSort, BPVar -- * Instantiated RType , BareType, PrType , SpecType, SpecProp , RSort , UsedPVar, RPVar, RReft , REnv (..) -- * Constructing & Destructing RTypes , RTypeRep(..), fromRTypeRep, toRTypeRep , mkArrow, bkArrowDeep, bkArrow, safeBkArrow , mkUnivs, bkUniv, bkClass , rFun, rCls, rRCls -- * Manipulating `Predicates` , pvars, pappSym, pApp -- * Some tests on RTypes , isBase , isFunTy , isTrivial -- * Traversing `RType` , efoldReft, foldReft, foldReft' , mapReft, mapReftM , mapBot, mapBind -- * ??? , Oblig(..) , ignoreOblig , addInvCond -- * Inferred Annotations , AnnInfo (..) , Annot (..) -- * Overall Output , Output (..) -- * Refinement Hole , hole, isHole, hasHole -- * Converting To and From Sort , ofRSort, toRSort , rTypeValueVar , rTypeReft , stripRTypeBase -- * Class for values that can be pretty printed , PPrint (..), pprint , showpp -- * Printer Configuration , PPEnv (..) , ppEnv , ppEnvShort -- * Modules and Imports , ModName (..), ModType (..) , isSrcImport, isSpecImport , getModName, getModString -- * Refinement Type Aliases , RTEnv (..) , mapRT, mapRE -- * Errors and Error Messages , module Language.Haskell.Liquid.Types.Errors , Error , ErrorResult -- * Source information (associated with constraints) , Cinfo (..) -- * Measures , Measure (..) , CMeasure (..) , Def (..) , Body (..) , MSpec (..) -- * Type Classes , RClass (..) -- * KV Profiling , KVKind (..) -- types of kvars , KVProf -- profile table , emptyKVProf -- empty profile , updKVProf -- extend profile -- * Misc , mapRTAVars , insertsSEnv -- * Strata , Stratum(..), Strata , isSVar , getStrata , makeDivType, makeFinType -- * CoreToLogic , LogicMap(..), toLogicMap, eAppWithMap, LMap(..) -- * Refined Instances , RDEnv, DEnv(..), RInstance(..) -- * Ureftable Instances , UReftable(..) -- * String Literals , liquidBegin, liquidEnd , Axiom(..), HAxiom, LAxiom ) where import Prelude hiding (error) import SrcLoc (SrcSpan) import TyCon import DataCon import NameSet import Module (moduleNameFS) import TypeRep hiding (maybeParen, pprArrowChain) import Var import GHC (HscEnv, ModuleName, moduleNameString) import GHC.Generics import Class import CoreSyn (CoreBind, CoreExpr) import PrelInfo (isNumericClass) import Type (getClassPredTys_maybe) import TysPrim (eqPrimTyCon) import TysWiredIn (listTyCon) import Control.Monad (liftM, liftM2, liftM3, liftM4) import Control.DeepSeq import Data.Bifunctor import Data.Bifunctor.TH import Data.Typeable (Typeable) import Data.Generics (Data) import qualified Data.Foldable as F import Data.Hashable import qualified Data.HashMap.Strict as M import qualified Data.HashSet as S import Data.Maybe (fromMaybe, mapMaybe) import Data.List (nub) import Data.Text (Text) import qualified Data.Text as T import Text.PrettyPrint.HughesPJ hiding (first) import Text.Printf import Language.Fixpoint.Misc import Language.Fixpoint.Types hiding (Error, SrcSpan, Result, Predicate, R) import Language.Haskell.Liquid.GHC.Misc import Language.Haskell.Liquid.Types.Variance import Language.Haskell.Liquid.Types.Errors import Language.Haskell.Liquid.Misc import Language.Haskell.Liquid.UX.Config import Data.Default ----------------------------------------------------------------------------- -- | Printer ---------------------------------------------------------------- ----------------------------------------------------------------------------- data PPEnv = PP { ppPs :: Bool , ppTyVar :: Bool -- TODO if set to True all Bare fails , ppSs :: Bool , ppShort :: Bool } ppEnv = ppEnvCurrent ppEnvCurrent = PP False False False False _ppEnvPrintPreds = PP False False False False ppEnvShort pp = pp { ppShort = True } ------------------------------------------------------------------ -- | GHC Information : Code & Spec ------------------------------ ------------------------------------------------------------------ data GhcInfo = GI { target :: !FilePath , env :: !HscEnv , cbs :: ![CoreBind] , derVars :: ![Var] , impVars :: ![Var] , defVars :: ![Var] , useVars :: ![Var] , hqFiles :: ![FilePath] , imports :: ![String] , includes :: ![FilePath] , spec :: !GhcSpec } instance HasConfig GhcInfo where getConfig = getConfig . spec -- | The following is the overall type for /specifications/ obtained from -- parsing the target source and dependent libraries data GhcSpec = SP { tySigs :: ![(Var, Located SpecType)] -- ^ Asserted Reftypes -- eg. see include/Prelude.spec , asmSigs :: ![(Var, Located SpecType)] -- ^ Assumed Reftypes , inSigs :: ![(Var, Located SpecType)] -- ^ Auto generated Signatures , ctors :: ![(Var, Located SpecType)] -- ^ Data Constructor Measure Sigs -- eg. (:) :: a -> xs:[a] -> {v: Int | v = 1 + len(xs) } , meas :: ![(Symbol, Located SpecType)] -- ^ Measure Types -- eg. len :: [a] -> Int , invariants :: ![Located SpecType] -- ^ Data Type Invariants -- eg. forall a. {v: [a] | len(v) >= 0} , ialiases :: ![(Located SpecType, Located SpecType)] -- ^ Data Type Invariant Aliases , dconsP :: ![(DataCon, DataConP)] -- ^ Predicated Data-Constructors -- e.g. see tests/pos/Map.hs , tconsP :: ![(TyCon, TyConP)] -- ^ Predicated Type-Constructors -- eg. see tests/pos/Map.hs , freeSyms :: ![(Symbol, Var)] -- ^ List of `Symbol` free in spec and corresponding GHC var -- eg. (Cons, Cons#7uz) from tests/pos/ex1.hs , tcEmbeds :: TCEmb TyCon -- ^ How to embed GHC Tycons into fixpoint sorts -- e.g. "embed Set as Set_set" from include/Data/Set.spec , qualifiers :: ![Qualifier] -- ^ Qualifiers in Source/Spec files -- e.g tests/pos/qualTest.hs , tgtVars :: ![Var] -- ^ Top-level Binders To Verify (empty means ALL binders) , decr :: ![(Var, [Int])] -- ^ Lexicographically ordered size witnesses for termination , texprs :: ![(Var, [Expr])] -- ^ Lexicographically ordered expressions for termination , lvars :: !