{-# LANGUAGE IncoherentInstances #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE PatternGuards #-} -- | Refinement Types. Mostly mirroring the GHC Type definition, but with -- room for refinements of various sorts. -- TODO: Desperately needs re-organization. module Language.Haskell.Liquid.Types.RefType ( -- * Functions for lifting Reft-values to Spec-values uTop, uReft, uRType, uRType', uRTypeGen, uPVar -- * Applying a solution to a SpecType , applySolution -- * Functions for decreasing arguments , isDecreasing, makeDecrType, makeNumEnv , makeLexRefa -- * Functions for manipulating `Predicate`s , pdVar , findPVar , freeTyVars, tyClasses, tyConName -- TODO: categorize these! , ofType, toType , rTyVar, rVar, rApp, rEx , symbolRTyVar , addTyConInfo , appRTyCon , typeSort, typeUniqueSymbol , strengthen , generalize, normalizePds , subts, subvPredicate, subvUReft , subsTyVar_meet, subsTyVar_meet', subsTyVar_nomeet , subsTyVars_nomeet, subsTyVars_meet , dataConMsReft, dataConReft , classBinds , isSizeable -- * Manipulating Refinements in RTypes , rTypeSortedReft , rTypeSort , shiftVV , mkDataConIdsTy , mkTyConInfo , meetable , strengthenRefTypeGen , strengthenDataConType , isBaseTy ) where import Prelude hiding (error) import WwLib import FamInstEnv (emptyFamInstEnv) import Var import Kind import GHC hiding (Located) import DataCon import qualified TyCon as TC import TypeRep hiding (maybeParen, pprArrowChain) import Type (splitFunTys, expandTypeSynonyms, substTyWith, isClassPred) import TysWiredIn (listTyCon, intDataCon, trueDataCon, falseDataCon, intTyCon, charTyCon) -- import Data.Monoid hiding ((<>)) import Data.Maybe (fromMaybe, isJust, fromJust) import Data.Hashable import qualified Data.HashMap.Strict as M import qualified Data.HashSet as S import qualified Data.List as L import Control.Monad (void) import Text.Printf import Text.PrettyPrint.HughesPJ import Language.Haskell.Liquid.Types.Errors import Language.Haskell.Liquid.Types.PrettyPrint import qualified Language.Fixpoint.Types as F import Language.Fixpoint.Types hiding (shiftVV, Predicate) import Language.Fixpoint.Types.Visitor (mapKVars) import Language.Haskell.Liquid.Types hiding (R, DataConP (..), sort) import Language.Haskell.Liquid.Types.Variance import Language.Haskell.Liquid.Misc import Language.Haskell.Liquid.Types.Names import Language.Fixpoint.Misc import Language.Haskell.Liquid.GHC.Misc (typeUniqueString, tvId, showPpr, stringTyVar, tyConTyVarsDef) import Data.List (sort, foldl') strengthenDataConType (x, t) = (x, fromRTypeRep trep{ty_res = tres}) where trep = toRTypeRep t tres = ty_res trep `strengthen` MkUReft (exprReft expr) mempty mempty xs = ty_binds trep as = ty_vars trep x' = symbol x expr | null xs && null as = EVar x' | null xs = mkEApp (dummyLoc x') [] | otherwise = mkEApp (dummyLoc x') (EVar <$> xs) pdVar v = Pr [uPVar v] findPVar :: [PVar (RType c tv ())] -> UsedPVar -> PVar (RType c tv ()) findPVar ps p = PV name ty v (zipWith (\(_, _, e) (t, s, _) -> (t, s, e)) (pargs p) args) where PV name ty v args = fromMaybe (msg p) $ L.find ((== pname p) . pname) ps msg p = panic Nothing $ "RefType.findPVar" ++ showpp p ++ "not found" -- | Various functions for converting vanilla `Reft` to `Spec` uRType :: RType c tv a -> RType c tv (UReft a) uRType = fmap uTop uRType' :: RType c tv (UReft a) -> RType c tv a uRType' = fmap ur_reft uRTypeGen :: Reftable b => RType c tv a -> RType c tv b uRTypeGen = fmap $ const mempty uPVar :: PVar t -> UsedPVar uPVar = void uReft :: (Symbol, Expr) -> UReft Reft uReft = uTop . Reft uTop :: r -> UReft r uTop r = MkUReft r mempty mempty -------------------------------------------------------------------- -------------- (Class) Predicates for Valid Refinement Types ------- -------------------------------------------------------------------- -- Monoid Instances --------------------------------------------------------- instance ( SubsTy tv (RType c tv ()) (RType c tv ()) , SubsTy tv (RType c tv ()) c , RefTypable c tv () , RefTypable c tv r , OkRT c tv r , FreeVar c tv ) => Monoid (RType c tv r) where mempty = panic Nothing "mempty: RType" mappend = strengthenRefType -- MOVE TO TYPES instance ( SubsTy tv (RType c tv ()) c , OkRT c tv r , RefTypable c tv r , RefTypable c tv () , FreeVar c tv , SubsTy tv (RType c tv ()) (RType c tv ())) => Monoid (RTProp c tv r) where mempty = panic Nothing "mempty: RTProp" mappend (RProp s1 (RHole r1)) (RProp s2 (RHole r2)) | isTauto r1 = RProp s2 (RHole r2) | isTauto r2 = RProp s1 (RHole r1) | otherwise = RProp s1 $ RHole $ r1 `meet` (subst (mkSubst $ zip (fst <$> s2) (EVar . fst <$> s1)) r2) mappend (RProp s1 t1) (RProp s2 t2) | isTrivial t1 = RProp s2 t2 | isTrivial t2 = RProp s1 t1 | otherwise = RProp s1 $ t1 `strengthenRefType` (subst (mkSubst $ zip (fst <$> s2) (EVar . fst <$> s1)) t2) instance ( OkRT c tv r , RefTypable c tv r , RefTypable c tv () , FreeVar c tv , SubsTy tv (RType c tv ()) (RType c tv ()) , SubsTy tv (RType c tv ()) c) => Reftable (RTProp c tv r) where isTauto (RProp _ (RHole r)) = isTauto r isTauto (RProp _ t) = isTrivial t top (RProp _ (RHole _)) = panic Nothing "RefType: Reftable top called on (RProp _ (RHole _))" top (RProp xs t) = RProp xs $ mapReft top t ppTy (RProp _ (RHole r)) d = ppTy r d ppTy (RProp _ _) _ = panic Nothing "RefType: Reftable ppTy in RProp" toReft = panic Nothing "RefType: Reftable toReft" params = panic Nothing "RefType: Reftable params for Ref" bot = panic Nothing "RefType: Reftable bot for Ref" ofReft = panic Nothing "RefType: Reftable ofReft for Ref" ---------------------------------------------------------------------------- -- | Subable Instances ----------------------------------------------------- ---------------------------------------------------------------------------- instance Subable (RRProp Reft) where syms (RProp ss (RHole r)) = (fst <$> ss) ++ syms r syms (RProp ss t) = (fst <$> ss) ++ syms t subst su (RProp ss (RHole r)) = RProp (mapSnd (subst su) <$> ss) $ RHole $ subst su r subst su (RProp ss r) = RProp (mapSnd (subst su) <$> ss) $ subst su r substf f (RProp ss (RHole r)) = RProp (mapSnd (substf f) <$> ss) $ RHole $ substf f r substf f (RProp ss r) = RProp (mapSnd (substf f) <$> ss) $ substf f r substa f (RProp ss (RHole r)) = RProp (mapSnd (substa f) <$> ss) $ RHole $ substa f r substa f (RProp ss r) = RProp (mapSnd (substa f) <$> ss) $ substa f r ------------------------------------------------------------------------------- -- | Reftable Instances ------------------------------------------------------- ------------------------------------------------------------------------------- instance (PPrint r, Reftable r) => Reftable (RType RTyCon RTyVar r) where isTauto = isTrivial ppTy = panic Nothing "ppTy RProp Reftable" toReft = panic Nothing "toReft on RType" params = panic Nothing "params on RType" bot = panic Nothing "bot on RType" ofReft = panic Nothing "ofReft on RType" ------------------------------------------------------------------------------- -- | RefTypable Instances ----------------------------------------------------- ------------------------------------------------------------------------------- -- MOVE TO TYPES instance Fixpoint String where toFix = text -- MOVE TO TYPES instance Fixpoint Class where toFix = text . showPpr -- MOVE TO TYPES class FreeVar a v where freeVars :: a -> [v] -- MOVE TO TYPES instance FreeVar RTyCon RTyVar where freeVars = (RTV <$>) . tyConTyVarsDef . rtc_tc -- MOVE TO TYPES instance FreeVar LocSymbol Symbol where freeVars _ = [] -- Eq Instances ------------------------------------------------------ -- MOVE TO TYPES instance (RefTypable c tv ()) => Eq (RType c tv ()) where (==) = eqRSort M.empty eqRSort m (RAllP _ t) (RAllP _ t') = eqRSort m t t' eqRSort m (RAllS _ t) (RAllS _ t') = eqRSort m t t' eqRSort m (RAllP _ t) t' = eqRSort m t t' eqRSort m (RAllT a t) (RAllT a' t') | a == a' = eqRSort m t t' | otherwise = eqRSort (M.insert a' a m) t t' eqRSort m (RAllT _ t) t' = eqRSort m t t' eqRSort m t (RAllT _ t') = eqRSort m t t' eqRSort m (RFun _ t1 t2 _) (RFun _ t1' t2' _) = eqRSort m t1 t1' && eqRSort m t2 t2' eqRSort m (RAppTy t1 t2 _) (RAppTy t1' t2' _) = eqRSort m t1 t1' && eqRSort m t2 t2' eqRSort m (RApp c ts _ _) (RApp c' ts' _ _) = c == c' && length ts == length ts' && and (zipWith (eqRSort m) ts ts') eqRSort m (RVar a _) (RVar a' _) = a == M.lookupDefault a' a' m eqRSort _ (RHole _) _ = True eqRSort _ _ (RHole _) = True eqRSort _ _ _ = False -------------------------------------------------------------------- -- | Wrappers for GHC Type Elements -------------------------------- -------------------------------------------------------------------- instance