//===- llvm/ADT/StringExtras.h - Useful string functions --------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file contains some functions that are useful when dealing with strings. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STRINGEXTRAS_H #define LLVM_ADT_STRINGEXTRAS_H #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include #include #include #include #include #include #include #include namespace llvm { class raw_ostream; /// hexdigit - Return the hexadecimal character for the /// given number \p X (which should be less than 16). inline char hexdigit(unsigned X, bool LowerCase = false) { assert(X < 16); static const char LUT[] = "0123456789ABCDEF"; const uint8_t Offset = LowerCase ? 32 : 0; return LUT[X] | Offset; } /// Given an array of c-style strings terminated by a null pointer, construct /// a vector of StringRefs representing the same strings without the terminating /// null string. inline std::vector toStringRefArray(const char *const *Strings) { std::vector Result; while (*Strings) Result.push_back(*Strings++); return Result; } /// Construct a string ref from a boolean. inline StringRef toStringRef(bool B) { return StringRef(B ? "true" : "false"); } /// Construct a string ref from an array ref of unsigned chars. inline StringRef toStringRef(ArrayRef Input) { return StringRef(reinterpret_cast(Input.begin()), Input.size()); } /// Construct a string ref from an array ref of unsigned chars. inline ArrayRef arrayRefFromStringRef(StringRef Input) { return {Input.bytes_begin(), Input.bytes_end()}; } /// Interpret the given character \p C as a hexadecimal digit and return its /// value. /// /// If \p C is not a valid hex digit, -1U is returned. inline unsigned hexDigitValue(char C) { /* clang-format off */ static const int16_t LUT[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // '0'..'9' -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 'A'..'F' -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 'a'..'f' -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; /* clang-format on */ return LUT[static_cast(C)]; } /// Checks if character \p C is one of the 10 decimal digits. inline bool isDigit(char C) { return C >= '0' && C <= '9'; } /// Checks if character \p C is a hexadecimal numeric character. inline bool isHexDigit(char C) { return hexDigitValue(C) != ~0U; } /// Checks if character \p C is a valid letter as classified by "C" locale. inline bool isAlpha(char C) { return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z'); } /// Checks whether character \p C is either a decimal digit or an uppercase or /// lowercase letter as classified by "C" locale. inline bool isAlnum(char C) { return isAlpha(C) || isDigit(C); } /// Checks whether character \p C is valid ASCII (high bit is zero). inline bool isASCII(char C) { return static_cast(C) <= 127; } /// Checks whether all characters in S are ASCII. inline bool isASCII(llvm::StringRef S) { for (char C : S) if (LLVM_UNLIKELY(!isASCII(C))) return false; return true; } /// Checks whether character \p C is printable. /// /// Locale-independent version of the C standard library isprint whose results /// may differ on different platforms. inline bool isPrint(char C) { unsigned char UC = static_cast(C); return (0x20 <= UC) && (UC <= 0x7E); } /// Checks whether character \p C is whitespace in the "C" locale. /// /// Locale-independent version of the C standard library isspace. inline bool isSpace(char C) { return C == ' ' || C == '\f' || C == '\n' || C == '\r' || C == '\t' || C == '\v'; } /// Returns the corresponding lowercase character if \p x is uppercase. inline char toLower(char x) { if (x >= 'A' && x <= 'Z') return x - 'A' + 'a'; return x; } /// Returns the corresponding uppercase character if \p x is lowercase. inline char toUpper(char x) { if (x >= 'a' && x <= 'z') return x - 'a' + 'A'; return x; } inline std::string utohexstr(uint64_t X, bool LowerCase = false, unsigned Width = 0) { char Buffer[17]; char *BufPtr = std::end(Buffer); if (X == 0) *--BufPtr = '0'; for (unsigned i = 0; Width ? (i < Width) : X; ++i) { unsigned char Mod = static_cast(X) & 15; *--BufPtr = hexdigit(Mod, LowerCase); X >>= 4; } return std::string(BufPtr, std::end(Buffer)); } /// Convert