{-# LANGUAGE PatternGuards #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE OverloadedStrings #-} -------------------------------------------------------------------------------- -- | Solve a system of horn-clause constraints --------------------------------- -------------------------------------------------------------------------------- module Language.Fixpoint.Solver.Solve (solve) where import Control.Monad (when, filterM) import Control.Monad.State.Strict (lift) import Language.Fixpoint.Misc import qualified Language.Fixpoint.Types as F import qualified Language.Fixpoint.Types.Solutions as Sol import Language.Fixpoint.Types.PrettyPrint import Language.Fixpoint.Types.Config hiding (stats) import qualified Language.Fixpoint.Solver.Solution as S import qualified Language.Fixpoint.Solver.Worklist as W import qualified Language.Fixpoint.Solver.Eliminate as E import Language.Fixpoint.Solver.Monad import Language.Fixpoint.Utils.Progress import Language.Fixpoint.Graph import Text.PrettyPrint.HughesPJ import Text.Printf import System.Console.CmdArgs.Verbosity (whenNormal, whenLoud) import Control.DeepSeq import qualified Data.HashMap.Strict as M import qualified Data.HashSet as S -- DEBUG -- import Debug.Trace (trace) -------------------------------------------------------------------------------- solve :: (NFData a, F.Fixpoint a) => Config -> F.SInfo a -> IO (F.Result (Integer, a)) -------------------------------------------------------------------------------- solve cfg fi = do -- donePhase Loud "Worklist Initialize" (res, stat) <- withProgressFI sI $ runSolverM cfg sI n act when (solverStats cfg) $ printStats fi wkl stat -- print (numIter stat) return res where act = solve_ cfg fi s0 ks wkl sI = solverInfo cfg fi wkl = W.init sI n = fromIntegral $ W.wRanks wkl s0 = siSol sI ks = siVars sI -------------------------------------------------------------------------------- -- | Progress Bar -------------------------------------------------------------------------------- withProgressFI :: SolverInfo a b -> IO b -> IO b withProgressFI = withProgress . fromIntegral . cNumScc . siDeps -------------------------------------------------------------------------------- printStats :: F.SInfo a -> W.Worklist a -> Stats -> IO () printStats fi w s = putStrLn "\n" >> ppTs [ ptable fi, ptable s, ptable w ] where ppTs = putStrLn . showpp . mconcat -------------------------------------------------------------------------------- solverInfo :: Config -> F.SInfo a -> SolverInfo a b -------------------------------------------------------------------------------- solverInfo cfg fI | useElim cfg = E.solverInfo cfg fI | otherwise = SI mempty fI cD (siKvars fI) where cD = elimDeps fI (kvEdges fI) mempty siKvars :: F.SInfo a -> S.HashSet F.KVar siKvars = S.fromList . M.keys . F.ws -------------------------------------------------------------------------------- solve_ :: (NFData a, F.Fixpoint a) => Config -> F.SInfo a -> Sol.Solution -> S.HashSet F.KVar -> W.Worklist a -> SolveM (F.Result (Integer, a), Stats) -------------------------------------------------------------------------------- solve_ cfg fi s0 ks wkl = do let s1 = mappend s0 $ {-# SCC "sol-init" #-} S.init cfg fi ks s <- {-# SCC "sol-refine" #-} refine s1 wkl res <- {-# SCC "sol-result" #-} result cfg wkl s st <- stats let res' = {-# SCC "sol-tidy" #-} tidyResult res return $!! (res', st) -------------------------------------------------------------------------------- -- | tidyResult ensures we replace the temporary kVarArg names introduced to -- ensure uniqueness with the original names in the given WF constraints. -------------------------------------------------------------------------------- tidyResult :: F.Result a -> F.Result a tidyResult r = r { F.resSolution = tidySolution (F.resSolution r) } tidySolution :: F.FixSolution -> F.FixSolution tidySolution = fmap tidyPred tidyPred :: F.Expr -> F.Expr tidyPred = F.substf (F.eVar . F.tidySymbol) -------------------------------------------------------------------------------- refine :: Sol.Solution -> W.Worklist a -> SolveM Sol.Solution -------------------------------------------------------------------------------- refine s w | Just (c, w', newScc, rnk) <- W.pop w = do i <- tickIter newScc (b, s') <- refineC i s c lift $ writeLoud $ refineMsg i c b rnk let w'' = if b then W.push c w' else w' refine s' w'' | otherwise = return s where -- DEBUG refineMsg i c b rnk = printf "\niter=%d id=%d change=%s rank=%d\n" i (F.subcId c) (show b) rnk --------------------------------------------------------------------------- -- | Single Step Refinement ----------------------------------------------- --------------------------------------------------------------------------- refineC :: Int -> Sol.Solution -> F.SimpC a -> SolveM (Bool, Sol.Solution) --------------------------------------------------------------------------- refineC _i s c | null rhs = return (False, s) | otherwise = do be <- getBinds let lhs = S.lhsPred be s c kqs <- filterValid lhs rhs return $ S.update s ks kqs where _ci = F.subcId c (ks, rhs) = rhsCands s c -- msg = printf "refineC: iter = %d, sid = %s, soln = \n%s\n" -- _i (show (F.sid c)) (showpp s) _msg ks xs ys = printf "refineC: iter = %d, sid = %s, s = %s, rhs = %d, rhs' = %d \n" _i (show _ci) (showpp ks) (length xs) (length ys) rhsCands :: Sol.Solution -> F.SimpC a -> ([F.KVar], Sol.Cand (F.KVar, Sol.EQual)) rhsCands s c = (fst <$> ks, kqs) where kqs = [ (p, (k, q)) | (k, su) <- ks, (p, q) <- cnd k su ] ks = predKs . F.crhs $ c cnd k su = Sol.qbPreds msg s su (Sol.lookupQBind s k) msg = "rhsCands: " ++ show (F.sid c) predKs :: F.Expr -> [(F.KVar, F.Subst)] predKs (F.PAnd ps) = concatMap predKs ps predKs (F.PKVar k su) = [(k, su)] predKs _ = [] -------------------------------------------------------------------------------- -- | Convert Solution into Result ---------------------------------------------- -------------------------------------------------------------------------------- result :: (F.Fixpoint a) => Config -> W.Worklist a -> Sol.Solution -> SolveM (F.Result (Integer, a)) -------------------------------------------------------------------------------- result cfg wkl s = do lift $ writeLoud "Computing Result" stat <- result_ wkl s lift $ whenNormal $ putStrLn $ "RESULT: " ++ show (F.sid <$> stat) F.Result (ci <$> stat) <$> solResult cfg s <*> return mempty where ci c = (F.subcId c, F.sinfo c) solResult :: Config -> Sol.Solution -> SolveM (M.HashMap F.KVar F.Expr) solResult cfg = minimizeResult cfg . Sol.result result_ :: W.Worklist a -> Sol.Solution -> SolveM (F.FixResult (F.SimpC a)) result_ w s = res <$> filterM (isUnsat s) cs where cs = W.unsatCandidates w res [] = F.Safe res cs' = F.Unsafe cs' -------------------------------------------------------------------------------- -- | `minimizeResult` transforms each KVar's result by removing -- conjuncts that are implied by others. That is, -- -- minimizeConjuncts :: ps:[Pred] -> {qs:[Pred] | subset qs ps} -- -- such that `minimizeConjuncts ps` is a minimal subset of ps where no -- is implied by /\_{q' in qs \ qs} -- see: tests/pos/min00.fq for an example. -------------------------------------------------------------------------------- minimizeResult :: Config -> M.HashMap F.KVar F.Expr -> SolveM (M.HashMap F.KVar F.Expr) -------------------------------------------------------------------------------- minimizeResult cfg s | minimalSol cfg = mapM minimizeConjuncts s | otherwise = return s minimizeConjuncts :: F.Expr -> SolveM F.Expr minimizeConjuncts p = F.pAnd <$> go (F.conjuncts p) [] where go [] acc = return acc go (p:ps) acc = do b <- isValid (F.pAnd (acc ++ ps)) p if b then go ps acc else go ps (p:acc) -------------------------------------------------------------------------------- isUnsat :: Sol.Solution -> F.SimpC a -> SolveM Bool -------------------------------------------------------------------------------- isUnsat s c = do -- lift $ printf "isUnsat %s" (show (F.subcId c)) _ <- tickIter True -- newScc be <- getBinds let lp = S.lhsPred be s c let rp = rhsPred c res <- not <$> isValid lp rp lift $ whenLoud $ showUnsat res (F.subcId c) lp rp return res showUnsat :: Bool -> Integer -> F.Pred -> F.Pred -> IO () showUnsat u i lP rP = {- when u $ -} do putStrLn $ printf "UNSAT id %s %s" (show i) (show u) putStrLn $ showpp $ "LHS:" <+> pprint lP putStrLn $ showpp $ "RHS:" <+> pprint rP -------------------------------------------------------------------------------- -- | Predicate corresponding to RHS of constraint in current solution -------------------------------------------------------------------------------- rhsPred :: F.SimpC a -> F.Expr -------------------------------------------------------------------------------- rhsPred c | isTarget c = F.crhs c | otherwise = errorstar $ "rhsPred on non-target: " ++ show (F.sid c) isValid :: F.Expr -> F.Expr -> SolveM Bool isValid p q = (not . null) <$> filterValid p [(q, ())] {- --------------------------------------------------------------------------- donePhase' :: String -> SolveM () --------------------------------------------------------------------------- donePhase' msg = lift $ do threadDelay 25000 putBlankLn donePhase Loud msg -}