Eq Predicate where (==) = eqpd eqpd (Pr vs) (Pr ws) = and $ (length vs' == length ws') : [v == w | (v, w) <- zip vs' ws'] where vs' = sort vs ws' = sort ws instance Eq RTyVar where RTV α == RTV α' = tvId α == tvId α' instance Ord RTyVar where compare (RTV α) (RTV α') = compare (tvId α) (tvId α') instance Hashable RTyVar where hashWithSalt i (RTV α) = hashWithSalt i α instance Ord RTyCon where compare x y = compare (rtc_tc x) (rtc_tc y) instance Hashable RTyCon where hashWithSalt i = hashWithSalt i . rtc_tc -------------------------------------------------------------------- ---------------------- Helper Functions ---------------------------- -------------------------------------------------------------------- rVar = (`RVar` mempty) . RTV rTyVar = RTV symbolRTyVar = rTyVar . stringTyVar . symbolString normalizePds t = addPds ps t' where (t', ps) = nlzP [] t rPred = RAllP rEx xts t = foldr (\(x, tx) t -> REx x tx t) t xts rApp c = RApp (RTyCon c [] (mkTyConInfo c [] [] Nothing)) --- NV TODO : remove this code!!! addPds ps (RAllT v t) = RAllT v $ addPds ps t addPds ps t = foldl' (flip rPred) t ps nlzP ps t@(RVar _ _ ) = (t, ps) nlzP ps (RFun b t1 t2 r) = (RFun b t1' t2' r, ps ++ ps1 ++ ps2) where (t1', ps1) = nlzP [] t1 (t2', ps2) = nlzP [] t2 nlzP ps (RAppTy t1 t2 r) = (RAppTy t1' t2' r, ps ++ ps1 ++ ps2) where (t1', ps1) = nlzP [] t1 (t2', ps2) = nlzP [] t2 nlzP ps (RAllT v t ) = (RAllT v t', ps ++ ps') where (t', ps') = nlzP [] t nlzP ps t@(RApp _ _ _ _) = (t, ps) nlzP ps (RAllS _ t) = (t, ps) nlzP ps (RAllP p t) = (t', [p] ++ ps ++ ps') where (t', ps') = nlzP [] t nlzP ps t@(REx _ _ _) = (t, ps) nlzP ps t@(RRTy _ _ _ t') = (t, ps ++ ps') where ps' = snd $ nlzP [] t' nlzP ps t@(RAllE _ _ _) = (t, ps) nlzP _ t = panic Nothing $ "RefType.nlzP: cannot handle " ++ show t strengthenRefTypeGen, strengthenRefType :: ( RefTypable c tv () , RefTypable c tv r , OkRT c tv r , FreeVar c tv , SubsTy tv (RType c tv ()) (RType c tv ()) , SubsTy tv (RType c tv ()) c ) => RType c tv r -> RType c tv r -> RType c tv r strengthenRefType_ :: ( RefTypable c tv () , RefTypable c tv r -- , PPrint (RType c tv r) , OkRT c tv r , FreeVar c tv , SubsTy tv (RType c tv ()) (RType c tv ()) , SubsTy tv (RType c tv ()) c ) => (RType c tv r -> RType c tv r -> RType c tv r) -> RType c tv r -> RType c tv r -> RType c tv r strengthenRefTypeGen t1 t2 = strengthenRefType_ f t1 t2 where f (RVar v1 r1) t = RVar v1 (r1 `meet` fromMaybe mempty (stripRTypeBase t)) f t (RVar v1 r1) = RVar v1 (r1 `meet` fromMaybe mempty (stripRTypeBase t)) f t1 t2 = panic Nothing $ printf "strengthenRefTypeGen on differently shaped types \nt1 = %s [shape = %s]\nt2 = %s [shape = %s]" (pprt_raw t1) (showpp (toRSort t1)) (pprt_raw t2) (showpp (toRSort t2)) pprt_raw :: (OkRT c tv r) => RType c tv r -> String pprt_raw = render . rtypeDoc Full -- NEWISH: with unifying type variables: causes big problems with TUPLES? --strengthenRefType t1 t2 = maybe (errorstar msg) (strengthenRefType_ t1) (unifyShape t1 t2) -- where msg = printf "strengthen on differently shaped reftypes \nt1 = %s [shape = %s]\nt2 = %s [shape = %s]" -- (render t1) (render (toRSort t1)) (render t2) (render (toRSort t2)) -- OLD: without unifying type variables, but checking α-equivalence strengthenRefType t1 t2 | meetable t1 t2 = strengthenRefType_ (\x _ -> x) t1 t2 | otherwise = panic Nothing msg where msg = printf "strengthen on differently shaped reftypes \nt1 = %s [shape = %s]\nt2 = %s [shape = %s]" (showpp t1) (showpp (toRSort t1)) (showpp t2) (showpp (toRSort t2)) meetable :: (OkRT c tv r) => RType c tv r -> RType c tv r -> Bool meetable t1 t2 = toRSort t1 == toRSort t2 strengthenRefType_ f (RAllT a1 t1) (RAllT a2 t2) = RAllT a1 $ strengthenRefType_ f t1 (subsTyVar_meet (a2, toRSort t, t) t2) where t = RVar a1 mempty strengthenRefType_ f (RAllT a t1) t2 = RAllT a $ strengthenRefType_ f t1 t2 strengthenRefType_ f t1 (RAllT a t2) = RAllT a $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAllP p1 t1) (RAllP _ t2) = RAllP p1 $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAllP p t1) t2 = RAllP p $ strengthenRefType_ f t1 t2 strengthenRefType_ f t1 (RAllP p t2) = RAllP p $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAllS s t1) t2 = RAllS s $ strengthenRefType_ f t1 t2 strengthenRefType_ f t1 (RAllS s t2) = RAllS s $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAllE x tx t1) (RAllE y ty t2) | x == y = RAllE x (strengthenRefType_ f tx ty) $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAllE x tx t1) t2 = RAllE x tx $ strengthenRefType_ f t1 t2 strengthenRefType_ f t1 (RAllE x tx t2) = RAllE x tx $ strengthenRefType_ f t1 t2 strengthenRefType_ f (RAppTy t1 t1' r1) (RAppTy t2 t2' r2) = RAppTy t t' (r1 `meet` r2) where t = strengthenRefType_ f t1 t2 t' = strengthenRefType_ f t1' t2' strengthenRefType_ f (RFun x1 t1 t1' r1) (RFun x2 t2 t2' r2) = RFun x2 t t' (r1 `meet` r2) where t = strengthenRefType_ f t1 t2 t' = strengthenRefType_ f (subst1 t1' (x1, EVar x2)) t2' strengthenRefType_ f (RApp tid t1s rs1 r1) (RApp _ t2s rs2 r2) = RApp tid ts rs (r1 `meet` r2) where ts = zipWith (strengthenRefType_ f) t1s t2s rs = meets rs1 rs2 strengthenRefType_ _ (RVar v1 r1) (RVar v2 r2) | v1 == v2 = RVar v1 (r1 `meet` r2) strengthenRefType_ f t1 t2 = f t1 t2 meets :: (F.Reftable r) => [r] -> [r] -> [r] meets [] rs = rs meets rs [] = rs meets rs rs' | length rs == length rs' = zipWith meet rs rs' | otherwise = panic Nothing "meets: unbalanced rs" strengthen :: Reftable r => RType c tv r -> r -> RType c tv r strengthen (RApp c ts rs r) r' = RApp c ts rs (r `meet` r') strengthen (RVar a r) r' = RVar a (r `meet` r') strengthen (RFun b t1 t2 r) r' = RFun b t1 t2 (r `meet` r') strengthen (RAppTy t1 t2 r) r' = RAppTy t1 t2 (r `meet` r') strengthen t _ = t ------------------------------------------------------------------------- addTyConInfo :: (PPrint r, Reftable r) => (M.HashMap TyCon FTycon) -> (M.HashMap TyCon RTyCon) -> RRType r -> RRType r ------------------------------------------------------------------------- addTyConInfo tce tyi = mapBot (expandRApp tce tyi) ------------------------------------------------------------------------- expandRApp :: (PPrint r, Reftable r) => (M.HashMap TyCon FTycon) -> (M.HashMap TyCon RTyCon) -> RRType r -> RRType r ------------------------------------------------------------------------- expandRApp tce tyi t@(RApp {}) = RApp rc' ts rs' r where RApp rc ts rs r = t rc' = appRTyCon tce tyi rc as pvs = rTyConPVs rc' rs' = applyNonNull rs0 (rtPropPV rc pvs) rs rs0 = rtPropTop <$> pvs n = length fVs fVs = tyConTyVarsDef $ rtc_tc rc as = choosen n ts (rVar <$> fVs) choosen 0 _ _ = [] choosen i (x:xs) (_:ys) = x:choosen (i-1) xs ys choosen i [] (y:ys) = y:choosen (i-1) [] ys choosen _ _ _ = impossible Nothing "choosen: this cannot happen" expandRApp _ _ t = t rtPropTop pv = case ptype pv of PVProp t -> RProp xts $ ofRSort t PVHProp -> RProp xts $ mempty where xts = pvArgs pv rtPropPV rc = safeZipWith msg mkRTProp where msg = "appRefts: " ++ showFix rc mkRTProp pv (RProp ss (RHole r)) = RProp ss $ (ofRSort $ pvType pv) `strengthen` r mkRTProp pv (RProp ss t) | length (pargs pv) == length ss = RProp ss t | otherwise = RProp (pvArgs pv) t pvArgs pv = [(s, t) | (t, s, _) <- pargs pv] appRTyCon tce tyi rc ts = RTyCon c ps' (rtc_info rc'') where c = rtc_tc rc ps' = subts (zip (RTV <$> αs) ts') <$> rTyConPVs rc' ts' = if null ts then rVar <$> βs else toRSort <$> ts rc' = M.lookupDefault rc c tyi αs = tyConTyVarsDef $ rtc_tc rc' βs = tyConTyVarsDef c rc'' = if isNumeric tce rc' then addNumSizeFun rc' else rc' -- RJ: The code of `isNumeric` is incomprehensible. -- Please fix it to use intSort instead of intFTyCon isNumeric tce c = fromMaybe (symbolFTycon . dummyLoc $ tyConName (rtc_tc c)) (M.lookup (rtc_tc c) tce) == F.intFTyCon addNumSizeFun c = c {rtc_info = (rtc_info c) {sizeFunction = Just EVar} } generalize :: (RefTypable c tv r) => RType c tv r -> RType c tv r generalize t = mkUnivs (freeTyVars t) [] [] t freeTyVars (RAllP _ t) = freeTyVars t freeTyVars (RAllS _ t) = freeTyVars t freeTyVars (RAllT α t) = freeTyVars t L.