buffer \p Input to its hexadecimal representation. /// The returned string is double the size of \p Input. inline void toHex(ArrayRef Input, bool LowerCase, SmallVectorImpl &Output) { const size_t Length = Input.size(); Output.resize_for_overwrite(Length * 2); for (size_t i = 0; i < Length; i++) { const uint8_t c = Input[i]; Output[i * 2 ] = hexdigit(c >> 4, LowerCase); Output[i * 2 + 1] = hexdigit(c & 15, LowerCase); } } inline std::string toHex(ArrayRef Input, bool LowerCase = false) { SmallString<16> Output; toHex(Input, LowerCase, Output); return std::string(Output); } inline std::string toHex(StringRef Input, bool LowerCase = false) { return toHex(arrayRefFromStringRef(Input), LowerCase); } /// Store the binary representation of the two provided values, \p MSB and /// \p LSB, that make up the nibbles of a hexadecimal digit. If \p MSB or \p LSB /// do not correspond to proper nibbles of a hexadecimal digit, this method /// returns false. Otherwise, returns true. inline bool tryGetHexFromNibbles(char MSB, char LSB, uint8_t &Hex) { unsigned U1 = hexDigitValue(MSB); unsigned U2 = hexDigitValue(LSB); if (U1 == ~0U || U2 == ~0U) return false; Hex = static_cast((U1 << 4) | U2); return true; } /// Return the binary representation of the two provided values, \p MSB and /// \p LSB, that make up the nibbles of a hexadecimal digit. inline uint8_t hexFromNibbles(char MSB, char LSB) { uint8_t Hex = 0; bool GotHex = tryGetHexFromNibbles(MSB, LSB, Hex); (void)GotHex; assert(GotHex && "MSB and/or LSB do not correspond to hex digits"); return Hex; } /// Convert hexadecimal string \p Input to its binary representation and store /// the result in \p Output. Returns true if the binary representation could be /// converted from the hexadecimal string. Returns false if \p Input contains /// non-hexadecimal digits. The output string is half the size of \p Input. inline bool tryGetFromHex(StringRef Input, std::string &Output) { if (Input.empty()) return true; // If the input string is not properly aligned on 2 nibbles we pad out the // front with a 0 prefix; e.g. `ABC` -> `0ABC`. Output.resize((Input.size() + 1) / 2); char *OutputPtr = const_cast(Output.data()); if (Input.size() % 2 == 1) { uint8_t Hex = 0; if (!tryGetHexFromNibbles('0', Input.front(), Hex)) return false; *OutputPtr++ = Hex; Input = Input.drop_front(); } // Convert the nibble pairs (e.g. `9C`) into bytes (0x9C). // With the padding above we know the input is aligned and the output expects // exactly half as many bytes as nibbles in the input. size_t InputSize = Input.size(); assert(InputSize % 2 == 0); const char *InputPtr = Input.data(); for (size_t OutputIndex = 0; OutputIndex < InputSize / 2; ++OutputIndex) { uint8_t Hex = 0; if (!tryGetHexFromNibbles(InputPtr[OutputIndex * 2 + 0], // MSB InputPtr[OutputIndex * 2 + 1], // LSB Hex)) return false; OutputPtr[OutputIndex] = Hex; } return true; } /// Convert hexadecimal string \p Input to its binary representation. /// The return string is half the size of \p Input. inline std::string fromHex(StringRef Input) { std::string Hex; bool GotHex = tryGetFromHex(Input, Hex); (void)GotHex; assert(GotHex && "Input contains non hex digits"); return Hex; } /// Convert the string \p S to an integer of the specified type using /// the radix \p Base. If \p Base is 0, auto-detects the radix. /// Returns true if the number was successfully converted, false otherwise. template bool to_integer(StringRef S, N &Num, unsigned Base = 0) { return !S.getAsInteger(Base, Num); } namespace detail { template inline bool to_float(const Twine &T, N &Num, N (*StrTo)(const char *, char **)) { SmallString<32> Storage; StringRef S = T.toNullTerminatedStringRef(Storage); char *End; N Temp = StrTo(S.data(), &End); if (*End != '\0') return false; Num = Temp; return true; } } inline bool to_float(const Twine &T, float &Num) { return detail::to_float(T, Num, strtof); } inline bool to_float(const Twine &T, double &Num) { return detail::to_float(T, Num, strtod); } inline bool to_float(const Twine &T, long double &Num) { return detail::to_float(T, Num, strtold); } inline std::string utostr(uint64_t X, bool isNeg = false) { char Buffer[21]; char *BufPtr = std::end(Buffer); if (X == 0) *--BufPtr = '0'; // Handle special case... while (X) { *--BufPtr = '0' + char(X % 10); X /= 10; } if (isNeg) *--BufPtr = '-'; // Add negative sign... return std::string(BufPtr, std::end(Buffer)); } inline std::string itostr(int64_t X) { if (X < 0) return utostr(static_cast(1) + ~static_cast(X), true); else return utostr(static_cast(X)); } inline std::string toString(const APInt &I, unsigned Radix, bool Signed, bool formatAsCLiteral = false) { SmallString<40> S; I.toString(S, Radix, Signed, formatAsCLiteral); return std::string(S.str()); } inline std::string toString(const APSInt &I, unsigned Radix) { return toString(I, Radix, I.isSigned()); } /// StrInStrNoCase - Portable version of strcasestr. Locates the first /// occurrence of string 's1' in string 's2', ignoring case. Returns /// the offset of s2 in s1 or npos if s2 cannot be found. StringRef::size_type StrInStrNoCase(StringRef s1, StringRef s2); /// getToken - This function extracts one token from source, ignoring any /// leading characters that appear in the Delimiters string, and ending the /// token at any of the characters that appear in the Delimiters string. If /// there are no tokens in the source string, an empty string is returned. /// The function returns a pair containing the extracted token and the /// remaining tail string. std::pair getToken(StringRef Source, StringRef Delimiters = " \t\n\v\f\r"); /// SplitString - Split up the specified string according to the specified /// delimiters, appending the result fragments to the output list. void SplitString(StringRef Source, SmallVectorImpl &OutFragments, StringRef Delimiters = " \t\n\v\f\r"); /// Returns the English suffix for an ordinal integer (-st, -nd, -rd, -th). inline StringRef getOrdinalSuffix(unsigned Val) { // It is critically important that we do this perfectly for // user-written sequences with over 100 elements. switch (Val % 100) { case 11: case 12: case 13: return "th"; default: switch (Val % 10) { case 1: return "st"; case 2: return "nd"; case 3: return "rd"; default: return "th"; } } } /// Print each character of the specified string, escaping it if it is not /// printable or if it is an escape char. void printEscapedString(StringRef Name, raw_ostream &Out); /// Print each character of the specified string, escaping HTML special /// characters. void printHTMLEscaped(StringRef String, raw_ostream &Out); /// printLowerCase - Print each character as lowercase if it is uppercase. void printLowerCase(StringRef String, raw_ostream &Out); /// Converts a string from camel-case to snake-case by replacing all uppercase /// letters with '_' followed by the letter in lowercase, except if the /// uppercase letter is the first character of the string. std::string convertToSnakeFromCamelCase(StringRef input); /// Converts a string from snake-case to camel-case by replacing all occurrences /// of '_' followed by a lowercase letter with the letter in uppercase. /// Optionally allow capitalization of the first letter (if it is a lowercase /// letter) std::string convertToCamelFromSnakeCase(StringRef input, bool capitalizeFirst = false); namespace detail { template inline std::string join_impl(IteratorT Begin, IteratorT End, StringRef Separator, std::input_iterator_tag) { std::string S; if (Begin == End) return S; S += (*Begin); while (++Begin != End) { S += Separator; S += (*Begin); } return S; } template inline std::string join_impl(IteratorT Begin, IteratorT End, StringRef Separator, std::forward_iterator_tag) { std::string S; if (Begin == End) return S; size_t Len = (std::distance(Begin, End) - 1) * Separator.size(); for (IteratorT I = Begin; I != End; ++I) Len += (*I).size(); S.reserve(Len); size_t PrevCapacity = S.capacity(); (void)PrevCapacity; S += (*Begin); while (++Begin != End) { S += Separator; S += (*Begin); } assert(PrevCapacity == S.capacity() && "String grew during building"); return S; } template inline void join_items_impl(std::string &Result, Sep Separator) {} template inline void join_items_impl(std::string &Result, Sep Separator, const Arg &Item) { Result += Item; } template inline void join_items_impl(std::string &Result, Sep Separator, const