(S.HashSet Var) -- ^ Variables that should be checked in the environment they are used , lazy :: !(S.HashSet Var) -- ^ Binders to IGNORE during termination checking , autosize :: !(S.HashSet TyCon) -- ^ Binders to IGNORE during termination checking , config :: !Config -- ^ Configuration Options , exports :: !NameSet -- ^ `Name`s exported by the module being verified , measures :: [Measure SpecType DataCon] , tyconEnv :: M.HashMap TyCon RTyCon , dicts :: DEnv Var SpecType -- ^ Dictionary Environment , axioms :: [HAxiom] -- Axioms from axiomatized functions , logicMap :: LogicMap , proofType :: Maybe Type } instance HasConfig GhcSpec where getConfig = config data LogicMap = LM { logic_map :: M.HashMap Symbol LMap , axiom_map :: M.HashMap Var Symbol } deriving (Show) instance Monoid LogicMap where mempty = LM M.empty M.empty mappend (LM x1 x2) (LM y1 y2) = LM (M.union x1 y1) (M.union x2 y2) data LMap = LMap { lvar :: Symbol , largs :: [Symbol] , lexpr :: Expr } instance Show LMap where show (LMap x xs e) = show x ++ " " ++ show xs ++ "\t|->\t" ++ show e toLogicMap ls = mempty {logic_map = M.fromList $ map toLMap ls} where toLMap (x, xs, e) = (x, LMap {lvar = x, largs = xs, lexpr = e}) eAppWithMap lmap f es def | Just (LMap _ xs e) <- M.lookup (val f) (logic_map lmap), length xs == length es = subst (mkSubst $ zip xs es) e | Just (LMap _ xs e) <- M.lookup (val f) (logic_map lmap), isApp e = subst (mkSubst $ zip xs es) $ dropApp e (length xs - length es) | otherwise = def dropApp e i | i <= 0 = e dropApp (EApp e _) i = dropApp e (i-1) dropApp _ _ = errorstar "impossible" isApp (EApp (EVar _) (EVar _)) = True isApp (EApp e (EVar _)) = isApp e isApp _ = False data TyConP = TyConP { freeTyVarsTy :: ![RTyVar] , freePredTy :: ![PVar RSort] , freeLabelTy :: ![Symbol] , varianceTs :: !VarianceInfo , variancePs :: !VarianceInfo , sizeFun :: !(Maybe (Symbol -> Expr)) } deriving (Generic, Data, Typeable) data DataConP = DataConP { dc_loc :: !SourcePos , freeTyVars :: ![RTyVar] , freePred :: ![PVar RSort] , freeLabels :: ![Symbol] , tyConsts :: ![SpecType] -- FIXME: WHAT IS THIS?? , tyArgs :: ![(Symbol, SpecType)] -- FIXME: These are backwards, why?? , tyRes :: !SpecType , dc_locE :: !SourcePos } deriving (Generic, Data, Typeable) -- | Which Top-Level Binders Should be Verified data TargetVars = AllVars | Only ![Var] -------------------------------------------------------------------- -- | Abstract Predicate Variables ---------------------------------- -------------------------------------------------------------------- data PVar t = PV { pname :: !Symbol , ptype :: !(PVKind t) , parg :: !Symbol , pargs :: ![(t, Symbol, Expr)] } deriving (Generic, Data, Typeable, Show, Functor) instance Eq (PVar t) where pv == pv' = pname pv == pname pv' {- UNIFY: What about: && eqArgs pv pv' -} instance Ord (PVar t) where compare (PV n _ _ _) (PV n' _ _ _) = compare n n' instance NFData t => NFData (PVar t) instance Hashable (PVar a) where hashWithSalt i (PV n _ _ _) = hashWithSalt i n pvType :: PVar t -> t pvType p = case ptype p of PVProp t -> t PVHProp -> panic Nothing "pvType on HProp-PVar" data PVKind t = PVProp t | PVHProp deriving (Generic, Data, Typeable, Functor, F.Foldable, Traversable, Show) instance NFData a => NFData (PVKind a) -------------------------------------------------------------------- ------------------ Predicates -------------------------------------- -------------------------------------------------------------------- type UsedPVar = PVar () newtype Predicate = Pr [UsedPVar] deriving (Generic, Data, Typeable) instance NFData Predicate where rnf _ = () instance Monoid Predicate where mempty = pdTrue mappend p p' = pdAnd [p, p'] instance (Monoid a) => Monoid (UReft a) where mempty = MkUReft mempty mempty mempty mappend (MkUReft x y z) (MkUReft x' y' z') = MkUReft (mappend x x') (mappend y y') (mappend z z') pdTrue = Pr [] pdAnd ps = Pr (nub $ concatMap pvars ps) pvars (Pr pvs) = pvs instance Subable UsedPVar where syms pv = [ y | (_, x, EVar y) <- pargs pv, x /= y ] subst s pv = pv { pargs = mapThd3 (subst s) <$> pargs pv } substf f pv = pv { pargs = mapThd3 (substf f) <$> pargs pv } substa f pv = pv { pargs = mapThd3 (substa f) <$> pargs pv } instance Subable Predicate where syms (Pr pvs) = concatMap syms pvs subst s (Pr pvs) = Pr (subst s <$> pvs) substf f (Pr pvs) = Pr (substf f <$> pvs) substa f (Pr pvs) = Pr (substa f <$> pvs) instance Subable Qualifier where syms = syms . q_body subst = mapQualBody . subst substf = mapQualBody . substf substa = mapQualBody . substa mapQualBody f q = q { q_body = f (q_body q) } instance NFData r => NFData (UReft r) instance NFData RTyVar -- MOVE TO TYPES newtype RTyVar = RTV TyVar deriving (Generic, Data, Typeable) instance Symbolic RTyVar where symbol (RTV tv) = symbol . T.pack . showPpr $ tv data RTyCon = RTyCon { rtc_tc :: TyCon -- ^ GHC Type Constructor , rtc_pvars :: ![RPVar] -- ^ Predicate Parameters , rtc_info :: !TyConInfo -- ^ TyConInfo } deriving (Generic, Data, Typeable) instance NFData RTyCon -- | Accessors for @RTyCon@ isClassRTyCon = isClassTyCon . rtc_tc rTyConPVs = rtc_pvars rTyConPropVs = filter isPropPV . rtc_pvars isPropPV = isProp . ptype isEqType (RApp c _ _ _) = isEqual c isEqType _ = False isClassType (RApp c _ _ _) = isClass c isClassType _ = False -- rTyConPVHPs = filter isHPropPV . rtc_pvars -- isHPropPV = not . isPropPV isProp (PVProp _) = True isProp _ = False defaultTyConInfo = TyConInfo [] [] Nothing instance Default TyConInfo where def = defaultTyConInfo ----------------------------------------------------------------------- -- | Co- and Contra-variance for TyCon -------------------------------- ----------------------------------------------------------------------- -- | Indexes start from 0 and type or predicate arguments can be both -- covariant and contravaariant e.g., for the below Foo dataType -- -- data Foo a b c d

