//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file exposes the class definitions of all of the subclasses of the // Instruction class. This is meant to be an easy way to get access to all // instruction subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_INSTRUCTIONS_H #define LLVM_IR_INSTRUCTIONS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/Bitfields.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/ErrorHandling.h" #include #include #include #include #include namespace llvm { class APFloat; class APInt; class BasicBlock; class ConstantInt; class DataLayout; class StringRef; class Type; class Value; //===----------------------------------------------------------------------===// // AllocaInst Class //===----------------------------------------------------------------------===// /// an instruction to allocate memory on the stack class AllocaInst : public UnaryInstruction { Type *AllocatedType; using AlignmentField = AlignmentBitfieldElementT<0>; using UsedWithInAllocaField = BoolBitfieldElementT; using SwiftErrorField = BoolBitfieldElementT; static_assert(Bitfield::areContiguous(), "Bitfields must be contiguous"); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AllocaInst *cloneImpl() const; public: explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, Instruction *InsertBefore); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, Instruction *InsertBefore); AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, BasicBlock *InsertAtEnd); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, const Twine &Name = "", Instruction *InsertBefore = nullptr); AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, const Twine &Name, BasicBlock *InsertAtEnd); /// Return true if there is an allocation size parameter to the allocation /// instruction that is not 1. bool isArrayAllocation() const; /// Get the number of elements allocated. For a simple allocation of a single /// element, this will return a constant 1 value. const Value *getArraySize() const { return getOperand(0); } Value *getArraySize() { return getOperand(0); } /// Overload to return most specific pointer type. PointerType *getType() const { return cast(Instruction::getType()); } /// Return the address space for the allocation. unsigned getAddressSpace() const { return getType()->getAddressSpace(); } /// Get allocation size in bytes. Returns std::nullopt if size can't be /// determined, e.g. in case of a VLA. std::optional getAllocationSize(const DataLayout &DL) const; /// Get allocation size in bits. Returns std::nullopt if size can't be /// determined, e.g. in case of a VLA. std::optional getAllocationSizeInBits(const DataLayout &DL) const; /// Return the type that is being allocated by the instruction. Type *getAllocatedType() const { return AllocatedType; } /// for use only in special circumstances that need to generically /// transform a whole instruction (eg: IR linking and vectorization). void setAllocatedType(Type *Ty) { AllocatedType = Ty; } /// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData()); } void setAlignment(Align Align) { setSubclassData(Log2(Align)); } /// Return true if this alloca is in the entry block of the function and is a /// constant size. If so, the code generator will fold it into the /// prolog/epilog code, so it is basically free. bool isStaticAlloca() const; /// Return true if this alloca is used as an inalloca argument to a call. Such /// allocas are never considered static even if they are in the entry block. bool isUsedWithInAlloca() const { return getSubclassData(); } /// Specify whether this alloca is used to represent the arguments to a call. void setUsedWithInAlloca(bool V) { setSubclassData(V); } /// Return true if this alloca is used as a swifterror argument to a call. bool isSwiftError() const { return getSubclassData(); } /// Specify whether this alloca is used to represent a swifterror. void setSwiftError(bool V) { setSubclassData(V); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Alloca); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } }; //===----------------------------------------------------------------------===// // LoadInst Class //===----------------------------------------------------------------------===// /// An instruction for reading from memory. This uses the SubclassData field in /// Value to store whether or not the load is volatile. class LoadInst : public UnaryInstruction { using VolatileField = BoolBitfieldElementT<0>; using AlignmentField = AlignmentBitfieldElementT; using OrderingField = AtomicOrderingBitfieldElementT; static_assert( Bitfield::areContiguous(), "Bitfields must be contiguous"); void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; LoadInst *cloneImpl() const; public: LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, Instruction *InsertBefore); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Instruction *InsertBefore); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, BasicBlock *InsertAtEnd); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, Instruction *InsertBefore = nullptr); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, BasicBlock *InsertAtEnd); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); /// Return true if this is a load from a volatile memory location. bool isVolatile() const { return getSubclassData(); } /// Specify whether this is a volatile load or not. void setVolatile(bool V) { setSubclassData(V); } /// Return the alignment of the access that is being performed. Align getAlign() const { return Align(1ULL << (getSubclassData())); } void setAlignment(Align Align) { setSubclassData(Log2(Align)); } /// Returns the ordering constraint of this load instruction. AtomicOrdering getOrdering() const { return getSubclassData(); } /// Sets the ordering constraint of this load instruction. May not be Release /// or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setSubclassData(Ordering); } /// Returns the synchronization scope ID of this load instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this load instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } /// Sets the ordering constraint and the synchronization scope ID of this load /// instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Load; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } /// The synchronization scope ID of this load instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; //===----------------------------------------------------------------------===// // StoreInst Class //===----------------------------------------------------------------------===// /// An instruction for storing to memory. class StoreInst : public Instruction { using VolatileField = BoolBitfieldElementT<0>; using AlignmentField = AlignmentBitfieldElementT; using OrderingField = AtomicOrderingBitfieldElementT; static_assert( Bitfield::areContiguous(), "Bitfields must be contiguous"); void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; StoreInst *cloneImpl() const; public: StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, Instruction *InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, BasicBlock *InsertAtEnd); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); } /// Return true if this is a store to a volatile memory location. bool isVolatile() const { return getSubclassData(); } /// Specify whether this is a volatile store or not. void setVolatile(bool V) { setSubclassData(V); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Align getAlign() const { return Align(1ULL << (getSubclassData())); } void setAlignment(Align Align) { setSubclassData(Log2(Align)); } /// Returns the ordering constraint of this store instruction. AtomicOrdering getOrdering() const { return getSubclassData(); } /// Sets the ordering constraint of this store instruction. May not be /// Acquire or AcquireRelease. void setOrdering(AtomicOrdering Ordering) { setSubclassData(Ordering); } /// Returns the synchronization scope ID of this store instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this store instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } /// Sets the ordering constraint and the synchronization scope ID of this /// store instruction. void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { setOrdering(Ordering); setSyncScopeID(SSID); } bool isSimple() const { return !isAtomic() && !isVolatile(); } bool isUnordered() const { return (getOrdering() == AtomicOrdering::NotAtomic || getOrdering() == AtomicOrdering::Unordered) && !isVolatile(); } Value *getValueOperand() { return getOperand(0); } const Value *getValueOperand() const { return getOperand(0); } Value *getPointerOperand() { return getOperand(1); } const Value *getPointerOperand() const { return getOperand(1); } static unsigned getPointerOperandIndex() { return 1U; } Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Store; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } /// The synchronization scope ID of this store instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) //===----------------------------------------------------------------------===// // FenceInst Class //===----------------------------------------------------------------------===// /// An instruction for ordering other memory operations. class FenceInst : public Instruction { using OrderingField = AtomicOrderingBitfieldElementT<0>; void Init(AtomicOrdering Ordering, SyncScope::ID SSID); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; FenceInst *cloneImpl() const; public: // Ordering may only be Acquire, Release, AcquireRelease, or // SequentiallyConsistent. FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System, Instruction *InsertBefore = nullptr); FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S, 0); } void operator delete(void *Ptr) { User::operator delete(Ptr); } /// Returns the ordering constraint of this fence instruction. AtomicOrdering getOrdering() const { return getSubclassData(); } /// Sets the ordering constraint of this fence instruction. May only be /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. void setOrdering(AtomicOrdering Ordering) { setSubclassData(Ordering); } /// Returns the synchronization scope ID of this fence instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this fence instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Fence; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } /// The synchronization scope ID of this fence instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; //===----------------------------------------------------------------------===// // AtomicCmpXchgInst Class //===----------------------------------------------------------------------===// /// An instruction that atomically checks whether a /// specified value is in a memory location, and, if it is, stores a new value /// there. The value returned by this instruction is a pair containing the /// original value as first element, and an i1 indicating success (true) or /// failure (false) as second element. /// class AtomicCmpXchgInst : public Instruction { void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID); template using AtomicOrderingBitfieldElement = typename Bitfield::Element; protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AtomicCmpXchgInst *cloneImpl() const; public: AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, Instruction *InsertBefore = nullptr); AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly three operands void *operator new(size_t S) { return User::operator new(S, 3); } void operator delete(void *Ptr) { User::operator delete(Ptr); } using VolatileField = BoolBitfieldElementT<0>; using WeakField = BoolBitfieldElementT; using SuccessOrderingField = AtomicOrderingBitfieldElementT; using FailureOrderingField = AtomicOrderingBitfieldElementT; using AlignmentField = AlignmentBitfieldElementT; static_assert( Bitfield::areContiguous(), "Bitfields must be contiguous"); /// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData()); } void setAlignment(Align Align) { setSubclassData(Log2(Align)); } /// Return true if this is a cmpxchg from a volatile memory /// location. /// bool isVolatile() const { return getSubclassData(); } /// Specify whether this is a volatile cmpxchg. /// void setVolatile(bool V) { setSubclassData(V); } /// Return true if this cmpxchg may spuriously fail. bool isWeak() const { return getSubclassData(); } void setWeak(bool IsWeak) { setSubclassData(IsWeak); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); static bool isValidSuccessOrdering(AtomicOrdering Ordering) { return Ordering != AtomicOrdering::NotAtomic && Ordering != AtomicOrdering::Unordered; } static bool isValidFailureOrdering(AtomicOrdering Ordering) { return Ordering != AtomicOrdering::NotAtomic && Ordering != AtomicOrdering::Unordered && Ordering != AtomicOrdering::AcquireRelease && Ordering != AtomicOrdering::Release; } /// Returns the success ordering constraint of this cmpxchg instruction. AtomicOrdering getSuccessOrdering() const { return getSubclassData(); } /// Sets the success ordering constraint of this cmpxchg instruction. void setSuccessOrdering(AtomicOrdering Ordering) { assert(isValidSuccessOrdering(Ordering) && "invalid CmpXchg success ordering"); setSubclassData(Ordering); } /// Returns the failure ordering constraint of this cmpxchg instruction. AtomicOrdering getFailureOrdering() const { return getSubclassData(); } /// Sets the failure ordering constraint of this cmpxchg instruction. void setFailureOrdering(AtomicOrdering Ordering) { assert(isValidFailureOrdering(Ordering) && "invalid CmpXchg failure ordering"); setSubclassData(Ordering); } /// Returns a single ordering which is at least as strong as both the /// success and failure orderings for this cmpxchg. AtomicOrdering getMergedOrdering() const { if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) return AtomicOrdering::SequentiallyConsistent; if (getFailureOrdering() == AtomicOrdering::Acquire) { if (getSuccessOrdering() == AtomicOrdering::Monotonic) return AtomicOrdering::Acquire; if (getSuccessOrdering() == AtomicOrdering::Release) return AtomicOrdering::AcquireRelease; } return getSuccessOrdering(); } /// Returns the synchronization scope ID of this cmpxchg instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this cmpxchg instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getCompareOperand() { return getOperand(1); } const Value *getCompareOperand() const { return getOperand(1); } Value *getNewValOperand() { return getOperand(2); } const Value *getNewValOperand() const { return getOperand(2); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } /// Returns the strongest permitted ordering on failure, given the /// desired ordering on success. /// /// If the comparison in a cmpxchg operation fails, there is no atomic store /// so release semantics cannot be provided. So this function drops explicit /// Release requests from the AtomicOrdering. A SequentiallyConsistent /// operation would remain SequentiallyConsistent. static AtomicOrdering getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { switch (SuccessOrdering) { default: llvm_unreachable("invalid cmpxchg success ordering"); case AtomicOrdering::Release: case AtomicOrdering::Monotonic: return AtomicOrdering::Monotonic; case AtomicOrdering::AcquireRelease: case AtomicOrdering::Acquire: return AtomicOrdering::Acquire; case AtomicOrdering::SequentiallyConsistent: return AtomicOrdering::SequentiallyConsistent; } } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicCmpXchg; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } /// The synchronization scope ID of this cmpxchg instruction. Not quite /// enough room in SubClassData for everything, so synchronization scope ID /// gets its own field. SyncScope::ID SSID; }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) //===----------------------------------------------------------------------===// // AtomicRMWInst Class //===----------------------------------------------------------------------===// /// an instruction that atomically reads a memory location, /// combines it with another value, and then stores the result back. Returns /// the old value. /// class AtomicRMWInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; AtomicRMWInst *cloneImpl() const; public: /// This enumeration lists the possible modifications atomicrmw can make. In /// the descriptions, 'p' is the pointer to the instruction's memory location, /// 'old' is the initial value of *p, and 'v' is the other value passed to the /// instruction. These instructions always return 'old'. enum BinOp : unsigned { /// *p = v Xchg, /// *p = old + v Add, /// *p = old - v Sub, /// *p = old & v And, /// *p = ~(old & v) Nand, /// *p = old | v Or, /// *p = old ^ v Xor, /// *p = old >signed v ? old : v Max, /// *p = old unsigned v ? old : v UMax, /// *p = old = v) ? 0 : (old + 1) UIncWrap, /// Decrement one until a minimum value or zero. /// *p = ((old == 0) || (old u> v)) ? v : (old - 1) UDecWrap, FIRST_BINOP = Xchg, LAST_BINOP = UDecWrap, BAD_BINOP }; private: template using AtomicOrderingBitfieldElement = typename Bitfield::Element; template using BinOpBitfieldElement = typename Bitfield::Element; public: AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, Instruction *InsertBefore = nullptr); AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, BasicBlock *InsertAtEnd); // allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); } using VolatileField = BoolBitfieldElementT<0>; using AtomicOrderingField = AtomicOrderingBitfieldElementT; using OperationField = BinOpBitfieldElement; using AlignmentField = AlignmentBitfieldElementT; static_assert(Bitfield::areContiguous(), "Bitfields must be contiguous"); BinOp getOperation() const { return getSubclassData(); } static StringRef getOperationName(BinOp Op); static bool isFPOperation(BinOp Op) { switch (Op) { case AtomicRMWInst::FAdd: case AtomicRMWInst::FSub: case AtomicRMWInst::FMax: case AtomicRMWInst::FMin: return true; default: return false; } } void setOperation(BinOp Operation) { setSubclassData(Operation); } /// Return the alignment of the memory that is being allocated by the /// instruction. Align getAlign() const { return Align(1ULL << getSubclassData()); } void setAlignment(Align Align) { setSubclassData(Log2(Align)); } /// Return true if this is a RMW on a volatile memory location. /// bool isVolatile() const { return getSubclassData(); } /// Specify whether this is a volatile RMW or not. /// void setVolatile(bool V) { setSubclassData(V); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Returns the ordering constraint of this rmw instruction. AtomicOrdering getOrdering() const { return getSubclassData(); } /// Sets the ordering constraint of this rmw instruction. void setOrdering(AtomicOrdering Ordering) { assert(Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."); assert(Ordering != AtomicOrdering::Unordered && "atomicrmw instructions cannot be unordered."); setSubclassData(Ordering); } /// Returns the synchronization scope ID of this rmw instruction. SyncScope::ID getSyncScopeID() const { return