//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file implements the BitVector class. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_BITVECTOR_H #define LLVM_ADT_BITVECTOR_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include #include #include namespace llvm { /// ForwardIterator for the bits that are set. /// Iterators get invalidated when resize / reserve is called. template class const_set_bits_iterator_impl { const BitVectorT &Parent; int Current = 0; void advance() { assert(Current != -1 && "Trying to advance past end."); Current = Parent.find_next(Current); } public: const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) : Parent(Parent), Current(Current) {} explicit const_set_bits_iterator_impl(const BitVectorT &Parent) : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; const_set_bits_iterator_impl operator++(int) { auto Prev = *this; advance(); return Prev; } const_set_bits_iterator_impl &operator++() { advance(); return *this; } unsigned operator*() const { return Current; } bool operator==(const const_set_bits_iterator_impl &Other) const { assert(&Parent == &Other.Parent && "Comparing iterators from different BitVectors"); return Current == Other.Current; } bool operator!=(const const_set_bits_iterator_impl &Other) const { assert(&Parent == &Other.Parent && "Comparing iterators from different BitVectors"); return Current != Other.Current; } }; class BitVector { typedef uintptr_t BitWord; enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, "Unsupported word size"); using Storage = SmallVector; Storage Bits; // Actual bits. unsigned Size = 0; // Size of bitvector in bits. public: using size_type = unsigned; // Encapsulation of a single bit. class reference { BitWord *WordRef; unsigned BitPos; public: reference(BitVector &b, unsigned Idx) { WordRef = &b.Bits[Idx / BITWORD_SIZE]; BitPos = Idx % BITWORD_SIZE; } reference() = delete; reference(const reference&) = default; reference &operator=(reference t) { *this = bool(t); return *this; } reference& operator=(bool t) { if (t) *WordRef |= BitWord(1) << BitPos; else *WordRef &= ~(BitWord(1) << BitPos); return *this; } operator bool() const { return ((*WordRef) & (BitWord(1) << BitPos)) != 0; } }; typedef const_set_bits_iterator_impl const_set_bits_iterator; typedef const_set_bits_iterator set_iterator; const_set_bits_iterator set_bits_begin() const { return const_set_bits_iterator(*this); } const_set_bits_iterator set_bits_end() const { return const_set_bits_iterator(*this, -1); } iterator_range set_bits() const { return make_range(set_bits_begin(), set_bits_end()); } /// BitVector default ctor - Creates an empty bitvector. BitVector() = default; /// BitVector ctor - Creates a bitvector of specified number of bits. All /// bits are initialized to the specified value. explicit BitVector(unsigned s, bool t = false) : Bits(NumBitWords(s), 0 - (BitWord)t), Size(s) { if (t) clear_unused_bits(); } /// empty - Tests whether there are no bits in this bitvector. bool empty() const { return Size == 0; } /// size - Returns the number of bits in this bitvector. size_type size() const { return Size; } /// count - Returns the number of bits which are set. size_type count() const { unsigned NumBits = 0; for (auto Bit : Bits) NumBits += llvm::popcount(Bit); return NumBits; } /// any - Returns true if any bit is set. bool any() const { return any_of(Bits, [](BitWord Bit) { return Bit != 0; }); } /// all - Returns true if all bits are set. bool all() const { for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) if (Bits[i] != ~BitWord(0)) return false; // If bits remain check that they are ones. The unused bits are always zero. if (unsigned Remainder = Size % BITWORD_SIZE) return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1; return true; } /// none - Returns true if none of the bits are set. bool none() const { return !any(); } /// find_first_in - Returns the index of the first set / unset bit, /// depending on \p Set, in the range [Begin, End). /// Returns -1 if all bits in the range are unset / set. int find_first_in(unsigned Begin, unsigned End, bool Set = true) const { assert(Begin <= End && End <= Size); if (Begin == End) return -1; unsigned FirstWord = Begin / BITWORD_SIZE; unsigned LastWord = (End - 1) / BITWORD_SIZE; // Check subsequent words. // The code below is based on search for the first _set_ bit. If // we're searching for the first _unset_, we just take the // complement of each word before