Prop, q :: Int -> Prop, r :: a -> Prop> -- = F (a -> b

) | Q (c -> a) | G (Int -> a) -- -- there will be: -- -- varianceTyArgs = [Bivariant , Covariant, Contravatiant, Invariant] -- variancePsArgs = [Covariant, Contravatiant, Bivariant] -- data TyConInfo = TyConInfo { varianceTyArgs :: !VarianceInfo -- ^ variance info for type variables , variancePsArgs :: !VarianceInfo -- ^ variance info for predicate variables , sizeFunction :: !(Maybe (Symbol -> Expr)) -- ^ logical function that computes the size of the structure } deriving (Generic, Data, Typeable) instance NFData TyConInfo instance Show TyConInfo where show (TyConInfo x y _) = show x ++ "\n" ++ show y -------------------------------------------------------------------- ---- Unified Representation of Refinement Types -------------------- -------------------------------------------------------------------- -- MOVE TO TYPES data RType c tv r = RVar { rt_var :: !tv , rt_reft :: !r } | RFun { rt_bind :: !Symbol , rt_in :: !(RType c tv r) , rt_out :: !(RType c tv r) , rt_reft :: !r } | RAllT { rt_tvbind :: !tv , rt_ty :: !(RType c tv r) } | RAllP { rt_pvbind :: !(PVar (RType c tv ())) , rt_ty :: !(RType c tv r) } | RAllS { rt_sbind :: !(Symbol) , rt_ty :: !(RType c tv r) } | RApp { rt_tycon :: !c , rt_args :: ![RType c tv r] , rt_pargs :: ![RTProp c tv r] , rt_reft :: !r } | RAllE { rt_bind :: !Symbol , rt_allarg :: !(RType c tv r) , rt_ty :: !(RType c tv r) } | REx { rt_bind :: !Symbol , rt_exarg :: !(RType c tv r) , rt_ty :: !(RType c tv r) } | RExprArg (Located Expr) -- ^ For expression arguments to type aliases -- see tests/pos/vector2.hs | RAppTy{ rt_arg :: !(RType c tv r) , rt_res :: !(RType c tv r) , rt_reft :: !r } | RRTy { rt_env :: ![(Symbol, RType c tv r)] , rt_ref :: !r , rt_obl :: !Oblig , rt_ty :: !(RType c tv r) } | RHole r -- ^ let LH match against the Haskell type and add k-vars, e.g. `x:_` -- see tests/pos/Holes.hs deriving (Generic, Data, Typeable, Functor) instance (NFData c, NFData tv, NFData r) => NFData (RType c tv r) ignoreOblig (RRTy _ _ _ t) = t ignoreOblig t = t -- | @Ref@ describes `Prop τ` and `HProp` arguments applied to type constructors. -- For example, in [a]<{\h -> v > h}>, we apply (via `RApp`) -- * the `RProp` denoted by `{\h -> v > h}` to -- * the `RTyCon` denoted by `[]`. -- Thus, @Ref@ is used for abstract-predicate (arguments) that are associated -- with _type constructors_ i.e. whose semantics are _dependent upon_ the data-type. -- In contrast, the `Predicate` argument in `ur_pred` in the @UReft@ applies -- directly to any type and has semantics _independent of_ the data-type. data Ref τ t = RProp { rf_args :: [(Symbol, τ)] , rf_body :: t -- ^ Abstract refinement associated with `RTyCon` } deriving (Generic, Data, Typeable, Functor) instance (NFData τ, NFData t) => NFData (Ref τ t) rPropP τ r = RProp τ (RHole r) -- | @RTProp@ is a convenient alias for @Ref@ that will save a bunch of typing. -- In general, perhaps we need not expose @Ref@ directly at all. type RTProp c tv r = Ref (RType c tv ()) (RType c tv r) -- | A @World@ is a Separation Logic predicate that is essentially a sequence of binders -- that satisfies two invariants (TODO:LIQUID): -- 1. Each `hs_addr :: Symbol` appears at most once, -- 2. There is at most one `HVar` in a list. newtype World t = World [HSeg t] deriving (Generic, Data, Typeable) data HSeg t = HBind {hs_addr :: !Symbol, hs_val :: t} | HVar UsedPVar deriving (Generic, Data, Typeable) data UReft r = MkUReft { ur_reft :: !r , ur_pred :: !Predicate , ur_strata :: !Strata } deriving (Generic, Data, Typeable, Functor) type BRType = RType LocSymbol Symbol type RRType = RType RTyCon RTyVar type BSort = BRType () type RSort = RRType () type BPVar = PVar BSort type RPVar = PVar RSort type RReft = UReft Reft type PrType = RRType Predicate type BareType = BRType RReft type SpecType = RRType RReft type SpecProp = RRProp RReft type RRProp r = Ref RSort (RRType r) data Stratum = SVar Symbol | SDiv | SWhnf | SFin deriving (Generic, Data, Typeable, Eq) instance NFData Stratum type Strata = [Stratum] isSVar (SVar _) = True isSVar _ = False instance {-# OVERLAPPING #-} Monoid Strata where mempty = [] mappend s1 s2 = nub $ s1 ++ s2 class SubsTy tv ty a where subt :: (tv, ty) -> a -> a class (Eq c) => TyConable c where isFun :: c -> Bool isList :: c -> Bool isTuple :: c -> Bool ppTycon :: c -> Doc isClass :: c -> Bool isEqual :: c -> Bool isNumCls :: c -> Bool isFracCls :: c -> Bool isClass = const False isEqual = const False isNumCls = const False isFracCls = const False class ( TyConable c , Eq c, Eq tv , Hashable tv , Reftable r , PPrint r ) => RefTypable c tv r where ppRType :: Prec -> RType c tv r -> Doc ------------------------------------------------------------------------------- -- | TyConable Instances ------------------------------------------------------- ------------------------------------------------------------------------------- -- MOVE TO TYPES instance TyConable RTyCon where isFun = isFunTyCon . rtc_tc isList = (listTyCon ==) . rtc_tc isTuple = TyCon.isTupleTyCon . rtc_tc isClass = isClassRTyCon isEqual = (eqPrimTyCon ==) . rtc_tc ppTycon = toFix isNumCls c = maybe False (isClassOrSubClass isNumericClass) (tyConClass_maybe $ rtc_tc c) isFracCls c = maybe False (isClassOrSubClass isFractionalClass) (tyConClass_maybe $ rtc_tc c) isClassOrSubClass p cls = p cls || any (isClassOrSubClass p . fst) (mapMaybe getClassPredTys_maybe (classSCTheta cls)) -- MOVE TO TYPES instance TyConable Symbol where isFun s = funConName == s isList s = listConName == s isTuple s = tupConName == s ppTycon = text . symbolString instance TyConable LocSymbol where