SSID; } /// Sets the synchronization scope ID of this rmw instruction. void setSyncScopeID(SyncScope::ID SSID) { this->SSID = SSID; } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } Value *getValOperand() { return getOperand(1); } const Value *getValOperand() const { return getOperand(1); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } bool isFloatingPointOperation() const { return isFPOperation(getOperation()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::AtomicRMW; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, AtomicOrdering Ordering, SyncScope::ID SSID); // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } /// The synchronization scope ID of this rmw instruction. Not quite enough /// room in SubClassData for everything, so synchronization scope ID gets its /// own field. SyncScope::ID SSID; }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) //===----------------------------------------------------------------------===// // GetElementPtrInst Class //===----------------------------------------------------------------------===// // checkGEPType - Simple wrapper function to give a better assertion failure // message on bad indexes for a gep instruction. // inline Type *checkGEPType(Type *Ty) { assert(Ty && "Invalid GetElementPtrInst indices for type!"); return Ty; } /// an instruction for type-safe pointer arithmetic to /// access elements of arrays and structs /// class GetElementPtrInst : public Instruction { Type *SourceElementType; Type *ResultElementType; GetElementPtrInst(const GetElementPtrInst &GEPI); /// Constructors - Create a getelementptr instruction with a base pointer an /// list of indices. The first ctor can optionally insert before an existing /// instruction, the second appends the new instruction to the specified /// BasicBlock. inline GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore); inline GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(Value *Ptr, ArrayRef IdxList, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; GetElementPtrInst *cloneImpl() const; public: static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { unsigned Values = 1 + unsigned(IdxList.size()); assert(PointeeType && "Must specify element type"); assert(cast(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)); return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, NameStr, InsertBefore); } static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, ArrayRef IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + unsigned(IdxList.size()); assert(PointeeType && "Must specify element type"); assert(cast(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)); return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, NameStr, InsertAtEnd); } /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { GetElementPtrInst *GEP = Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); GEP->setIsInBounds(true); return GEP; } static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { GetElementPtrInst *GEP = Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); GEP->setIsInBounds(true); return GEP; } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Type *getSourceElementType() const { return SourceElementType; } void setSourceElementType(Type *Ty) { SourceElementType = Ty; } void setResultElementType(Type *Ty) { ResultElementType = Ty; } Type *getResultElementType() const { assert(cast(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)); return ResultElementType; } /// Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { // Note that this is always the same as the pointer operand's address space // and that is cheaper to compute, so cheat here. return getPointerAddressSpace(); } /// Returns the result type of a getelementptr with the given source /// element type and indexes. /// /// Null is returned if the indices are invalid for the specified /// source element type. static Type *getIndexedType(Type *Ty, ArrayRef IdxList); static Type *getIndexedType(Type *Ty, ArrayRef IdxList); static Type *getIndexedType(Type *Ty, ArrayRef IdxList); /// Return the type of the element at the given index of an indexable /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". /// /// Returns null if the type can't be indexed, or the given index is not /// legal for the given type. static Type *getTypeAtIndex(Type *Ty, Value *Idx); static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); inline op_iterator idx_begin() { return op_begin()+1; } inline const_op_iterator idx_begin() const { return op_begin()+1; } inline op_iterator idx_end() { return op_end(); } inline const_op_iterator idx_end() const { return op_end(); } inline iterator_range indices() { return make_range(idx_begin(), idx_end()); } inline iterator_range indices() const { return make_range(idx_begin(), idx_end()); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; // get index for modifying correct operand. } /// Method to return the pointer operand as a /// PointerType. Type *getPointerOperandType() const { return getPointerOperand()->getType(); } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperandType()->getPointerAddressSpace(); } /// Returns the pointer type returned by the GEP /// instruction, which may be a vector of pointers. static Type *getGEPReturnType(Type *ElTy, Value *Ptr, ArrayRef IdxList) { PointerType *OrigPtrTy = cast(Ptr->getType()->getScalarType()); unsigned AddrSpace = OrigPtrTy->getAddressSpace(); Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); Type *PtrTy = OrigPtrTy->isOpaque() ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) : PointerType::get(ResultElemTy, AddrSpace); // Vector GEP if (auto *PtrVTy = dyn_cast(Ptr->getType())) { ElementCount EltCount = PtrVTy->getElementCount(); return VectorType::get(PtrTy, EltCount); } for (Value *Index : IdxList) if (auto *IndexVTy = dyn_cast(Index->getType())) { ElementCount EltCount = IndexVTy->getElementCount(); return VectorType::get(PtrTy, EltCount); } // Scalar GEP return PtrTy; } unsigned getNumIndices() const { // Note: always non-negative return getNumOperands() - 1; } bool hasIndices() const { return getNumOperands() > 1; } /// Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool hasAllZeroIndices() const; /// Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool hasAllConstantIndices() const; /// Set or clear the inbounds flag on this GEP instruction. /// See LangRef.html for the meaning of inbounds on a getelementptr. void setIsInBounds(bool b = true); /// Determine whether the GEP has the inbounds flag. bool isInBounds() const; /// Accumulate the constant address offset of this GEP if possible. /// /// This routine accepts an APInt into which it will accumulate the constant /// offset of this GEP if the GEP is in fact constant. If the GEP is not /// all-constant, it returns false and the value of the offset APInt is /// undefined (it is *not* preserved!). The APInt passed into this routine /// must be at least as wide as the IntPtr type for the address space of /// the base GEP pointer. bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; bool collectOffset(const DataLayout &DL, unsigned BitWidth, MapVector &VariableOffsets, APInt &ConstantOffset) const; // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::GetElementPtr); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertBefore), SourceElementType(PointeeType), ResultElementType(getIndexedType(PointeeType, IdxList)) { assert(cast(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)); init(Ptr, IdxList, NameStr); } GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, ArrayRef IdxList, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, OperandTraits::op_end(this) - Values, Values, InsertAtEnd), SourceElementType(PointeeType), ResultElementType(getIndexedType(PointeeType, IdxList)) { assert(cast(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)); init(Ptr, IdxList, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) //===----------------------------------------------------------------------===// // ICmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on integers or pointers. The operands /// must be identical types. /// Represent an integer comparison operator. class ICmpInst: public CmpInst { void AssertOK() { assert(isIntPredicate() && "Invalid ICmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!"); // Check that the operands are the right type assert((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical ICmpInst ICmpInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics. ICmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, InsertBefore) { #ifndef NDEBUG AssertOK(); #endif } /// Constructor with insert-at-end semantics. ICmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { #ifndef NDEBUG AssertOK(); #endif } /// Constructor with no-insertion semantics ICmpInst( Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::ICmp, pred, LHS, RHS, NameStr) { #ifndef NDEBUG AssertOK(); #endif } /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as signed. /// Return the signed version of the predicate Predicate getSignedPredicate() const { return getSignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// Return the signed version of the predicate. static Predicate getSignedPredicate(Predicate pred); /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. /// @returns the predicate that would be the result if the operand were /// regarded as unsigned. /// Return the unsigned version of the predicate Predicate getUnsignedPredicate() const { return getUnsignedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction. /// Return the unsigned version of the predicate. static Predicate getUnsignedPredicate(Predicate pred); /// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. static bool isEquality(Predicate P) { return P == ICMP_EQ || P == ICMP_NE; } /// Return true if this predicate is either EQ or NE. This also /// tests for commutativity. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this ICmpInst is commutative /// Determine if this relation is commutative. bool isCommutative() const { return isEquality(); } /// Return true if the predicate is relational (not EQ or NE). /// bool isRelational() const { return !isEquality(); } /// Return true if the predicate is relational (not EQ or NE). /// static bool isRelational(Predicate P) { return !isEquality(P); } /// Return true if the predicate is SGT or UGT. /// static bool isGT(Predicate P) { return P == ICMP_SGT || P == ICMP_UGT; } /// Return true if the predicate is SLT or ULT. /// static bool isLT(Predicate P) { return P == ICMP_SLT || P == ICMP_ULT; } /// Return true if the predicate is SGE or UGE. /// static bool isGE(Predicate P) { return P == ICMP_SGE || P == ICMP_UGE; } /// Return true if the predicate is SLE or ULE. /// static bool isLE(Predicate P) { return P == ICMP_SLE || P == ICMP_ULE; } /// Returns the sequence of all ICmp predicates. /// static auto predicates() { return ICmpPredicates(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } /// Return result of `LHS Pred RHS` comparison. static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FCmpInst Class //===----------------------------------------------------------------------===// /// This instruction compares its operands according to the predicate given /// to the constructor. It only operates on floating point values or packed /// vectors of floating point values. The operands must be identical types. /// Represents a floating point comparison operator. class FCmpInst: public CmpInst { void AssertOK() { assert(isFPPredicate() && "Invalid FCmp predicate value"); assert(getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!"); // Check that the operands are the right type assert(getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction"); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FCmpInst FCmpInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics. FCmpInst( Instruction *InsertBefore, ///< Where to insert Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, InsertBefore) { AssertOK(); } /// Constructor with insert-at-end semantics. FCmpInst( BasicBlock &InsertAtEnd, ///< Block to insert into. Predicate pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "" ///< Name of the instruction ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, pred, LHS, RHS, NameStr, &InsertAtEnd) { AssertOK(); } /// Constructor with no-insertion semantics FCmpInst( Predicate Pred, ///< The predicate to use for the comparison Value *LHS, ///< The left-hand-side of the expression Value *RHS, ///< The right-hand-side of the expression const Twine &NameStr = "", ///< Name of the instruction Instruction *FlagsSource = nullptr ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, RHS, NameStr, nullptr, FlagsSource) { AssertOK(); } /// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. static bool isEquality(Predicate Pred) { return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || Pred == FCMP_UNE; } /// @returns true if the predicate of this instruction is EQ or NE. /// Determine if this is an equality predicate. bool isEquality() const { return isEquality(getPredicate()); } /// @returns true if the predicate of this instruction is commutative. /// Determine if this is a commutative predicate. bool isCommutative() const { return isEquality() || getPredicate() == FCMP_FALSE || getPredicate() == FCMP_TRUE || getPredicate() == FCMP_ORD || getPredicate() == FCMP_UNO; } /// @returns true if the predicate is relational (not EQ or NE). /// Determine if this a relational predicate. bool isRelational() const { return !isEquality(); } /// Exchange the two operands to this instruction in such a way that it does /// not modify the semantics of the instruction. The predicate value may be /// changed to retain the same result if the predicate is order dependent /// (e.g. ult). /// Swap operands and adjust predicate. void swapOperands() { setPredicate(getSwappedPredicate()); Op<0>().swap(Op<1>()); } /// Returns the sequence of all FCmp predicates. /// static auto predicates() { return FCmpPredicates(); } /// Return result of `LHS Pred RHS` comparison. static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::FCmp; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// /// This class represents a function call, abstracting a target /// machine's calling convention. This class uses low bit of the SubClassData /// field to indicate whether or not this is a tail call. The rest of the bits /// hold the calling convention of the call. /// class CallInst : public CallBase { CallInst(const CallInst &CI); /// Construct a CallInst given a range of arguments. /// Construct a CallInst from a range of arguments inline CallInst(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, Instruction *InsertBefore); inline CallInst(FunctionType *Ty, Value *Func, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore) : CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {} /// Construct a CallInst given a range of arguments. /// Construct a CallInst from a range of arguments inline CallInst(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd); explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, Instruction *InsertBefore); CallInst(FunctionType *ty, Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(FunctionType *FTy, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr); void init(FunctionType *FTy, Value *Func, const Twine &NameStr); /// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { // We need one operand for the called function, plus the input operand // counts provided. return 1 + NumArgs + NumBundleInputs; } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CallInst *cloneImpl() const; public: static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return new (ComputeNumOperands(Args.size())) CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { const int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); } static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new (ComputeNumOperands(Args.size())) CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertAtEnd); } static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { const int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); } static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), NameStr, InsertBefore); } static CallInst *Create(FunctionCallee Func, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, NameStr, InsertBefore); } static CallInst *Create(FunctionCallee Func, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, InsertBefore); } static CallInst *Create(FunctionCallee Func, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), NameStr, InsertAtEnd); } static CallInst *Create(FunctionCallee Func, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, InsertAtEnd); } static CallInst *Create(FunctionCallee Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, NameStr, InsertAtEnd); } /// Create a clone of \p CI with a different set of operand bundles and /// insert it before \p InsertPt. /// /// The returned call instruction is identical \p CI in every way except that /// the operand bundles for the new instruction are set to the operand bundles /// in \p Bundles. static CallInst *Create(CallInst *CI, ArrayRef Bundles, Instruction *InsertPt = nullptr); /// Generate the IR for a call to malloc: /// 1. Compute the malloc call's argument as the specified type's size, /// possibly multiplied by the array size if the array size is not /// constant 1. /// 2. Call malloc with that argument. /// 3. Bitcast the result of the malloc call to the specified type. static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction * CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, ArrayRef Bundles = std::nullopt, Function *MallocF = nullptr, const Twine &Name = ""); static Instruction * CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize = nullptr, ArrayRef Bundles = std::nullopt, Function *MallocF = nullptr, const Twine &Name = ""); /// Generate the IR for a call to the builtin free function. static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); static Instruction *CreateFree(Value *Source, ArrayRef Bundles, Instruction *InsertBefore); static Instruction *CreateFree(Value *Source, ArrayRef Bundles, BasicBlock *InsertAtEnd); // Note that 'musttail' implies 'tail'. enum TailCallKind : unsigned { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2, TCK_NoTail = 3, TCK_LAST = TCK_NoTail }; using TailCallKindField = Bitfield::Element; static_assert( Bitfield::areContiguous(), "Bitfields must be contiguous"); TailCallKind getTailCallKind() const { return getSubclassData(); } bool isTailCall() const { TailCallKind Kind = getTailCallKind(); return Kind == TCK_Tail || Kind == TCK_MustTail; } bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } void setTailCallKind(TailCallKind TCK) { setSubclassData(TCK); } void setTailCall(bool IsTc = true) { setTailCallKind(IsTc ? TCK_Tail : TCK_None); } /// Return true if the call can return twice bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Call; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// Updates