we use it and apply // the same method. for (unsigned i = FirstWord; i <= LastWord; ++i) { BitWord Copy = Bits[i]; if (!Set) Copy = ~Copy; if (i == FirstWord) { unsigned FirstBit = Begin % BITWORD_SIZE; Copy &= maskTrailingZeros(FirstBit); } if (i == LastWord) { unsigned LastBit = (End - 1) % BITWORD_SIZE; Copy &= maskTrailingOnes(LastBit + 1); } if (Copy != 0) return i * BITWORD_SIZE + countTrailingZeros(Copy); } return -1; } /// find_last_in - Returns the index of the last set bit in the range /// [Begin, End). Returns -1 if all bits in the range are unset. int find_last_in(unsigned Begin, unsigned End) const { assert(Begin <= End && End <= Size); if (Begin == End) return -1; unsigned LastWord = (End - 1) / BITWORD_SIZE; unsigned FirstWord = Begin / BITWORD_SIZE; for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { unsigned CurrentWord = i - 1; BitWord Copy = Bits[CurrentWord]; if (CurrentWord == LastWord) { unsigned LastBit = (End - 1) % BITWORD_SIZE; Copy &= maskTrailingOnes(LastBit + 1); } if (CurrentWord == FirstWord) { unsigned FirstBit = Begin % BITWORD_SIZE; Copy &= maskTrailingZeros(FirstBit); } if (Copy != 0) return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1; } return -1; } /// find_first_unset_in - Returns the index of the first unset bit in the /// range [Begin, End). Returns -1 if all bits in the range are set. int find_first_unset_in(unsigned Begin, unsigned End) const { return find_first_in(Begin, End, /* Set = */ false); } /// find_last_unset_in - Returns the index of the last unset bit in the /// range [Begin, End). Returns -1 if all bits in the range are set. int find_last_unset_in(unsigned Begin, unsigned End) const { assert(Begin <= End && End <= Size); if (Begin == End) return -1; unsigned LastWord = (End - 1) / BITWORD_SIZE; unsigned FirstWord = Begin / BITWORD_SIZE; for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { unsigned CurrentWord = i - 1; BitWord Copy = Bits[CurrentWord]; if (CurrentWord == LastWord) { unsigned LastBit = (End - 1) % BITWORD_SIZE; Copy |= maskTrailingZeros(LastBit + 1); } if (CurrentWord == FirstWord) { unsigned FirstBit = Begin % BITWORD_SIZE; Copy |= maskTrailingOnes(FirstBit); } if (Copy != ~BitWord(0)) { unsigned Result = (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1; return Result < Size ? Result : -1; } } return -1; } /// find_first - Returns the index of the first set bit, -1 if none /// of the bits are set. int find_first() const { return find_first_in(0, Size); } /// find_last - Returns the index of the last set bit, -1 if none of the bits /// are set. int find_last() const { return find_last_in(0, Size); } /// find_next - Returns the index of the next set bit following the /// "Prev" bit. Returns -1 if the next set bit is not found. int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); } /// find_prev - Returns the index of the first set bit that precedes the /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); } /// find_first_unset - Returns the index of the first unset bit, -1 if all /// of the bits are set. int find_first_unset() const { return find_first_unset_in(0, Size); } /// find_next_unset - Returns the index of the next unset bit following the /// "Prev" bit. Returns -1 if all remaining bits are set. int find_next_unset(unsigned Prev) const { return find_first_unset_in(Prev + 1, Size); } /// find_last_unset - Returns the index of the last unset bit, -1 if all of /// the bits are set. int find_last_unset() const { return find_last_unset_in(0, Size); } /// find_prev_unset - Returns the index of the first unset bit that precedes /// the bit at \p PriorTo. Returns -1 if all previous bits are set. int find_prev_unset(unsigned PriorTo) { return find_last_unset_in(0, PriorTo); } /// clear - Removes all bits from the bitvector. void clear() { Size = 0; Bits.clear(); } /// resize - Grow or shrink the bitvector. void resize(unsigned N, bool t = false) { set_unused_bits(t); Size = N; Bits.resize(NumBitWords(N), 0 - BitWord(t)); clear_unused_bits(); } void reserve(unsigned N) { Bits.reserve(NumBitWords(N)); } // Set, reset, flip BitVector &set() { init_words(true); clear_unused_bits(); return *this; } BitVector &set(unsigned Idx) { assert(Idx < Size && "access in bound"); Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } /// set - Efficiently set a range of bits in [I, E) BitVector &set(unsigned I, unsigned E) { assert(I <= E && "Attempted to set backwards range!"); assert(E <= size() && "Attempted to set out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] |= Mask; return *this; } BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] |= PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = ~BitWord(0); BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] |= PostfixMask; return *this; } BitVector &reset() { init_words(false); return *this; } BitVector &reset(unsigned Idx) { Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); return *this; } /// reset - Efficiently reset a range of bits in [I, E) BitVector &reset(unsigned I, unsigned E) { assert(I <= E && "Attempted to reset backwards range!"); assert(E <= size() && "Attempted to reset out-of-bounds range!"); if (I == E) return *this; if (I / BITWORD_SIZE == E / BITWORD_SIZE) { BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); BitWord Mask = EMask - IMask; Bits[I / BITWORD_SIZE] &= ~Mask; return *this; } BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); Bits[I / BITWORD_SIZE] &= ~PrefixMask; I = alignTo(I, BITWORD_SIZE); for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) Bits[I / BITWORD_SIZE] = BitWord(0); BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; if (I < E) Bits[I / BITWORD_SIZE] &= ~PostfixMask; return *this; } BitVector &flip() { for (auto &Bit : Bits) Bit = ~Bit; clear_unused_bits(); return *this; } BitVector &flip(unsigned Idx) { Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); return *this; } // Indexing. reference operator[](unsigned Idx) { assert (Idx < Size && "Out-of-bounds Bit access."); return reference(*this, Idx); } bool operator[](unsigned Idx) const { assert (Idx < Size && "Out-of-bounds Bit access."); BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; } /// Return the last element in the vector. bool back() const { assert(!empty() && "Getting last element of empty vector."); return (*this)[size() - 1]; } bool test(unsigned Idx) const { return (*this)[Idx]; } // Push single bit to end of vector. void push_back(bool Val) { unsigned OldSize = Size; unsigned NewSize = Size + 1; // Resize, which will insert zeros. // If we already fit then the unused bits will be already zero. if (NewSize > getBitCapacity()) resize(NewSize, false); else Size = NewSize; // If true, set single bit. if (Val) set(OldSize); } /// Pop one bit from the end of the vector. void pop_back() { assert(!empty() && "Empty vector has no element to pop."); resize(size() - 1); } /// Test if any common bits are set. bool anyCommon(const BitVector &RHS) const { unsigned ThisWords = Bits.size(); unsigned RHSWords = RHS.Bits.size(); for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i) if (Bits[i] & RHS.Bits[i]) return true; return false; } // Comparison operators. bool operator==(const BitVector &RHS) const { if (size() != RHS.size()) return false; unsigned NumWords = Bits.size(); return std::equal(Bits.begin(), Bits.begin() + NumWords, RHS.Bits.begin()); } bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } /// Intersection, union, disjoint union. BitVector &operator&=(const BitVector &RHS) { unsigned ThisWords = Bits.size(); unsigned RHSWords = RHS.Bits.size(); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= RHS.Bits[i]; // Any bits that are just in this bitvector become zero, because they aren't // in the RHS bit vector. Any words only in RHS are ignored because they // are already zero in the LHS. for (; i != ThisWords; ++i) Bits[i] = 0; return *this; } /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. BitVector &reset(const BitVector &RHS) { unsigned ThisWords = Bits.size(); unsigned RHSWords = RHS.Bits.size(); for (unsigned i = 0; i != std::min(ThisWords, RHSWords); ++i) Bits[i] &= ~RHS.Bits[i]; return *this; } /// test - Check if (This - RHS) is zero. /// This is the same as reset(RHS) and any(). bool test(const BitVector &RHS) const { unsigned ThisWords = Bits.size(); unsigned RHSWords = RHS.Bits.size(); unsigned i; for (i = 0; i != std::min(ThisWords, RHSWords); ++i) if ((Bits[i] & ~RHS.Bits[i]) != 0) return true; for (; i != ThisWords ; ++i) if (Bits[i] != 0) return true; return false; } template static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg, ArgTys const &...Args) { assert(llvm::all_of( std::initializer_list{Args.size()...