\\ [α] freeTyVars (RFun _ t t' _) = freeTyVars t `L.union` freeTyVars t' freeTyVars (RApp _ ts _ _) = L.nub $ concatMap freeTyVars ts freeTyVars (RVar α _) = [α] freeTyVars (RAllE _ tx t) = freeTyVars tx `L.union` freeTyVars t freeTyVars (REx _ tx t) = freeTyVars tx `L.union` freeTyVars t freeTyVars (RExprArg _) = [] freeTyVars (RAppTy t t' _) = freeTyVars t `L.union` freeTyVars t' freeTyVars (RHole _) = [] freeTyVars (RRTy e _ _ t) = L.nub $ concatMap freeTyVars (t:(snd <$> e)) tyClasses (RAllP _ t) = tyClasses t tyClasses (RAllS _ t) = tyClasses t tyClasses (RAllT _ t) = tyClasses t tyClasses (RAllE _ _ t) = tyClasses t tyClasses (REx _ _ t) = tyClasses t tyClasses (RFun _ t t' _) = tyClasses t ++ tyClasses t' tyClasses (RAppTy t t' _) = tyClasses t ++ tyClasses t' tyClasses (RApp c ts _ _) | Just cl <- tyConClass_maybe $ rtc_tc c = [(cl, ts)] | otherwise = [] tyClasses (RVar _ _) = [] tyClasses (RRTy _ _ _ t) = tyClasses t tyClasses (RHole _) = [] tyClasses t = panic Nothing ("RefType.tyClasses cannot handle" ++ show t) -------------------------------------------------------------------------------- -- TODO: Rewrite subsTyvars with Traversable -------------------------------------------------------------------------------- subsTyVars_meet = subsTyVars True subsTyVars_nomeet = subsTyVars False subsTyVar_nomeet = subsTyVar False subsTyVar_meet = subsTyVar True subsTyVar_meet' (α, t) = subsTyVar_meet (α, toRSort t, t) subsTyVars meet ats t = foldl' (flip (subsTyVar meet)) t ats subsTyVar meet = subsFree meet S.empty subsFree m s z (RAllS l t) = RAllS l (subsFree m s z t) subsFree m s z@(α, τ,_) (RAllP π t) = RAllP (subt (α, τ) π) (subsFree m s z t) subsFree m s z (RAllT α t) = RAllT α $ subsFree m (α `S.insert` s) z t subsFree m s z@(_, _, _) (RFun x t t' r) = RFun x (subsFree m s z t) (subsFree m s z t') r subsFree m s z@(α, τ, _) (RApp c ts rs r) = RApp (subt z' c) (subsFree m s z <$> ts) (subsFreeRef m s z <$> rs) r where z' = (α, τ) -- UNIFY: why instantiating INSIDE parameters? subsFree meet s (α', _, t') t@(RVar α r) | α == α' && not (α `S.member` s) = if meet then t' `strengthen` r else t' | otherwise = t subsFree m s z (RAllE x t t') = RAllE x (subsFree m s z t) (subsFree m s z t') subsFree m s z (REx x t t') = REx x (subsFree m s z t) (subsFree m s z t') subsFree m s z@(_, _, _) (RAppTy t t' r) = subsFreeRAppTy m s (subsFree m s z t) (subsFree m s z t') r subsFree _ _ _ t@(RExprArg _) = t subsFree m s z (RRTy e r o t) = RRTy (mapSnd (subsFree m s z) <$> e) r o (subsFree m s z t) subsFree _ _ _ t@(RHole _) = t subsFrees m s zs t = foldl' (flip(subsFree m s)) t zs -- GHC INVARIANT: RApp is Type Application to something other than TYCon subsFreeRAppTy m s (RApp c ts rs r) t' r' = mkRApp m s c (ts ++ [t']) rs r r' subsFreeRAppTy _ _ t t' r' = RAppTy t t' r' mkRApp m s c ts rs r r' | isFun c, [t1, t2] <- ts = RFun dummySymbol t1 t2 $ refAppTyToFun r' | otherwise = subsFrees m s zs $ RApp c ts rs $ r `meet` r' -- (refAppTyToApp r') where zs = [(tv, toRSort t, t) | (tv, t) <- zip (freeVars c) ts] refAppTyToFun r | isTauto r = r | otherwise = panic Nothing "RefType.refAppTyToFun" subsFreeRef _ _ (α', τ', _) (RProp ss (RHole r)) = RProp (mapSnd (subt (α', τ')) <$> ss) (RHole r) subsFreeRef m s (α', τ', t') (RProp ss t) = RProp (mapSnd (subt (α', τ')) <$> ss) $ subsFree m s (α', τ', fmap top t') t ------------------------------------------------------------------- ------------------- Type Substitutions ---------------------------- ------------------------------------------------------------------- subts = flip (foldr subt) instance SubsTy tv ty () where subt _ = id instance SubsTy tv ty Reft where subt _ = id instance (SubsTy tv ty ty) => SubsTy tv ty (PVKind ty) where subt su (PVProp t) = PVProp (subt su t) subt _ PVHProp = PVHProp instance (SubsTy tv ty ty) => SubsTy tv ty (PVar ty) where subt su (PV n t v xts) = PV n (subt su t) v [(subt su t, x, y) | (t,x,y) <- xts] instance SubsTy RTyVar RSort RTyCon where subt z c = RTyCon tc ps' i where tc = rtc_tc c ps' = subt z <$> rTyConPVs c i = rtc_info c -- NOTE: This DOES NOT substitute at the binders instance SubsTy RTyVar RSort PrType where subt (α, τ) = subsTyVar_meet (α, τ, ofRSort τ) instance SubsTy RTyVar RSort SpecType where subt (α, τ) = subsTyVar_meet (α, τ, ofRSort τ) instance SubsTy RTyVar RTyVar SpecType where subt (α, a) = subt (α, RVar a () :: RSort) instance SubsTy RTyVar RSort RSort where subt (α, τ) = subsTyVar_meet (α, τ, ofRSort τ) -- Here the "String" is a Bare-TyCon. TODO: wrap in newtype instance SubsTy Symbol BSort LocSymbol where subt _ t = t instance SubsTy Symbol BSort BSort where subt (α, τ) = subsTyVar_meet (α, τ, ofRSort τ) instance (SubsTy tv ty (UReft r), SubsTy tv ty (RType c tv ())) => SubsTy tv ty (RTProp c tv (UReft r)) where subt m (RProp ss (RHole p)) = RProp ((mapSnd (subt m)) <$> ss) $ RHole $ subt m p subt m (RProp ss t) = RProp ((mapSnd (subt m)) <$> ss) $ fmap (subt m) t subvUReft :: (UsedPVar -> UsedPVar) -> UReft Reft -> UReft Reft subvUReft f (MkUReft r p s) = MkUReft r (subvPredicate f p) s subvPredicate :: (UsedPVar -> UsedPVar) -> Predicate -> Predicate subvPredicate f (Pr pvs) = Pr (f <$> pvs) --------------------------------------------------------------- ofType = ofType_ . expandTypeSynonyms ofType_ (TyVarTy α) = rVar α ofType_ (FunTy τ τ') = rFun dummySymbol (ofType_ τ) (ofType_ τ') ofType_ (ForAllTy α τ) | isKindVar α = ofType_ τ | otherwise = RAllT (rTyVar α) $ ofType_ τ ofType_ (TyConApp c τs) | Just (αs, τ) <- TC.synTyConDefn_maybe c = ofType_ $ substTyWith αs τs τ | otherwise = rApp c (ofType_ <$> filter (not . isKind) τs) [] mempty ofType_ (AppTy t1 t2) = RAppTy (ofType_ t1) (ofType t2) mempty ofType_ (LitTy x) = fromTyLit x where fromTyLit (NumTyLit _) = rApp intTyCon [] [] mempty fromTyLit (StrTyLit _) = rApp listTyCon [rApp charTyCon [] [] mempty] [] mempty -------------------------------------------------------------------------------- -- | Converting to Fixpoint ---------------------------------------------------- -------------------------------------------------------------------------------- instance Expression Var where expr = eVar -- TODO: turn this into a map lookup? dataConReft :: DataCon -> [Symbol] -> Reft dataConReft c [] | c == trueDataCon = predReft $ eProp vv_ | c == falseDataCon = predReft $ PNot $ eProp vv_ dataConReft c [x] | c == intDataCon = symbolReft x -- OLD (vv_, [RConc (PAtom Eq (EVar vv_) (EVar x))]) dataConReft c _ | not $ isBaseDataCon c = mempty dataConReft c xs = exprReft dcValue -- OLD Reft (vv_, [RConc (PAtom Eq (EVar vv_) dcValue)]) where dcValue | null xs && null (dataConUnivTyVars c) = EVar $ symbol c | otherwise = mkEApp (dummyLoc $ symbol c) (eVar <$> xs) isBaseDataCon c = and $ isBaseTy <$> dataConOrigArgTys c ++ dataConRepArgTys c isBaseTy (TyVarTy _) = True isBaseTy (AppTy _ _) = False isBaseTy (TyConApp _ ts) = and $ isBaseTy <$> ts isBaseTy (FunTy _ _) = False isBaseTy (ForAllTy _ _) = False isBaseTy (LitTy _) = True dataConMsReft ty ys = subst su (rTypeReft (ignoreOblig $ ty_res trep)) where trep = toRTypeRep ty xs = ty_binds trep ts = ty_args trep su = mkSubst $ [(x, EVar y) | ((x, _), y) <- zip (zip xs ts) ys] --------------------------------------------------------------- ---------------------- Embedding RefTypes --------------------- --------------------------------------------------------------- -- TODO: remove toType, generalize typeSort toType :: (Reftable r, PPrint r) => RRType r -> Type toType (RFun _ t t' _) = FunTy (toType t) (toType t') toType (RAllT (RTV α) t) = ForAllTy α (toType t) toType (RAllP _ t) = toType t toType (RAllS _ t) = toType t toType (RVar (RTV α) _) = TyVarTy α toType (RApp (RTyCon {rtc_tc = c}) ts _ _) = TyConApp c (toType <$> filter notExprArg ts) where notExprArg (RExprArg _) = False notExprArg _ = True toType (RAllE _ _ t) = toType t toType (REx _ _ t) = toType t toType (RAppTy t (RExprArg _) _) = toType t toType (RAppTy t t' _) = AppTy (toType t) (toType t') toType t@(RExprArg _) = impossible Nothing $ "CANNOT HAPPEN: RefType.toType called with: " ++ show t toType (RRTy _ _ _ t) = toType t toType t = impossible Nothing $ "RefType.toType cannot handle: " ++ show t -------------------------------------------------------------------------------- -- | Annotations and Solutions ------------------------------------------------- -------------------------------------------------------------------------------- rTypeSortedReft :: (PPrint r, Reftable r) => TCEmb TyCon -> RRType r -> SortedReft rTypeSortedReft emb t = RR (rTypeSort emb t) (rTypeReft t) rTypeSort :: (PPrint r, Reftable r) => TCEmb TyCon -> RRType r -> Sort rTypeSort tce = typeSort tce . toType ------------------------------------------------------------------------------- applySolution :: (Functor f) => FixSolution -> f SpecType -> f SpecType ------------------------------------------------------------------------------- applySolution = fmap . fmap . mapReft . appSolRefa where mapReft f (MkUReft (Reft (x, z)) p s) = MkUReft (Reft (x, f z)) p s -- OLD appSolRefa _ ra@(RConc _) = ra -- OLD appSolRefa s (RKvar k su) = RConc $ subst su $ M.lookupDefault PTop k s appSolRefa s p = mapKVars