isFun = isFun . val isList = isList . val isTuple = isTuple . val ppTycon = ppTycon . val instance Eq RTyCon where x == y = rtc_tc x == rtc_tc y instance Fixpoint RTyCon where toFix (RTyCon c _ _) = text $ showPpr c -- <+> text "\n<<" <+> hsep (map toFix ts) <+> text ">>\n" instance Fixpoint Cinfo where toFix = text . showPpr . ci_loc instance PPrint RTyCon where pprintTidy _ = text . showPpr . rtc_tc instance Show RTyCon where show = showpp -------------------------------------------------------------------------- -- | Refined Instances --------------------------------------------------- -------------------------------------------------------------------------- data RInstance t = RI { riclass :: LocSymbol , ritype :: t , risigs :: [(LocSymbol, t)] } deriving Functor newtype DEnv x ty = DEnv (M.HashMap x (M.HashMap Symbol ty)) deriving (Monoid) type RDEnv = DEnv Var SpecType -------------------------------------------------------------------------- -- | Values Related to Specifications ------------------------------------ -------------------------------------------------------------------------- data Axiom b s e = Axiom { aname :: (Var, Maybe DataCon) , abinds :: [b] , atypes :: [s] , alhs :: e , arhs :: e } type HAxiom = Axiom Var Type CoreExpr type LAxiom = Axiom Symbol Sort Expr instance Show (Axiom Var Type CoreExpr) where show (Axiom (n, c) bs _ts lhs rhs) = "Axiom : " ++ "\nFun Name: " ++ (showPpr n) ++ "\nData Con: " ++ (showPpr c) ++ "\nArguments:" ++ (showPpr bs) ++ -- "\nTypes :" ++ (showPpr ts) ++ "\nLHS :" ++ (showPpr lhs) ++ "\nRHS :" ++ (showPpr rhs) -------------------------------------------------------------------------- -- | Values Related to Specifications ------------------------------------ -------------------------------------------------------------------------- -- | Data type refinements data DataDecl = D { tycName :: LocSymbol -- ^ Type Constructor Name , tycTyVars :: [Symbol] -- ^ Tyvar Parameters , tycPVars :: [PVar BSort] -- ^ PVar Parameters , tycTyLabs :: [Symbol] -- ^ PLabel Parameters , tycDCons :: [(LocSymbol, [(Symbol, BareType)])] -- ^ [DataCon, [(fieldName, fieldType)]] , tycSrcPos :: !SourcePos -- ^ Source Position , tycSFun :: (Maybe (Symbol -> Expr)) -- ^ Measure that should decrease in recursive calls } -- deriving (Show) instance Eq DataDecl where d1 == d2 = tycName d1 == tycName d2 instance Ord DataDecl where compare d1 d2 = compare (tycName d1) (tycName d2) -- | For debugging. instance Show DataDecl where show dd = printf "DataDecl: data = %s, tyvars = %s" (show $ tycName dd) (show $ tycTyVars dd) -- | Refinement Type Aliases data RTAlias tv ty = RTA { rtName :: Symbol , rtTArgs :: [tv] , rtVArgs :: [tv] , rtBody :: ty , rtPos :: SourcePos , rtPosE :: SourcePos } mapRTAVars f rt = rt { rtTArgs = f <$> rtTArgs rt , rtVArgs = f <$> rtVArgs rt } ------------------------------------------------------------------------ -- | Constructor and Destructors for RTypes ---------------------------- ------------------------------------------------------------------------ data RTypeRep c tv r = RTypeRep { ty_vars :: [tv] , ty_preds :: [PVar (RType c tv ())] , ty_labels :: [Symbol] , ty_binds :: [Symbol] , ty_refts :: [r] , ty_args :: [RType c tv r] , ty_res :: (RType c tv r) } fromRTypeRep (RTypeRep {..}) = mkArrow ty_vars ty_preds ty_labels arrs ty_res where arrs = safeZip3WithError ("fromRTypeRep: " ++ show (length ty_binds, length ty_args, length ty_refts)) ty_binds ty_args ty_refts toRTypeRep :: RType c tv r -> RTypeRep c tv r toRTypeRep t = RTypeRep αs πs ls xs rs ts t'' where (αs, πs, ls, t') = bkUniv t (xs, ts, rs, t'') = bkArrow t' mkArrow αs πs ls xts = mkUnivs αs πs ls . mkArrs xts where mkArrs xts t = foldr (\(b,t1,r) t2 -> RFun b t1 t2 r) t xts bkArrowDeep (RAllT _ t) = bkArrowDeep t bkArrowDeep (RAllP _ t) = bkArrowDeep t bkArrowDeep (RAllS _ t) = bkArrowDeep t bkArrowDeep (RFun x t t' r) = let (xs, ts, rs, t'') = bkArrowDeep t' in (x:xs, t:ts, r:rs, t'') bkArrowDeep t = ([], [], [], t) bkArrow (RFun x t t' r) = let (xs, ts, rs, t'') = bkArrow t' in (x:xs, t:ts, r:rs, t'') bkArrow t = ([], [], [], t) safeBkArrow (RAllT _ _) = panic Nothing "safeBkArrow on RAllT" safeBkArrow (RAllP _ _) = panic Nothing "safeBkArrow on RAllP" safeBkArrow (RAllS _ t) = safeBkArrow t safeBkArrow t = bkArrow t mkUnivs αs πs ls t = foldr RAllT (foldr RAllP (foldr RAllS t ls) πs) αs bkUniv :: RType t1 a t2 -> ([a], [PVar (RType t1 a ())], [Symbol], RType t1 a t2) bkUniv (RAllT α t) = let (αs, πs, ls, t') = bkUniv t in (α:αs, πs, ls, t') bkUniv (RAllP π t) = let (αs, πs, ls, t') = bkUniv t in (αs, π:πs, ls, t') bkUniv (RAllS s t) = let (αs, πs, ss, t') = bkUniv t in (αs, πs, s:ss, t') bkUniv t = ([], [], [], t) bkClass (RFun _ (RApp c t _ _) t' _) | isClass c = let (cs, t'') = bkClass t' in ((c, t):cs, t'') bkClass (RRTy e r o t) = let (cs, t') = bkClass t in (cs, RRTy e r o t') bkClass t = ([], t) rFun b t t' = RFun b t t' mempty rCls c ts = RApp (RTyCon c [] defaultTyConInfo) ts [] mempty rRCls rc ts = RApp rc ts [] mempty addInvCond :: SpecType -> RReft -> SpecType addInvCond t r' | isTauto $ ur_reft r' -- null rv = t | otherwise = fromRTypeRep $ trep {ty_res = RRTy [(x', tbd)] r OInv tbd} where trep = toRTypeRep t tbd = ty_res trep r = r' {ur_reft = Reft (v, rx)} su = (v, EVar x') x' = "xInv" rx = PIff (EVar v) $ subst1 rv su Reft(v, rv) = ur_reft r' ------------------------------------------- instance Subable Stratum where syms (SVar s) = [s] syms _ = [] subst su (SVar s) = SVar $ subst su s subst _ s = s substf f (SVar s) = SVar $ substf f s substf _ s = s substa f (SVar s) = SVar $ substa f s substa _ s = s instance Reftable Strata where isTauto [] = True isTauto _ = False ppTy _ = panic Nothing "ppTy on Strata" toReft _ = mempty params s = [l | SVar l <- s] bot _ = [] top _ = [] ofReft = todo Nothing "TODO: Strata.ofReft" class Reftable r => UReftable r where ofUReft :: UReft Reft -> r ofUReft (MkUReft r _ _) = ofReft r instance UReftable (UReft Reft) where ofUReft r = r instance UReftable () where ofUReft _ = mempty instance (PPrint r, Reftable r) => Reftable (UReft r) where isTauto = isTauto_ureft ppTy = ppTy_ureft toReft (MkUReft r ps _) = toReft r `meet` toReft ps params (MkUReft r _ _) = params r bot (MkUReft r _ s) = MkUReft (bot r) (Pr []) (bot s) top (MkUReft r p s) = MkUReft (top r) (top p) s ofReft r = MkUReft (ofReft r) mempty mempty isTauto_ureft u = isTauto (ur_reft u) && isTauto (ur_pred u) -- && (isTauto $ ur_strata u) ppTy_ureft u@(MkUReft r p s) d | isTauto_ureft u = d | otherwise = ppr_reft r (ppTy p d) s ppr_reft r d s = braces (pprint v <+> colon <+> d <> ppr_str s <+> text "|" <+> pprint r') where r'@(Reft (v, _)) = toReft r ppr_str [] = empty ppr_str s = text "^" <> pprint s instance Subable r => Subable (UReft r) where syms (MkUReft r p _) = syms r ++ syms p subst s (MkUReft r z l) = MkUReft (subst s r) (subst s z) (subst s l) substf f (MkUReft r z l) = MkUReft (substf f r) (substf f z) (substf f l) substa f (MkUReft r z l) = MkUReft (substa f r) (substa f z) (substa f l) instance (Reftable r, RefTypable c tv r) => Subable (RTProp c tv r) where syms (RProp ss r) = (fst <$> ss) ++ syms r subst su (RProp ss (RHole r)) = RProp ss (RHole (subst su r)) subst su (RProp ss t) = RProp ss (subst su <$> t) substf f (RProp ss (RHole r)) = RProp ss (RHole (substf f r)) substf f (RProp ss t) = RProp ss (substf f <$> t) substa f (RProp ss (RHole r)) = RProp ss (RHole (substa f r)) substa f (RProp ss t) = RProp ss (substa f <$> t) instance (Subable r, RefTypable c tv r) => Subable (RType c tv r) where syms = foldReft (\_ r acc -> syms r ++ acc) [] substa f = mapReft (substa f) substf f = emapReft (substf . substfExcept f) [] subst su = emapReft (subst . substExcept su) [] subst1 t su = emapReft (\xs r -> subst1Except xs r su) [] t instance Reftable Predicate where isTauto (Pr ps) = null ps bot (Pr _) = panic Nothing "No BOT instance for Predicate" -- NV: This does not print abstract refinements.... -- HACK: Hiding to not render types in WEB DEMO. NEED TO FIX. ppTy r d | isTauto r = d | not (ppPs ppEnv) = d | otherwise = d <> (angleBrackets $ pprint r) toReft (Pr ps@(p:_)) = Reft (parg p, pAnd $ pToRef <$> ps) toReft _ = mempty params = todo Nothing "TODO: instance of params for Predicate" ofReft = todo Nothing "TODO: Predicate.ofReft" pToRef p = pApp (pname p) $ (EVar $ parg p) : (thd3 <$> pargs p) pApp :: Symbol -> [Expr] -> Expr pApp p es = mkEApp (dummyLoc $ pappSym $ length es) (EVar p:es) pappSym n = symbol $ "papp" ++ show n --------------------------------------------------------------- --------------------------- Visitors -------------------------- --------------------------------------------------------------- isTrivial t = foldReft (\_ r b -> isTauto r && b) True t mapReft :: (r1 -> r2) -> RType c tv r1 -> RType c tv r2 mapReft f = emapReft (\_ -> f) [] emapReft :: ([Symbol] -> r1 -> r2) -> [Symbol] -> RType c tv r1 -> RType c tv r2 emapReft f γ (RVar α r) = RVar α (f γ r) emapReft f γ (RAllT α t) = RAllT α (emapReft f γ t) emapReft f γ (RAllP π t) = RAllP π (emapReft f γ t) emapReft f γ (RAllS p t) = RAllS p (emapReft f γ t) emapReft f γ (RFun x t t' r) = RFun x (emapReft f γ t) (emapReft f (x:γ) t') (f γ r) emapReft f γ (RApp c ts rs r) = RApp c (emapReft f γ <$> ts) (emapRef f γ <$> rs) (f γ r) emapReft f γ (RAllE z t t') = RAllE z (emapReft f γ t) (emapReft f γ t') emapReft f γ (REx z t t') = REx z (emapReft f γ t) (emapReft f γ t') emapReft _ _ (RExprArg e) = RExprArg e emapReft f γ (RAppTy t t' r) = RAppTy (emapReft f γ t) (emapReft f γ t') (f γ r) emapReft f γ (RRTy e r o t) = RRTy (mapSnd (emapReft f γ) <$> e) (f γ r) o (emapReft f γ t) emapReft f γ (RHole r) = RHole (f γ r) emapRef :: ([Symbol] -> t -> s) -> [Symbol] -> RTProp c tv t -> RTProp c tv s emapRef f γ (RProp s (RHole r)) = RProp s $ RHole (f γ r) emapRef f γ (RProp s t) = RProp s $ emapReft f γ t ------------------------------------------------------------------------------------------------------ -- isBase' x t = traceShow ("isBase: " ++ showpp x) $ isBase t -- same as GhcMisc isBaseType -- isBase :: RType a -> Bool -- set all types to basic types, haskell `tx -> t` is translated to Arrow tx t -- isBase _ = True isBase (RAllT _ t) = isBase t isBase (RAllP _ t) = isBase t isBase (RVar _ _) = True isBase (RApp _ ts _ _) = all isBase ts isBase (RFun _ _ _ _) = False isBase (RAppTy t1 t2 _) = isBase t1 && isBase t2 isBase (RRTy _ _ _ t) = isBase t isBase (RAllE _ _ t) = isBase t isBase _ = False isFunTy (RAllE _ _ t) = isFunTy t isFunTy (RAllS _ t) = isFunTy t isFunTy (RAllT _ t) = isFunTy t isFunTy (RAllP _ t) = isFunTy t isFunTy (RFun _ _ _ _) = True isFunTy _ = False mapReftM :: (Monad m) => (r1 -> m r2) -> RType c tv r1 -> m (RType c tv r2) mapReftM f (RVar α r) = liftM (RVar α) (f r) mapReftM f (RAllT α t) = liftM (RAllT α) (mapReftM f t) mapReftM f (RAllP π t) = liftM (RAllP π) (mapReftM f t) mapReftM f (RAllS s t) = liftM (RAllS s) (mapReftM f t) mapReftM f (RFun x t t' r) = liftM3 (RFun x) (mapReftM f t) (mapReftM f t') (f r) mapReftM f (RApp c ts rs r) = liftM3 (RApp c) (mapM (mapReftM f) ts) (mapM (mapRefM f) rs) (f r) mapReftM f (RAllE z t t') = liftM2 (RAllE z) (mapReftM f t) (mapReftM f t') mapReftM f (REx z t t') = liftM2 (REx z) (mapReftM f t) (mapReftM f t') mapReftM _ (RExprArg e) = return $ RExprArg e mapReftM f (RAppTy t t' r) = liftM3 RAppTy (mapReftM f t) (mapReftM f t') (f r) mapReftM f (RHole r) = liftM RHole (f r) mapReftM f (RRTy xts r o t) = liftM4 RRTy (mapM (mapSndM (mapReftM