profile metadata by scaling it by \p S / \p T. void updateProfWeight(uint64_t S, uint64_t T); private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } }; CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) : CallBase(Ty->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (Args.size() + CountBundleInputs(Bundles) + 1), unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertAtEnd) { init(Ty, Func, Args, Bundles, NameStr); } CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, Instruction *InsertBefore) : CallBase(Ty->getReturnType(), Instruction::Call, OperandTraits::op_end(this) - (Args.size() + CountBundleInputs(Bundles) + 1), unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertBefore) { init(Ty, Func, Args, Bundles, NameStr); } //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// This class represents the LLVM 'select' instruction. /// class SelectInst : public Instruction { SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, Instruction *InsertBefore) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertBefore) { init(C, S1, S2); setName(NameStr); } SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(S1->getType(), Instruction::Select, &Op<0>(), 3, InsertAtEnd) { init(C, S1, S2); setName(NameStr); } void init(Value *C, Value *S1, Value *S2) { assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); Op<0>() = C; Op<1>() = S1; Op<2>() = S2; } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; SelectInst *cloneImpl() const; public: static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr = "", Instruction *InsertBefore = nullptr, Instruction *MDFrom = nullptr) { SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); if (MDFrom) Sel->copyMetadata(*MDFrom); return Sel; } static SelectInst *Create(Value *C, Value *S1, Value *S2, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); } const Value *getCondition() const { return Op<0>(); } const Value *getTrueValue() const { return Op<1>(); } const Value *getFalseValue() const { return Op<2>(); } Value *getCondition() { return Op<0>(); } Value *getTrueValue() { return Op<1>(); } Value *getFalseValue() { return Op<2>(); } void setCondition(Value *V) { Op<0>() = V; } void setTrueValue(Value *V) { Op<1>() = V; } void setFalseValue(Value *V) { Op<2>() = V; } /// Swap the true and false values of the select instruction. /// This doesn't swap prof metadata. void swapValues() { Op<1>().swap(Op<2>()); } /// Return a string if the specified operands are invalid /// for a select operation, otherwise return null. static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); OtherOps getOpcode() const { return static_cast(Instruction::getOpcode()); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Select; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) //===----------------------------------------------------------------------===// // VAArgInst Class //===----------------------------------------------------------------------===// /// This class represents the va_arg llvm instruction, which returns /// an argument of the specified type given a va_list and increments that list /// class VAArgInst : public UnaryInstruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; VAArgInst *cloneImpl() const; public: VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) : UnaryInstruction(Ty, VAArg, List, InsertBefore) { setName(NameStr); } VAArgInst(Value *List, Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { setName(NameStr); } Value *getPointerOperand() { return getOperand(0); } const Value *getPointerOperand() const { return getOperand(0); } static unsigned getPointerOperandIndex() { return 0U; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == VAArg; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ExtractElementInst Class //===----------------------------------------------------------------------===// /// This instruction extracts a single (scalar) /// element from a VectorType value /// class ExtractElementInst : public Instruction { ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ExtractElementInst *cloneImpl() const; public: static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); } static ExtractElementInst *Create(Value *Vec, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); } /// Return true if an extractelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *Idx); Value *getVectorOperand() { return Op<0>(); } Value *getIndexOperand() { return Op<1>(); } const Value *getVectorOperand() const { return Op<0>(); } const Value *getIndexOperand() const { return Op<1>(); } VectorType *getVectorOperandType() const { return cast(getVectorOperand()->getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractElement; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) //===----------------------------------------------------------------------===// // InsertElementInst Class //===----------------------------------------------------------------------===// /// This instruction inserts a single (scalar) /// element into a VectorType value /// class InsertElementInst : public Instruction { InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; InsertElementInst *cloneImpl() const; public: static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); } static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); } /// Return true if an insertelement instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx); /// Overload to return most specific vector type. /// VectorType *getType() const { return cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertElement; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) //===----------------------------------------------------------------------===// // ShuffleVectorInst Class //===----------------------------------------------------------------------===// constexpr int UndefMaskElem = -1; /// This instruction constructs a fixed permutation of two /// input vectors. /// /// For each element of the result vector, the shuffle mask selects an element /// from one of the input vectors to copy to the result. Non-negative elements /// in the mask represent an index into the concatenated pair of input vectors. /// UndefMaskElem (-1) specifies that the result element is undefined. /// /// For scalable vectors, all the elements of the mask must be 0 or -1. This /// requirement may be relaxed in the future. class ShuffleVectorInst : public Instruction { SmallVector ShuffleMask; Constant *ShuffleMaskForBitcode; protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ShuffleVectorInst *cloneImpl() const; public: ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); ShuffleVectorInst(Value *V1, ArrayRef Mask, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); ShuffleVectorInst(Value *V1, ArrayRef Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr = "", Instruction *InsertBefor = nullptr); ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); ShuffleVectorInst(Value *V1, Value *V2, ArrayRef Mask, const Twine &NameStr = "", Instruction *InsertBefor = nullptr); ShuffleVectorInst(Value *V1, Value *V2, ArrayRef Mask, const Twine &NameStr, BasicBlock *InsertAtEnd); void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { return User::operator delete(Ptr); } /// Swap the operands and adjust the mask to preserve the semantics /// of the instruction. void commute(); /// Return true if a shufflevector instruction can be /// formed with the specified operands. static bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask); static bool isValidOperands(const Value *V1, const Value *V2, ArrayRef Mask); /// Overload to return most specific vector type. /// VectorType *getType() const { return cast(Instruction::getType()); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Return the shuffle mask value of this instruction for the given element /// index. Return UndefMaskElem if the element is undef. int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } /// Convert the input shuffle mask operand to a vector of integers. Undefined /// elements of the mask are returned as UndefMaskElem. static void getShuffleMask(const Constant *Mask, SmallVectorImpl &Result); /// Return the mask for this instruction as a vector of integers. Undefined /// elements of the mask are returned as UndefMaskElem. void getShuffleMask(SmallVectorImpl &Result) const { Result.assign(ShuffleMask.begin(), ShuffleMask.end()); } /// Return the mask for this instruction, for use in bitcode. /// /// TODO: This is temporary until we decide a new bitcode encoding for /// shufflevector. Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } static Constant *convertShuffleMaskForBitcode(ArrayRef Mask, Type *ResultTy); void setShuffleMask(ArrayRef Mask); ArrayRef getShuffleMask() const { return ShuffleMask; } /// Return true if this shuffle returns a vector with a different number of /// elements than its source vectors. /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> bool changesLength() const { unsigned NumSourceElts = cast(Op<0>()->getType()) ->getElementCount() .getKnownMinValue(); unsigned NumMaskElts = ShuffleMask.size(); return NumSourceElts != NumMaskElts; } /// Return true if this shuffle returns a vector with a greater number of /// elements than its source vectors. /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> bool increasesLength() const { unsigned NumSourceElts = cast(Op<0>()->getType()) ->getElementCount() .getKnownMinValue(); unsigned NumMaskElts = ShuffleMask.size(); return NumSourceElts < NumMaskElts; } /// Return true if this shuffle mask chooses elements from exactly one source /// vector. /// Example: <7,5,undef,7> /// This assumes that vector operands are the same length as the mask. static bool isSingleSourceMask(ArrayRef Mask); static bool isSingleSourceMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSingleSourceMask(MaskAsInts); } /// Return true if this shuffle chooses elements from exactly one source /// vector without changing the length of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> /// TODO: Optionally allow length-changing shuffles. bool isSingleSource() const { return !changesLength() && isSingleSourceMask(ShuffleMask); } /// Return true if this shuffle mask chooses elements from exactly one source /// vector without lane crossings. A shuffle using this mask is not /// necessarily a no-op because it may change the number of elements from its /// input vectors or it may provide demanded bits knowledge via undef lanes. /// Example: static bool isIdentityMask(ArrayRef Mask); static bool isIdentityMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(Mask->getType())) return false; SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isIdentityMask(MaskAsInts); } /// Return true if this shuffle chooses elements from exactly one source /// vector without lane crossings and does not change the number of elements /// from its input vectors. /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> bool isIdentity() const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(getType())) return false; return !changesLength() && isIdentityMask(ShuffleMask); } /// Return true if this shuffle lengthens exactly one source vector with /// undefs in the high elements. bool isIdentityWithPadding() const; /// Return true if this shuffle extracts the first N elements of exactly one /// source vector. bool isIdentityWithExtract() const; /// Return true if this shuffle concatenates its 2 source vectors. This /// returns false if either input is undefined. In that case, the shuffle is /// is better classified as an identity with padding operation. bool isConcat() const; /// Return true if this shuffle mask chooses elements from its source vectors /// without lane crossings. A shuffle using this mask would be /// equivalent to a vector select with a constant condition operand. /// Example: <4,1,6,undef> /// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// This assumes that vector operands are the same length as the mask /// (a length-changing shuffle can never be equivalent to a vector select). static bool isSelectMask(ArrayRef Mask); static bool isSelectMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSelectMask(MaskAsInts); } /// Return true if this shuffle chooses elements from its source vectors /// without lane crossings and all operands have the same number of elements. /// In other words, this shuffle is equivalent to a vector select with a /// constant condition operand. /// Example: shufflevector <4 x n> A, <4 x n> B, /// This returns false if the mask does not choose from both input vectors. /// In that case, the shuffle is better classified as an identity shuffle. /// TODO: Optionally allow length-changing shuffles. bool isSelect() const { return !changesLength() && isSelectMask(ShuffleMask); } /// Return true if this shuffle mask swaps the order of elements from exactly /// one source vector. /// Example: <7,6,undef,4> /// This assumes that vector operands are the same length as the mask. static bool isReverseMask(ArrayRef Mask); static bool isReverseMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isReverseMask(MaskAsInts); } /// Return true if this shuffle swaps the order of elements from exactly /// one source vector. /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> /// TODO: Optionally allow length-changing shuffles. bool isReverse() const { return !changesLength() && isReverseMask(ShuffleMask); } /// Return true if this shuffle mask chooses all elements with the same value /// as the first element of exactly one source vector. /// Example: <4,undef,undef,4> /// This assumes that vector operands are the same length as the mask. static bool isZeroEltSplatMask(ArrayRef Mask); static bool isZeroEltSplatMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isZeroEltSplatMask(MaskAsInts); } /// Return true if all elements of this shuffle are the same value as the /// first element of exactly one source vector without changing the length /// of that vector. /// Example: shufflevector <4 x n> A, <4 x n> B, /// TODO: Optionally allow length-changing shuffles. /// TODO: Optionally allow splats from other elements. bool isZeroEltSplat() const { return !changesLength() && isZeroEltSplatMask(ShuffleMask); } /// Return true if this shuffle mask is a transpose mask. /// Transpose vector masks transpose a 2xn matrix. They read corresponding /// even- or odd-numbered vector elements from two n-dimensional source /// vectors and write each result into consecutive elements of an /// n-dimensional destination vector. Two shuffles are necessary to complete /// the transpose, one for the even elements and another for the odd elements. /// This description closely follows how the TRN1 and TRN2 AArch64 /// instructions operate. /// /// For example, a simple 2x2 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b > /// m1 = < c, d > /// /// ; Transposed matrix /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > /// /// For matrices having greater than n columns, the resulting nx2 transposed /// matrix is stored in two result vectors such that one vector contains /// interleaved elements from all the even-numbered rows and the other vector /// contains interleaved elements from all the odd-numbered rows. For example, /// a 2x4 matrix can be transposed with: /// /// ; Original matrix /// m0 = < a, b, c, d > /// m1 = < e, f, g, h > /// /// ; Transposed matrix /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > static bool isTransposeMask(ArrayRef Mask); static bool isTransposeMask(const Constant *Mask) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isTransposeMask(MaskAsInts); } /// Return true if this shuffle transposes the elements of its inputs without /// changing the length of the vectors. This operation may also be known as a /// merge or interleave. See the description for isTransposeMask() for the /// exact specification. /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> bool isTranspose() const { return !changesLength() && isTransposeMask(ShuffleMask); } /// Return true if this shuffle mask is a splice mask, concatenating the two /// inputs together and then extracts an original width vector starting from /// the splice index. /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> static bool isSpliceMask(ArrayRef Mask, int &Index); static bool isSpliceMask(const Constant *Mask, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isSpliceMask(MaskAsInts, Index); } /// Return true if this shuffle splices two inputs without changing the length /// of the vectors. This operation concatenates the two inputs together and /// then extracts an original width vector starting from the splice index. /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> bool isSplice(int &Index) const { return !changesLength() && isSpliceMask(ShuffleMask, Index); } /// Return true if this shuffle mask is an extract subvector mask. /// A valid extract subvector mask returns a smaller vector from a single /// source operand. The base extraction index is returned as well. static bool isExtractSubvectorMask(ArrayRef Mask, int NumSrcElts, int &Index); static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(Mask->getType())) return false; SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); } /// Return true if this shuffle mask is an extract subvector mask. bool isExtractSubvectorMask(int &Index) const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(getType())) return false; int NumSrcElts = cast(Op<0>()->getType())->getNumElements(); return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); } /// Return true if this shuffle mask is an insert subvector mask. /// A valid insert subvector mask inserts the lowest elements of a second /// source operand into an in-place first source operand operand. /// Both the sub vector width and the insertion index is returned. static bool isInsertSubvectorMask(ArrayRef Mask, int NumSrcElts, int &NumSubElts, int &Index); static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, int &NumSubElts, int &Index) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(Mask->getType())) return false; SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index); } /// Return true if this shuffle mask is an insert subvector mask. bool isInsertSubvectorMask(int &NumSubElts, int &Index) const { // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(getType())) return false; int NumSrcElts = cast(Op<0>()->getType())->getNumElements(); return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index); } /// Return true if this shuffle mask replicates each of the \p VF elements /// in a vector \p ReplicationFactor times. /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: /// <0,0,0,1,1,1,2,2,2,3,3,3> static bool isReplicationMask(ArrayRef Mask, int &ReplicationFactor, int &VF); static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, int &VF) { assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); // Not possible to express a shuffle mask for a scalable vector for this // case. if (isa(Mask->getType())) return false; SmallVector