Arg1 &A1, Args &&... Items) { Result += A1; Result += Separator; join_items_impl(Result, Separator, std::forward(Items)...); } inline size_t join_one_item_size(char) { return 1; } inline size_t join_one_item_size(const char *S) { return S ? ::strlen(S) : 0; } template inline size_t join_one_item_size(const T &Str) { return Str.size(); } template inline size_t join_items_size(Args &&...Items) { return (0 + ... + join_one_item_size(std::forward(Items))); } } // end namespace detail /// Joins the strings in the range [Begin, End), adding Separator between /// the elements. template inline std::string join(IteratorT Begin, IteratorT End, StringRef Separator) { using tag = typename std::iterator_traits::iterator_category; return detail::join_impl(Begin, End, Separator, tag()); } /// Joins the strings in the range [R.begin(), R.end()), adding Separator /// between the elements. template inline std::string join(Range &&R, StringRef Separator) { return join(R.begin(), R.end(), Separator); } /// Joins the strings in the parameter pack \p Items, adding \p Separator /// between the elements. All arguments must be implicitly convertible to /// std::string, or there should be an overload of std::string::operator+=() /// that accepts the argument explicitly. template inline std::string join_items(Sep Separator, Args &&... Items) { std::string Result; if (sizeof...(Items) == 0) return Result; size_t NS = detail::join_one_item_size(Separator); size_t NI = detail::join_items_size(std::forward(Items)...); Result.reserve(NI + (sizeof...(Items) - 1) * NS + 1); detail::join_items_impl(Result, Separator, std::forward(Items)...); return Result; } /// A helper class to return the specified delimiter string after the first /// invocation of operator StringRef(). Used to generate a comma-separated /// list from a loop like so: /// /// \code /// ListSeparator LS; /// for (auto &I : C) /// OS << LS << I.getName(); /// \end class ListSeparator { bool First = true; StringRef Separator; public: ListSeparator(StringRef Separator = ", ") : Separator(Separator) {} operator StringRef() { if (First) { First = false; return {}; } return Separator; } }; /// A forward iterator over partitions of string over a separator. class SplittingIterator : public iterator_facade_base { char SeparatorStorage; StringRef Current; StringRef Next; StringRef Separator; public: SplittingIterator(StringRef Str, StringRef Separator) : Next(Str), Separator(Separator) { ++*this; } SplittingIterator(StringRef Str, char Separator) : SeparatorStorage(Separator), Next(Str), Separator(&SeparatorStorage, 1) { ++*this; } SplittingIterator(const SplittingIterator &R) : SeparatorStorage(R.SeparatorStorage), Current(R.Current), Next(R.Next), Separator(R.Separator) { if (R.Separator.data() == &R.SeparatorStorage) Separator = StringRef(&SeparatorStorage, 1); } SplittingIterator &operator=(const SplittingIterator &R) { if (this == &R) return *this; SeparatorStorage = R.SeparatorStorage; Current = R.Current; Next = R.Next; Separator = R.Separator; if (R.Separator.data() == &R.SeparatorStorage) Separator = StringRef(&SeparatorStorage, 1); return *this; } bool operator==(const SplittingIterator &R) const { assert(Separator == R.Separator); return Current.data() == R.Current.data(); } const StringRef &operator*() const { return Current; } StringRef &operator*() { return Current; } SplittingIterator &operator++() { std::tie(Current, Next) = Next.split(Separator); return *this; } }; /// Split the specified string over a separator and return a range-compatible /// iterable over its partitions. Used to permit conveniently iterating /// over separated strings like so: /// /// \code /// for (StringRef x : llvm::split("foo,bar,baz", ",")) /// ...; /// \end /// /// Note that the passed string must remain valid throuhgout lifetime /// of the iterators. inline iterator_range split(StringRef Str, StringRef Separator) { return {SplittingIterator(Str, Separator), SplittingIterator(StringRef(), Separator)}; } inline iterator_range split(StringRef Str, char Separator) { return {SplittingIterator(Str, Separator), SplittingIterator(StringRef(), Separator)}; } } // end namespace llvm #endif // LLVM_ADT_STRINGEXTRAS_H