f)) xts) (f r) (return o) (mapReftM f t) mapRefM :: (Monad m) => (t -> m s) -> (RTProp c tv t) -> m (RTProp c tv s) mapRefM f (RProp s t) = liftM (RProp s) (mapReftM f t) -------------------------------------------------------------------------------- -- foldReft :: (Reftable r, TyConable c) => (r -> a -> a) -> a -> RType c tv r -> a -------------------------------------------------------------------------------- -- foldReft f = efoldReft (\_ _ -> []) (\_ -> ()) (\_ _ -> f) (\_ γ -> γ) emptySEnv -------------------------------------------------------------------------------- foldReft :: (Reftable r, TyConable c) => (SEnv (RType c tv r) -> r -> a -> a) -> a -> RType c tv r -> a -------------------------------------------------------------------------------- foldReft f = foldReft' id (\γ _ -> f γ) -------------------------------------------------------------------------------- foldReft' :: (Reftable r, TyConable c) => (RType c tv r -> b) -> (SEnv b -> Maybe (RType c tv r) -> r -> a -> a) -> a -> RType c tv r -> a -------------------------------------------------------------------------------- foldReft' g f = efoldReft (\_ _ -> []) g (\γ t r z -> f γ t r z) (\_ γ -> γ) emptySEnv -- efoldReft :: Reftable r =>(p -> [RType c tv r] -> [(Symbol, a)])-> (RType c tv r -> a)-> (SEnv a -> Maybe (RType c tv r) -> r -> c1 -> c1)-> SEnv a-> c1-> RType c tv r-> c1 efoldReft cb g f fp = go where -- folding over RType go γ z me@(RVar _ r) = f γ (Just me) r z go γ z (RAllT _ t) = go γ z t go γ z (RAllP p t) = go (fp p γ) z t go γ z (RAllS _ t) = go γ z t go γ z me@(RFun _ (RApp c ts _ _) t' r) | isClass c = f γ (Just me) r (go (insertsSEnv γ (cb c ts)) (go' γ z ts) t') go γ z me@(RFun x t t' r) = f γ (Just me) r (go (insertSEnv x (g t) γ) (go γ z t) t') -- go γ z me@(RFun _ t t' r) = f γ (Just me) r (go γ (go γ z t) t') go γ z me@(RApp _ ts rs r) = f γ (Just me) r (ho' γ (go' (insertSEnv (rTypeValueVar me) (g me) γ) z ts) rs) go γ z (RAllE x t t') = go (insertSEnv x (g t) γ) (go γ z t) t' go γ z (REx x t t') = go (insertSEnv x (g t) γ) (go γ z t) t' go γ z me@(RRTy [] r _ t) = f γ (Just me) r (go γ z t) go γ z me@(RRTy xts r _ t) = f γ (Just me) r (go γ (go γ z (envtoType xts)) t) go γ z me@(RAppTy t t' r) = f γ (Just me) r (go γ (go γ z t) t') go _ z (RExprArg _) = z go γ z me@(RHole r) = f γ (Just me) r z -- folding over Ref ho γ z (RProp ss (RHole r)) = f (insertsSEnv γ (mapSnd (g . ofRSort) <$> ss)) Nothing r z ho γ z (RProp ss t) = go (insertsSEnv γ ((mapSnd (g . ofRSort)) <$> ss)) z t -- folding over [RType] go' γ z ts = foldr (flip $ go γ) z ts -- folding over [Ref] ho' γ z rs = foldr (flip $ ho γ) z rs envtoType xts = foldr (\(x,t1) t2 -> rFun x t1 t2) (snd $ last xts) (init xts) mapBot f (RAllT α t) = RAllT α (mapBot f t) mapBot f (RAllP π t) = RAllP π (mapBot f t) mapBot f (RAllS s t) = RAllS s (mapBot f t) mapBot f (RFun x t t' r) = RFun x (mapBot f t) (mapBot f t') r mapBot f (RAppTy t t' r) = RAppTy (mapBot f t) (mapBot f t') r mapBot f (RApp c ts rs r) = f $ RApp c (mapBot f <$> ts) (mapBotRef f <$> rs) r mapBot f (REx b t1 t2) = REx b (mapBot f t1) (mapBot f t2) mapBot f (RAllE b t1 t2) = RAllE b (mapBot f t1) (mapBot f t2) mapBot f (RRTy e r o t) = RRTy (mapSnd (mapBot f) <$> e) r o (mapBot f t) mapBot f t' = f t' mapBotRef _ (RProp s (RHole r)) = RProp s $ RHole r mapBotRef f (RProp s t) = RProp s $ mapBot f t mapBind f (RAllT α t) = RAllT α (mapBind f t) mapBind f (RAllP π t) = RAllP π (mapBind f t) mapBind f (RAllS s t) = RAllS s (mapBind f t) mapBind f (RFun b t1 t2 r) = RFun (f b) (mapBind f t1) (mapBind f t2) r mapBind f (RApp c ts rs r) = RApp c (mapBind f <$> ts) (mapBindRef f <$> rs) r mapBind f (RAllE b t1 t2) = RAllE (f b) (mapBind f t1) (mapBind f t2) mapBind f (REx b t1 t2) = REx (f b) (mapBind f t1) (mapBind f t2) mapBind _ (RVar α r) = RVar α r mapBind _ (RHole r) = RHole r mapBind f (RRTy e r o t) = RRTy e r o (mapBind f t) mapBind _ (RExprArg e) = RExprArg e mapBind f (RAppTy t t' r) = RAppTy (mapBind f t) (mapBind f t') r mapBindRef f (RProp s (RHole r)) = RProp (mapFst f <$> s) (RHole r) mapBindRef f (RProp s t) = RProp (mapFst f <$> s) $ mapBind f t -------------------------------------------------- ofRSort :: Reftable r => RType c tv () -> RType c tv r ofRSort = fmap mempty toRSort :: RType c tv r -> RType c tv () toRSort = stripAnnotations . mapBind (const dummySymbol) . fmap (const ()) stripAnnotations (RAllT α t) = RAllT α (stripAnnotations t) stripAnnotations (RAllP _ t) = stripAnnotations t stripAnnotations (RAllS _ t) = stripAnnotations t stripAnnotations (RAllE _ _ t) = stripAnnotations t stripAnnotations (REx _ _ t) = stripAnnotations t stripAnnotations (RFun x t t' r) = RFun x (stripAnnotations t) (stripAnnotations t') r stripAnnotations (RAppTy t t' r) = RAppTy (stripAnnotations t) (stripAnnotations t') r stripAnnotations (RApp c ts rs r) = RApp c (stripAnnotations <$> ts) (stripAnnotationsRef <$> rs) r stripAnnotations (RRTy _ _ _ t) = stripAnnotations t stripAnnotations t = t stripAnnotationsRef (RProp s (RHole r)) = RProp s (RHole r) stripAnnotationsRef (RProp s t) = RProp s $ stripAnnotations t insertsSEnv = foldr (\(x, t) γ -> insertSEnv x t γ) rTypeValueVar :: (Reftable r) => RType c tv r -> Symbol rTypeValueVar t = vv where Reft (vv,_) = rTypeReft t rTypeReft :: (Reftable r) => RType c tv r -> Reft rTypeReft = fromMaybe trueReft . fmap toReft . stripRTypeBase -- stripRTypeBase :: RType a -> Maybe a stripRTypeBase (RApp _ _ _ x) = Just x stripRTypeBase (RVar _ x) = Just x stripRTypeBase (RFun _ _ _ x) = Just x stripRTypeBase (RAppTy _ _ x) = Just x stripRTypeBase _ = Nothing mapRBase f (RApp c ts rs r) = RApp c ts rs $ f r mapRBase f (RVar a r) = RVar a $ f r mapRBase f (RFun x t1 t2 r) = RFun x t1 t2 $ f r mapRBase f (RAppTy t1 t2 