}, [&Arg](auto const &BV) { return Arg.size() == BV; }) && "consistent sizes"); Out.resize(Arg.size()); for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I) Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...); Out.clear_unused_bits(); return Out; } BitVector &operator|=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) Bits[I] |= RHS.Bits[I]; return *this; } BitVector &operator^=(const BitVector &RHS) { if (size() < RHS.size()) resize(RHS.size()); for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) Bits[I] ^= RHS.Bits[I]; return *this; } BitVector &operator>>=(unsigned N) { assert(N <= Size); if (LLVM_UNLIKELY(empty() || N == 0)) return *this; unsigned NumWords = Bits.size(); assert(NumWords >= 1); wordShr(N / BITWORD_SIZE); unsigned BitDistance = N % BITWORD_SIZE; if (BitDistance == 0) return *this; // When the shift size is not a multiple of the word size, then we have // a tricky situation where each word in succession needs to extract some // of the bits from the next word and or them into this word while // shifting this word to make room for the new bits. This has to be done // for every word in the array. // Since we're shifting each word right, some bits will fall off the end // of each word to the right, and empty space will be created on the left. // The final word in the array will lose bits permanently, so starting at // the beginning, work forwards shifting each word to the right, and // OR'ing in the bits from the end of the next word to the beginning of // the current word. // Example: // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right // by 4 bits. // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD // Step 3: Word[1] >>= 4 ; 0x0EEFF001 // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 // Step 5: Word[2] >>= 4 ; 0x02334455 // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } const BitWord Mask = maskTrailingOnes(BitDistance); const unsigned LSH = BITWORD_SIZE - BitDistance; for (unsigned I = 0; I < NumWords - 1; ++I) { Bits[I] >>= BitDistance; Bits[I] |= (Bits[I + 1] & Mask) << LSH; } Bits[NumWords - 1] >>= BitDistance; return *this; } BitVector &operator<<=(unsigned N) { assert(N <= Size); if (LLVM_UNLIKELY(empty() || N == 0)) return *this; unsigned NumWords = Bits.size(); assert(NumWords >= 1); wordShl(N / BITWORD_SIZE); unsigned BitDistance = N % BITWORD_SIZE; if (BitDistance == 0) return *this; // When the shift size is not a multiple of the word size, then we have // a tricky situation where each word in succession needs to extract some // of the bits from the previous word and or them into this word while // shifting this word to make room for the new bits. This has to be done // for every word in the array. This is similar to the algorithm outlined // in operator>>=, but backwards. // Since we're shifting each word left, some bits will fall off the end // of each word to the left, and empty space will be created on the right. // The first word in the array will lose bits permanently, so starting at // the end, work backwards shifting each word to the left, and OR'ing // in the bits from the end of the next word to the beginning of the // current word. // Example: // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left // by 4 bits. // Step 1: Word[2] <<= 4 ; 0x23344550 // Step 2: Word[2] |= 0x0000000E ; 0x2334455E // Step 3: Word[1] <<= 4 ; 0xEFF00110 // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } const BitWord Mask = maskLeadingOnes(BitDistance); const unsigned RSH = BITWORD_SIZE - BitDistance; for (int I = NumWords - 1; I > 0; --I) { Bits[I] <<= BitDistance; Bits[I] |= (Bits[I - 1] & Mask) >> RSH; } Bits[0] <<= BitDistance; clear_unused_bits(); return *this; } void swap(BitVector &RHS) { std::swap(Bits, RHS.Bits); std::swap(Size, RHS.Size); } void invalid() { assert(!Size && Bits.empty()); Size = (unsigned)-1; } bool isInvalid() const { return Size == (unsigned)-1; } ArrayRef getData() const { return {&Bits[0], Bits.size()}; } //===--------------------------------------------------------------------===// // Portable bit mask operations. //===--------------------------------------------------------------------===// // // These methods all operate on arrays of uint32_t, each holding 32 bits. The // fixed word size makes it easier to work with literal bit vector constants // in portable code. // // The LSB in each word is the lowest numbered bit. The size of a portable // bit mask is always a whole multiple of 32 bits. If no bit mask size is // given, the bit mask is assumed to cover the entire BitVector. /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. /// This computes "*this |= Mask". void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// clearBitsInMask - Clear any bits in this vector that are set in Mask. /// Don't resize. This computes "*this &= ~Mask". void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. /// Don't resize. This computes "*this |= ~Mask". void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. /// Don't resize. This computes "*this &= Mask". void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { applyMask(Mask, MaskWords); } private: /// Perform a logical left shift of \p Count words by moving everything /// \p Count words to the right in memory. /// /// While confusing, words are stored from least significant at Bits[0] to /// most significant at Bits[NumWords-1]. A logical shift left, however, /// moves the current least significant bit to a higher logical index, and /// fills the previous least significant bits with 0. Thus, we actually /// need to move the bytes of the memory to the right, not to the left. /// Example: /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] /// represents a BitVector where 0xBBBBAAAA contain the least significant /// bits. So if we want to shift the BitVector left by 2 words, we need /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a /// memmove which moves right, not left. void wordShl(uint32_t Count) { if (Count == 0) return; uint32_t NumWords = Bits.size(); // Since we always move Word-sized chunks of data with src and dest both // aligned to a word-boundary, we don't need to worry about endianness // here. std::copy(Bits.begin(), Bits.begin() + NumWords - Count, Bits.begin() + Count); std::fill(Bits.begin(), Bits.begin() + Count, 0); clear_unused_bits(); } /// Perform a logical right shift of \p Count words by moving those /// words to the left in memory. See wordShl for more information. /// void wordShr(uint32_t Count) { if (Count == 0) return; uint32_t NumWords = Bits.size(); std::copy(Bits.begin() + Count, Bits.begin() + NumWords, Bits.begin()); std::fill(Bits.begin() + NumWords - Count, Bits.begin() + NumWords, 0); } int next_unset_in_word(int WordIndex, BitWord Word) const { unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word); return Result < size() ? Result : -1; } unsigned NumBitWords(unsigned S) const { return (S + BITWORD_SIZE-1) / BITWORD_SIZE; } // Set the unused bits in the high words. void set_unused_bits(bool t = true) { // Then set any stray high bits of the last used word. if (unsigned ExtraBits = Size % BITWORD_SIZE) { BitWord ExtraBitMask = ~BitWord(0) << ExtraBits; if (t) Bits.back() |= ExtraBitMask; else Bits.back() &= ~ExtraBitMask; } } // Clear the unused bits in the high words. void clear_unused_bits() { set_unused_bits(false); } void init_words(bool t) { std::fill(Bits.begin(), Bits.end(), 0 - (BitWord)t); } template void applyMask(const uint32_t *Mask, unsigned MaskWords) { static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size."); MaskWords = std::min(MaskWords, (size() + 31) / 32); const unsigned Scale = BITWORD_SIZE / 32; unsigned i; for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { BitWord BW = Bits[i]; // This inner loop should unroll completely when BITWORD_SIZE > 32. for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) BW |= BitWord(M) << b; else BW &= ~(BitWord(M) << b); } Bits[i] = BW; } for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { uint32_t M = *Mask++; if (InvertMask) M = ~M; if (AddBits) Bits[i] |= BitWord(M) << b; else Bits[i] &= ~(BitWord(M) << b); } if (AddBits) clear_unused_bits(); } public: /// Return the size (in bytes) of the bit vector. size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); } size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } }; inline BitVector::size_type capacity_in_bytes(const BitVector &X) { return X.getMemorySize(); } template <> struct DenseMapInfo { static inline BitVector getEmptyKey() { return {}; } static inline BitVector getTombstoneKey() { BitVector V; V.invalid(); return V; } static unsigned getHashValue(const BitVector &V) { return DenseMapInfo>>:: getHashValue(std::make_pair(V.size(), V.getData())); } static bool isEqual(const BitVector &LHS, const BitVector &RHS) { if (LHS.isInvalid() || RHS.isInvalid()) return LHS.isInvalid() == RHS.isInvalid(); return LHS == RHS; } }; } // end namespace llvm namespace std { /// Implement std::swap in terms of BitVector swap. inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } } // end namespace std #endif // LLVM_ADT_BITVECTOR_H