MaskAsInts; getShuffleMask(Mask, MaskAsInts); return isReplicationMask(MaskAsInts, ReplicationFactor, VF); } /// Return true if this shuffle mask is a replication mask. bool isReplicationMask(int &ReplicationFactor, int &VF) const; /// Return true if this shuffle mask represents "clustered" mask of size VF, /// i.e. each index between [0..VF) is used exactly once in each submask of /// size VF. /// For example, the mask for \p VF=4 is: /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time. /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because /// element 3 is used twice in the second submask /// (3,3,1,0) and index 2 is not used at all. static bool isOneUseSingleSourceMask(ArrayRef Mask, int VF); /// Return true if this shuffle mask is a one-use-single-source("clustered") /// mask. bool isOneUseSingleSourceMask(int VF) const; /// Change values in a shuffle permute mask assuming the two vector operands /// of length InVecNumElts have swapped position. static void commuteShuffleMask(MutableArrayRef Mask, unsigned InVecNumElts) { for (int &Idx : Mask) { if (Idx == -1) continue; Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range"); } } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ShuffleVector; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) //===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===// /// This instruction extracts a struct member or array /// element value from an aggregate value. /// class ExtractValueInst : public UnaryInstruction { SmallVector Indices; ExtractValueInst(const ExtractValueInst &EVI); /// Constructors - Create a extractvalue instruction with a base aggregate /// value and a list of indices. The first ctor can optionally insert before /// an existing instruction, the second appends the new instruction to the /// specified BasicBlock. inline ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore); inline ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(ArrayRef Idxs, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ExtractValueInst *cloneImpl() const; public: static ExtractValueInst *Create(Value *Agg, ArrayRef Idxs, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); } static ExtractValueInst *Create(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); } /// Returns the type of the element that would be extracted /// with an extractvalue instruction with the specified parameters. /// /// Null is returned if the indices are invalid for the specified type. static Type *getIndexedType(Type *Agg, ArrayRef Idxs); using idx_iterator = const unsigned*; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range indices() const { return make_range(idx_begin(), idx_end()); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } ArrayRef getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ExtractValue; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertBefore) { init(Idxs, NameStr); } ExtractValueInst::ExtractValueInst(Value *Agg, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), ExtractValue, Agg, InsertAtEnd) { init(Idxs, NameStr); } //===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===// /// This instruction inserts a struct field of array element /// value into an aggregate value. /// class InsertValueInst : public Instruction { SmallVector Indices; InsertValueInst(const InsertValueInst &IVI); /// Constructors - Create a insertvalue instruction with a base aggregate /// value, a value to insert, and a list of indices. The first ctor can /// optionally insert before an existing instruction, the second appends /// the new instruction to the specified BasicBlock. inline InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore); inline InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd); /// Constructors - These two constructors are convenience methods because one /// and two index insertvalue instructions are so common. InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; InsertValueInst *cloneImpl() const; public: // allocate space for exactly two operands void *operator new(size_t S) { return User::operator new(S, 2); } void operator delete(void *Ptr) { User::operator delete(Ptr); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); } static InsertValueInst *Create(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); using idx_iterator = const unsigned*; inline idx_iterator idx_begin() const { return Indices.begin(); } inline idx_iterator idx_end() const { return Indices.end(); } inline iterator_range indices() const { return make_range(idx_begin(), idx_end()); } Value *getAggregateOperand() { return getOperand(0); } const Value *getAggregateOperand() const { return getOperand(0); } static unsigned getAggregateOperandIndex() { return 0U; // get index for modifying correct operand } Value *getInsertedValueOperand() { return getOperand(1); } const Value *getInsertedValueOperand() const { return getOperand(1); } static unsigned getInsertedValueOperandIndex() { return 1U; // get index for modifying correct operand } ArrayRef getIndices() const { return Indices; } unsigned getNumIndices() const { return (unsigned)Indices.size(); } bool hasIndices() const { return true; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::InsertValue; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, Instruction *InsertBefore) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertBefore) { init(Agg, Val, Idxs, NameStr); } InsertValueInst::InsertValueInst(Value *Agg, Value *Val, ArrayRef Idxs, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Agg->getType(), InsertValue, OperandTraits::op_begin(this), 2, InsertAtEnd) { init(Agg, Val, Idxs, NameStr); } DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// // PHINode - The PHINode class is used to represent the magical mystical PHI // node, that can not exist in nature, but can be synthesized in a computer // scientist's overactive imagination. // class PHINode : public Instruction { /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; PHINode(const PHINode &PN); explicit PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), ReservedSpace(NumReservedValues) { assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!"); setName(NameStr); allocHungoffUses(ReservedSpace); } PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), ReservedSpace(NumReservedValues) { assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!"); setName(NameStr); allocHungoffUses(ReservedSpace); } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; PHINode *cloneImpl() const; // allocHungoffUses - this is more complicated than the generic // User::allocHungoffUses, because we have to allocate Uses for the incoming // values and pointers to the incoming blocks, all in one allocation. void allocHungoffUses(unsigned N) { User::allocHungoffUses(N, /* IsPhi */ true); } public: /// Constructors - NumReservedValues is a hint for the number of incoming /// edges that this phi node will have (use 0 if you really have no idea). static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); } static PHINode *Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Block iterator interface. This provides access to the list of incoming // basic blocks, which parallels the list of incoming values. // Please note that we are not providing non-const iterators for blocks to // force all updates go through an interface function. using block_iterator = BasicBlock **; using const_block_iterator = BasicBlock * const *; const_block_iterator block_begin() const { return reinterpret_cast(op_begin() + ReservedSpace); } const_block_iterator block_end() const { return block_begin() + getNumOperands(); } iterator_range blocks() const { return make_range(block_begin(), block_end()); } op_range incoming_values() { return operands(); } const_op_range incoming_values() const { return operands(); } /// Return the number of incoming edges /// unsigned getNumIncomingValues() const { return getNumOperands(); } /// Return incoming value number x /// Value *getIncomingValue(unsigned i) const { return getOperand(i); } void setIncomingValue(unsigned i, Value *V) { assert(V && "PHI node got a null value!"); assert(getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"); setOperand(i, V); } static unsigned getOperandNumForIncomingValue(unsigned i) { return i; } static unsigned getIncomingValueNumForOperand(unsigned i) { return i; } /// Return incoming basic block number @p i. /// BasicBlock *getIncomingBlock(unsigned i) const { return block_begin()[i]; } /// Return incoming basic block corresponding /// to an operand of the PHI. /// BasicBlock *getIncomingBlock(const Use &U) const { assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); return getIncomingBlock(unsigned(&U - op_begin())); } /// Return incoming basic block corresponding /// to value use iterator. /// BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { return getIncomingBlock(I.getUse()); } void setIncomingBlock(unsigned i, BasicBlock *BB) { const_cast(block_begin())[i] = BB; } /// Copies the basic blocks from \p BBRange to the incoming basic block list /// of this PHINode, starting at \p ToIdx. void copyIncomingBlocks(iterator_range BBRange, uint32_t ToIdx = 0) { copy(BBRange, const_cast(block_begin()) + ToIdx); } /// Replace every incoming basic block \p Old to basic block \p New. void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { assert(New && Old && "PHI node got a null basic block!"); for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) if (getIncomingBlock(Op) == Old) setIncomingBlock(Op, New); } /// Add an incoming value to