r) = RAppTy t1 t2 $ f r mapRBase _ t = t makeLType :: Stratum -> SpecType -> SpecType makeLType l t = fromRTypeRep trep{ty_res = mapRBase f $ ty_res trep} where trep = toRTypeRep t f (MkUReft r p _) = MkUReft r p [l] makeDivType = makeLType SDiv makeFinType = makeLType SFin getStrata = maybe [] ur_strata . stripRTypeBase ----------------------------------------------------------------------------- -- | PPrint ----------------------------------------------------------------- ----------------------------------------------------------------------------- instance Show Stratum where show SFin = "Fin" show SDiv = "Div" show SWhnf = "Whnf" show (SVar s) = show s instance PPrint Stratum where pprintTidy _ = text . show instance {-# OVERLAPPING #-} PPrint Strata where pprintTidy _ [] = empty pprintTidy k ss = hsep (pprintTidy k <$> nub ss) instance PPrint (PVar a) where pprintTidy _ = ppr_pvar ppr_pvar :: PVar a -> Doc ppr_pvar (PV s _ _ xts) = pprint s <+> hsep (pprint <$> dargs xts) where dargs = map thd3 . takeWhile (\(_, x, y) -> EVar x /= y) instance PPrint Predicate where pprintTidy _ (Pr []) = text "True" pprintTidy k (Pr pvs) = hsep $ punctuate (text "&") (map (pprintTidy k) pvs) -- | The type used during constraint generation, used -- also to define contexts for errors, hence in this -- file, and NOT in elsewhere. **DO NOT ATTEMPT TO MOVE** -- Am splitting into -- + global : many bindings, shared across all constraints -- + local : few bindings, relevant to particular constraints data REnv = REnv { reGlobal :: M.HashMap Symbol SpecType -- ^ the "global" names for module , reLocal :: M.HashMap Symbol SpecType -- ^ the "local" names for sub-exprs } instance NFData REnv where rnf (REnv {}) = () ------------------------------------------------------------------------ -- | Error Data Type --------------------------------------------------- ------------------------------------------------------------------------ type ErrorResult = FixResult UserError type Error = TError SpecType instance NFData a => NFData (TError a) ------------------------------------------------------------------------ -- | Source Information Associated With Constraints -------------------- ------------------------------------------------------------------------ data Cinfo = Ci { ci_loc :: !SrcSpan , ci_err :: !(Maybe Error) } deriving (Eq, Ord, Generic) instance NFData Cinfo -------------------------------------------------------------------------------- --- Module Names -------------------------------------------------------------------------------- data ModName = ModName !ModType !ModuleName deriving (Eq,Ord) instance Show ModName where show = getModString instance Symbolic ModName where symbol (ModName _ m) = symbol m instance Symbolic ModuleName where symbol = symbol . moduleNameFS data ModType = Target | SrcImport | SpecImport deriving (Eq,Ord) isSrcImport (ModName SrcImport _) = True isSrcImport _ = False isSpecImport (ModName SpecImport _) = True isSpecImport _ = False getModName (ModName _ m) = m getModString = moduleNameString . getModName ------------------------------------------------------------------------------- ----------- Refinement Type Aliases ------------------------------------------- ------------------------------------------------------------------------------- data RTEnv = RTE { typeAliases :: M.HashMap Symbol (RTAlias RTyVar SpecType) , exprAliases :: M.HashMap Symbol (RTAlias Symbol Expr) } instance Monoid RTEnv where (RTE ta1 ea1) `mappend` (RTE ta2 ea2) = RTE (ta1 `M.union` ta2) (ea1 `M.union` ea2) mempty = RTE M.empty M.empty mapRT f e = e { typeAliases = f $ typeAliases e } mapRE f e = e { exprAliases = f $ exprAliases e } -------------------------------------------------------------------------------- --- Measures -------------------------------------------------------------------------------- data Body = E Expr -- ^ Measure Refinement: {v | v = e } | P Expr -- ^ Measure Refinement: {v | (? v) <=> p } | R Symbol Expr -- ^ Measure Refinement: {v | p} deriving (Show, Data, Typeable, Generic, Eq) data Def ty ctor = Def { measure :: LocSymbol , dparams :: [(Symbol, ty)] , ctor :: ctor , dsort :: Maybe ty , binds :: [(Symbol, Maybe ty)] , body :: Body } deriving (Show, Data, Typeable, Generic, Eq, Functor) data Measure ty ctor = M { name :: LocSymbol , sort :: ty , eqns :: [Def ty ctor] } deriving (Data, Typeable, Generic, Functor) deriveBifunctor ''Def deriveBifunctor ''Measure data CMeasure ty = CM { cName :: LocSymbol , cSort :: ty } deriving (Data, Typeable, Generic, Functor) instance PPrint Body where pprintTidy k (E e) = pprintTidy k e pprintTidy k (P p) = pprintTidy k p pprintTidy k (R v p) = braces (pprintTidy k v <+> text "|" <+> pprintTidy k p) instance PPrint a => PPrint (Def t a) where pprintTidy k (Def m p c _ bs body) = pprintTidy k m <+> pprintTidy k (fst <$> p) <+> cbsd <> text " = " <> pprintTidy k body where cbsd = parens (pprintTidy k c <> hsep (pprintTidy k `fmap` (fst <$> bs))) instance (PPrint t, PPrint a) => PPrint (Measure t a) where pprintTidy k (M n s eqs) = pprintTidy k n <> text " :: " <> pprintTidy k s $$ vcat (pprintTidy k `fmap` eqs) instance PPrint (Measure t a) => Show (Measure t a) where show = showpp instance PPrint t => PPrint (CMeasure t) where pprintTidy k (CM n s) = pprintTidy k n <> text " :: " <> pprintTidy k s instance PPrint (CMeasure t) => Show (CMeasure t) where show = showpp instance Subable (Measure ty ctor) where syms (M _ _ es) = concatMap syms es substa f (M n s es) = M n s $ substa f <$> es substf f (M n s es) = M n s $ substf f <$> es subst su (M n s es) = M n s $ subst su <$> es instance Subable (Def ty ctor) where syms (Def _ sp _ _ sb bd) = (fst <$> sp) ++ (fst <$> sb) ++ syms bd substa f (Def m p c t b bd) = Def m