f p where f k = Just $ M.lookupDefault PTop k s ------------------------------------------------------------------------------- shiftVV :: SpecType -> Symbol -> SpecType ------------------------------------------------------------------------------- shiftVV t@(RApp _ ts rs r) vv' = t { rt_args = subst1 ts (rTypeValueVar t, EVar vv') } { rt_pargs = subst1 rs (rTypeValueVar t, EVar vv') } { rt_reft = (`F.shiftVV` vv') <$> r } shiftVV t@(RFun _ _ _ r) vv' = t { rt_reft = (`F.shiftVV` vv') <$> r } shiftVV t@(RAppTy _ _ r) vv' = t { rt_reft = (`F.shiftVV` vv') <$> r } shiftVV t@(RVar _ r) vv' = t { rt_reft = (`F.shiftVV` vv') <$> r } shiftVV t _ = t -- errorstar $ "shiftVV: cannot handle " ++ showpp t ------------------------------------------------------------------------ ---------------- Auxiliary Stuff Used Elsewhere ------------------------ ------------------------------------------------------------------------ -- MOVE TO TYPES instance (Show tv, Show ty) => Show (RTAlias tv ty) where show (RTA n as xs t p _) = printf "type %s %s %s = %s -- defined at %s" (symbolString n) (unwords (show <$> as)) (unwords (show <$> xs)) (show t) (show p) ---------------------------------------------------------------- ------------ From Old Fixpoint --------------------------------- ---------------------------------------------------------------- typeUniqueSymbol :: Type -> Symbol typeUniqueSymbol = symbol . typeUniqueString typeSort :: TCEmb TyCon -> Type -> Sort typeSort tce τ@(ForAllTy _ _) = typeSortForAll tce τ typeSort tce t@(FunTy _ _) = typeSortFun tce t typeSort tce (TyConApp c τs) = fAppTC (tyConFTyCon tce c) (typeSort tce <$> τs) typeSort tce (AppTy t1 t2) = fApp (typeSort tce t1) [typeSort tce t2] typeSort _ τ = FObj $ typeUniqueSymbol τ tyConFTyCon tce c = fromMaybe (symbolFTycon $ dummyLoc $ tyConName c) (M.lookup c tce) typeSortForAll tce τ = genSort $ typeSort tce tbody where genSort t = foldl (flip FAbs) (sortSubst su t) [0..n-1] (as, tbody) = splitForAllTys τ su = M.fromList $ zip sas (FVar <$> [0..]) sas = (typeUniqueSymbol . TyVarTy) <$> as n = length as tyConName c | listTyCon == c = listConName | TC.isTupleTyCon c = tupConName | otherwise = symbol c typeSortFun tce t -- τ1 τ2 = mkFFunc 0 sos where sos = typeSort tce <$> τs τs = grabArgs [] t grabArgs τs (FunTy τ1 τ2) | not $ isClassPred τ1 = grabArgs (τ1:τs) τ2 | otherwise = grabArgs τs τ2 grabArgs τs τ = reverse (τ:τs) mkDataConIdsTy (dc, t) = [ expandProductType x t | x <- dataConImplicitIds dc] expandProductType x t | ofType (varType x) == toRSort t = (x, t) | otherwise = (x, t') where t' = fromRTypeRep $ trep {ty_binds = xs', ty_args = ts', ty_refts = rs'} τs = fst $ splitFunTys $ toType t trep = toRTypeRep t (xs', ts', rs') = unzip3 $ concatMap mkProductTy $ zip4 τs (ty_binds trep) (ty_args trep) (ty_refts trep) mkProductTy (τ, x, t, r) = maybe [(x, t, r)] f $ deepSplitProductType_maybe menv τ where f = ((<$>) ((dummySymbol, , mempty) . ofType)) . third4 menv = (emptyFamInstEnv, emptyFamInstEnv) ----------------------------------------------------------------------------------------- -- | Binders generated by class predicates, typically for constraining tyvars (e.g. FNum) ----------------------------------------------------------------------------------------- classBinds (RApp c ts _ _) | isFracCls c = [(rTyVarSymbol a, trueSortedReft FFrac) | (RVar a _) <- ts] | isNumCls c = [(rTyVarSymbol a, trueSortedReft FNum) | (RVar a _) <- ts] classBinds _ = [] rTyVarSymbol (RTV α) = typeUniqueSymbol $ TyVarTy α ----------------------------------------------------------------------------------------- --------------------------- Termination Predicates -------------------------------------- ----------------------------------------------------------------------------------------- makeNumEnv = concatMap go where go (RApp c ts _ _) | isNumCls c || isFracCls c = [ a | (RVar a _) <- ts] go _ = [] isDecreasing autoenv _ (RApp c _ _ _) = isJust (sizeFunction (rtc_info c)) -- user specified size or || isSizeable autoenv tc where tc = rtc_tc c isDecreasing _ cenv (RVar v _) = v `elem` cenv isDecreasing _ _ _ = False makeDecrType autoenv = mkDType autoenv [] [] mkDType autoenv xvs acc [(v, (x, t))] = (x, ) $ t `strengthen` tr where tr = uTop $ Reft (vv, pOr (r:acc)) r = cmpLexRef xvs (v', vv, f) v' = symbol v f = mkDecrFun autoenv t vv = "vvRec" mkDType autoenv xvs acc ((v, (x, t)):vxts) = mkDType autoenv ((v', x, f):xvs) (r:acc) vxts where r = cmpLexRef xvs (v', x, f) v' = symbol v f = mkDecrFun autoenv t mkDType _ _ _ _ = panic Nothing "RefType.mkDType called on invalid input" isSizeable :: S.HashSet TyCon -> TyCon -> Bool isSizeable autoenv tc = S.member tc autoenv -- TC.isAlgTyCon tc -- && TC.isRecursiveTyCon tc mkDecrFun autoenv (RApp c _ _ _) | Just f <- sizeFunction $ rtc_info c = f | isSizeable autoenv $ rtc_tc c = \v -> F.mkEApp lenLocSymbol [F.EVar v] mkDecrFun _ (RVar _ _) = EVar mkDecrFun _ _ = panic Nothing "RefType.mkDecrFun called on invalid input" cmpLexRef vxs (v, x, g) = pAnd $ (PAtom Lt (g x) (g v)) : (PAtom Ge (g x) zero) : [PAtom Eq (f y) (f z) | (y, z, f) <- vxs] ++ [PAtom Ge (f y) zero | (y, _, f) <- vxs] where zero = ECon $ I 0 makeLexRefa es' es = uTop $ Reft (vv, PIff (EVar vv) $ pOr rs) where rs = makeLexReft [] [] es es' vv = "vvRec" makeLexReft _ acc [] [] = acc makeLexReft old acc (e:es) (e':es') = makeLexReft ((e,e'):old) (r:acc) es es' where r = pAnd $ (PAtom Lt e' e) : (PAtom Ge e' zero) : [PAtom Eq o' o | (o,o') <- old] ++ [PAtom Ge o' zero | (_,o') <- old] zero = ECon $ I 0 makeLexReft _ _ _ _ = panic Nothing "RefType.makeLexReft on invalid input" -------------------------------------------------------------------------------- mkTyConInfo :: TyCon -> VarianceInfo -> VarianceInfo -> (Maybe (Symbol -> Expr)) -> TyConInfo mkTyConInfo c usertyvar userprvariance f = TyConInfo (if null usertyvar then defaulttyvar else usertyvar) userprvariance f where defaulttyvar = makeTyConVariance c makeTyConVariance :: TyCon -> VarianceInfo makeTyConVariance c = varSignToVariance <$> tvs where tvs = tyConTyVarsDef c varsigns = if TC.isTypeSynonymTyCon c then go True (fromJust $ TC.synTyConRhs_maybe c) else L.nub $ concatMap goDCon $ TC.tyConDataCons c varSignToVariance v = case filter (\p -> showPpr (fst p) == showPpr v) varsigns of [] -> Invariant [(_, b)] -> if b then Covariant else Contravariant _ -> Bivariant goDCon dc = concatMap (go True) (DataCon.dataConOrigArgTys dc) go pos (ForAllTy _ t) = go pos t go pos (TyVarTy v) = [(v, pos)] go pos (AppTy t1 t2) = go pos t1 ++ go pos t2 go pos (TyConApp c' ts) | c == c' = [] -- NV fix that: what happens if we have mutually recursive data types? -- now just provide "default" Bivariant for mutually rec types. -- but there should be a finer solution | mutuallyRecursive c c' = concat $ zipWith (goTyConApp pos) (repeat Bivariant) ts | otherwise = concat $ zipWith (goTyConApp pos) (makeTyConVariance c') ts go pos (FunTy t1 t2) = go (not pos) t1 ++ go pos t2 go _ (LitTy _) = [] goTyConApp _ Invariant _ = [] goTyConApp pos Bivariant t = goTyConApp pos Contravariant t ++ goTyConApp pos Covariant t goTyConApp pos Covariant t = go pos t goTyConApp pos Contravariant t = go (not pos) t mutuallyRecursive c c' = c `S.member` (dataConsOfTyCon c') dataConsOfTyCon :: TyCon -> S.HashSet TyCon dataConsOfTyCon c = mconcat $ go <$> [t | dc <- TC.tyConDataCons c, t <- DataCon.dataConOrigArgTys dc] where go (ForAllTy _ t) = go t go (TyVarTy _) = S.empty go (AppTy t1 t2) = go t1 `S.union` go t2 go (TyConApp c ts) = S.insert c $ mconcat $ go <$> ts go (FunTy t1 t2) = go t1 `S.union` go t2 go (LitTy _) = S.empty -------------------------------------------------------------------------------- -- | Printing Refinement Types ------------------------------------------------- -------------------------------------------------------------------------------- -- MOVE TO TYPES instance (SubsTy Symbol (RType c Symbol ()) c, TyConable c, Reftable r, PPrint r, PPrint c, FreeVar c Symbol, SubsTy Symbol (RType c Symbol ()) (RType c Symbol ())) => RefTypable c Symbol r where ppRType = ppr_rtype ppEnv -- MOVE TO TYPES instance (Reftable r, PPrint r) => RefTypable RTyCon RTyVar r where ppRType = ppr_rtype ppEnv instance Show RTyVar where show = showpp instance PPrint (UReft r) => Show (UReft r) where show = showpp instance (RefTypable c tv r) => PPrint (RType c tv r) where pprintTidy _ = ppRType TopPrec instance PPrint (RType c tv r) => Show (RType c tv r) where show = showpp instance PPrint (RTProp c tv r) => Show (RTProp c tv r) where show = showpp instance PPrint REnv where pprintTidy k re = text "RENV" $+$ pprintTidy k (reLocal re)