p c t b $ substa f bd substf f (Def m p c t b bd) = Def m p c t b $ substf f bd subst su (Def m p c t b bd) = Def m p c t b $ subst su bd instance Subable Body where syms (E e) = syms e syms (P e) = syms e syms (R s e) = s:syms e substa f (E e) = E $ substa f e substa f (P e) = P $ substa f e substa f (R s e) = R s $ substa f e substf f (E e) = E $ substf f e substf f (P e) = P $ substf f e substf f (R s e) = R s $ substf f e subst su (E e) = E $ subst su e subst su (P e) = P $ subst su e subst su (R s e) = R s $ subst su e data RClass ty = RClass { rcName :: LocSymbol , rcSupers :: [ty] , rcTyVars :: [Symbol] , rcMethods :: [(LocSymbol,ty)] } deriving (Show, Functor) ------------------------------------------------------------------------ -- | Annotations ------------------------------------------------------- ------------------------------------------------------------------------ newtype AnnInfo a = AI (M.HashMap SrcSpan [(Maybe Text, a)]) deriving (Data, Typeable, Generic, Functor) data Annot t = AnnUse t | AnnDef t | AnnRDf t | AnnLoc SrcSpan deriving (Data, Typeable, Generic, Functor) instance Monoid (AnnInfo a) where mempty = AI M.empty mappend (AI m1) (AI m2) = AI $ M.unionWith (++) m1 m2 instance NFData a => NFData (AnnInfo a) instance NFData a => NFData (Annot a) -------------------------------------------------------------------------------- -- | Output -------------------------------------------------------------------- -------------------------------------------------------------------------------- data Output a = O { o_vars :: Maybe [String] , o_errors :: ![UserError] , o_types :: !(AnnInfo a) , o_templs :: !(AnnInfo a) , o_bots :: ![SrcSpan] , o_result :: ErrorResult } deriving (Typeable, Generic, Functor) emptyOutput = O Nothing [] mempty mempty [] mempty instance Monoid (Output a) where mempty = emptyOutput mappend o1 o2 = O { o_vars = sortNub <$> mappend (o_vars o1) (o_vars o2) , o_errors = sortNub $ mappend (o_errors o1) (o_errors o2) , o_types = mappend (o_types o1) (o_types o2) , o_templs = mappend (o_templs o1) (o_templs o2) , o_bots = sortNub $ mappend (o_bots o1) (o_bots o2) , o_result = mappend (o_result o1) (o_result o2) } -------------------------------------------------------------------------------- -- | KVar Profile -------------------------------------------------------------- -------------------------------------------------------------------------------- data KVKind = RecBindE | NonRecBindE | TypeInstE | PredInstE | LamE | CaseE | LetE deriving (Generic, Eq, Ord, Show, Enum, Data, Typeable) instance Hashable KVKind newtype KVProf = KVP (M.HashMap KVKind Int) deriving (Generic) emptyKVProf :: KVProf emptyKVProf = KVP M.empty updKVProf :: KVKind -> Kuts -> KVProf -> KVProf updKVProf k kvs (KVP m) = KVP $ M.insert k (kn + n) m where kn = M.lookupDefault 0 k m n = S.size $ ksVars kvs instance NFData KVKind instance PPrint KVKind where pprintTidy _ = text . show instance PPrint KVProf where pprintTidy k (KVP m) = pprintTidy k $ M.toList m instance NFData KVProf hole :: Expr hole = PKVar "HOLE" mempty isHole :: Expr -> Bool isHole (PKVar ("HOLE") _) = True isHole _ = False hasHole :: Reftable r => r -> Bool hasHole = any isHole . conjuncts . reftPred . toReft -- classToRApp :: SpecType -> SpecType -- classToRApp (RCls cl ts) -- = RApp (RTyCon (classTyCon cl) def def) ts mempty mempty instance Symbolic DataCon where symbol = symbol . dataConWorkId instance PPrint DataCon where pprintTidy _ = text . showPpr instance Show DataCon where show = showpp liquidBegin :: String liquidBegin = ['{', '-', '@'] liquidEnd :: String liquidEnd = ['@', '-', '}'] data MSpec ty ctor = MSpec { ctorMap :: M.HashMap Symbol [Def ty ctor] , measMap :: M.HashMap LocSymbol (Measure ty ctor) , cmeasMap :: M.HashMap LocSymbol (Measure ty ()) , imeas :: ![Measure ty ctor] } deriving (Data, Typeable, Generic, Functor) instance Bifunctor MSpec where first f (MSpec c m cm im) = MSpec (fmap (fmap (first f)) c) (fmap (first f) m) (fmap (first f) cm) (fmap (first f) im) second = fmap instance (PPrint t, PPrint a) => PPrint (MSpec t a) where pprintTidy k = vcat . fmap (pprintTidy k) . fmap snd . M.toList . measMap instance (Show ty, Show ctor, PPrint ctor, PPrint ty) => Show (MSpec ty ctor) where show (MSpec ct m cm im) = "\nMSpec:\n" ++ "\nctorMap:\t " ++ show ct ++ "\nmeasMap:\t " ++ show m ++ "\ncmeasMap:\t " ++ show cm ++ "\nimeas:\t " ++ show im ++ "\n" instance Eq ctor => Monoid (MSpec ty ctor) where mempty = MSpec M.empty M.empty M.empty [] (MSpec c1 m1 cm1 im1) `mappend` (MSpec c2 m2 cm2 im2) | null dups = MSpec (M.unionWith (++) c1 c2) (m1 `M.union` m2) (cm1 `M.union` cm2) (im1 ++ im2) | otherwise = panic Nothing $ err (head dups) where dups = [(k1, k2) | k1 <- M.keys m1 , k2 <- M.keys m2, val k1 == val k2] err (k1, k2) = printf "\nDuplicate Measure Definitions for %s\n%s" (showpp k1) (showpp $ map loc [k1, k2]) -------------------------------------------------------------------------------- -- Nasty PP stuff -------------------------------------------------------------------------------- instance PPrint RTyVar where pprintTidy _k (RTV α) | ppTyVar ppEnv = ppr_tyvar α | otherwise = ppr_tyvar_short α ppr_tyvar = text . tvId ppr_tyvar_short = text . showPpr instance (PPrint r, Reftable r, PPrint t, PPrint (RType c tv r)) => PPrint (Ref t (RType c tv r)) where pprintTidy k (RProp ss s) = ppRefArgs (fst <$> ss) <+> pprintTidy k s -- pprint (RProp ss (RHole s)) = ppRefArgs (fst <$> ss) <+> pprint s -- pprint (RProp ss s) = ppRefArgs (fst <$> ss) <+> pprint (fromMaybe mempty (stripRTypeBase s)) ppRefArgs :: [Symbol] -> Doc ppRefArgs [] = empty ppRefArgs ss = text "\\" <> hsep (ppRefSym <$> ss ++ [vv Nothing]) <+> text "->" ppRefSym "" = text "_" ppRefSym s = pprint s