the end of the PHI list /// void addIncoming(Value *V, BasicBlock *BB) { if (getNumOperands() == ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. setNumHungOffUseOperands(getNumOperands() + 1); setIncomingValue(getNumOperands() - 1, V); setIncomingBlock(getNumOperands() - 1, BB); } /// Remove an incoming value. This is useful if a /// predecessor basic block is deleted. The value removed is returned. /// /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty /// is true), the PHI node is destroyed and any uses of it are replaced with /// dummy values. The only time there should be zero incoming values to a PHI /// node is when the block is dead, so this strategy is sound. /// Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument to remove!"); return removeIncomingValue(Idx, DeletePHIIfEmpty); } /// Return the first index of the specified basic /// block in the value list for this PHI. Returns -1 if no instance. /// int getBasicBlockIndex(const BasicBlock *BB) const { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (block_begin()[i] == BB) return i; return -1; } Value *getIncomingValueForBlock(const BasicBlock *BB) const { int Idx = getBasicBlockIndex(BB); assert(Idx >= 0 && "Invalid basic block argument!"); return getIncomingValue(Idx); } /// Set every incoming value(s) for block \p BB to \p V. void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { assert(BB && "PHI node got a null basic block!"); bool Found = false; for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) if (getIncomingBlock(Op) == BB) { Found = true; setIncomingValue(Op, V); } (void)Found; assert(Found && "Invalid basic block argument to set!"); } /// If the specified PHI node always merges together the /// same value, return the value, otherwise return null. Value *hasConstantValue() const; /// Whether the specified PHI node always merges /// together the same value, assuming undefs are equal to a unique /// non-undef value. bool hasConstantOrUndefValue() const; /// If the PHI node is complete which means all of its parent's predecessors /// have incoming value in this PHI, return true, otherwise return false. bool isComplete() const { return llvm::all_of(predecessors(getParent()), [this](const BasicBlock *Pred) { return getBasicBlockIndex(Pred) >= 0; }); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::PHI; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: void growOperands(); }; template <> struct OperandTraits : public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) //===----------------------------------------------------------------------===// // LandingPadInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// The landingpad instruction holds all of the information /// necessary to generate correct exception handling. The landingpad instruction /// cannot be moved from the top of a landing pad block, which itself is /// accessible only from the 'unwind' edge of an invoke. This uses the /// SubclassData field in Value to store whether or not the landingpad is a /// cleanup. /// class LandingPadInst : public Instruction { using CleanupField = BoolBitfieldElementT<0>; /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; LandingPadInst(const LandingPadInst &LP); public: enum ClauseType { Catch, Filter }; private: explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, const Twine &NameStr, Instruction *InsertBefore); explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd); // Allocate space for exactly zero operands. void *operator new(size_t S) { return User::operator new(S); } void growOperands(unsigned Size); void init(unsigned NumReservedValues, const Twine &NameStr); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; LandingPadInst *cloneImpl() const; public: void operator delete(void *Ptr) { User::operator delete(Ptr); } /// Constructors - NumReservedClauses is a hint for the number of incoming /// clauses that this landingpad will have (use 0 if you really have no idea). static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock *InsertAtEnd); /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Return 'true' if this landingpad instruction is a /// cleanup. I.e., it should be run when unwinding even if its landing pad /// doesn't catch the exception. bool isCleanup() const { return getSubclassData(); } /// Indicate that this landingpad instruction is a cleanup. void setCleanup(bool V) { setSubclassData(V); } /// Add a catch or filter clause to the landing pad. void addClause(Constant *ClauseVal); /// Get the value of the clause at index Idx. Use isCatch/isFilter to /// determine what type of clause this is. Constant *getClause(unsigned Idx) const { return cast(getOperandList()[Idx]); } /// Return 'true' if the clause and index Idx is a catch clause. bool isCatch(unsigned Idx) const { return !isa(getOperandList()[Idx]->getType()); } /// Return 'true' if the clause and index Idx is a filter clause. bool isFilter(unsigned Idx) const { return isa(getOperandList()[Idx]->getType()); } /// Get the number of clauses for this landing pad. unsigned getNumClauses() const { return getNumOperands(); } /// Grow the size of the operand list to accommodate the new /// number of clauses. void reserveClauses(unsigned Size) { growOperands(Size); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::LandingPad; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public HungoffOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) //===----------------------------------------------------------------------===// // ReturnInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Return a value (possibly void), from a function. Execution /// does not continue in this function any longer. /// class ReturnInst : public Instruction { ReturnInst(const ReturnInst &RI); private: // ReturnInst constructors: // ReturnInst() - 'ret void' instruction // ReturnInst( null) - 'ret void' instruction // ReturnInst(Value* X) - 'ret X' instruction // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B // // NOTE: If the Value* passed is of type void then the constructor behaves as // if it was passed NULL. explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, Instruction *InsertBefore = nullptr); ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ReturnInst *cloneImpl() const; public: static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, Instruction *InsertBefore = nullptr) { return new(!!retVal) ReturnInst(C, retVal, InsertBefore); } static ReturnInst* Create(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) { return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); } static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { return new(0) ReturnInst(C, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor. Returns null if there is no return value. Value *getReturnValue() const { return getNumOperands() != 0 ? getOperand(0) : nullptr; } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Ret); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("ReturnInst has no successors!"); } void setSuccessor(unsigned idx, BasicBlock *B) { llvm_unreachable("ReturnInst has no successors!"); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) //===----------------------------------------------------------------------===// // BranchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Conditional or Unconditional Branch instruction. /// class BranchInst : public Instruction { /// Ops list - Branches are strange. The operands are ordered: /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because /// they don't have to check for cond/uncond branchness. These are mostly /// accessed relative from op_end(). BranchInst(const BranchInst &BI); // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): // BranchInst(BB *B) - 'br B' // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' // BranchInst(BB* B, Inst *I) - 'br B' insert before I // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I // BranchInst(BB* B, BB *I) - 'br B' insert at end // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = nullptr); BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd); void AssertOK(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; BranchInst *cloneImpl() const; public: /// Iterator type that casts an operand to a basic block. /// /// This only makes sense because the successors are stored as adjacent /// operands for branch instructions. struct succ_op_iterator : iterator_adaptor_base { explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} BasicBlock *operator*() const { return cast(*I); } BasicBlock *operator->() const { return operator*(); } }; /// The const version of `succ_op_iterator`. struct const_succ_op_iterator : iterator_adaptor_base { explicit const_succ_op_iterator(const_value_op_iterator I) : iterator_adaptor_base(I) {} const BasicBlock *operator*() const { return cast(*I); } const BasicBlock *operator->() const { return operator*(); } }; static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr) { return new(1) BranchInst(IfTrue, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore = nullptr) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { return new(1) BranchInst(IfTrue, InsertAtEnd); } static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) { return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); bool isUnconditional() const { return getNumOperands() == 1; } bool isConditional() const { return getNumOperands() == 3; } Value *getCondition() const { assert(isConditional() && "Cannot get condition of an uncond branch!"); return Op<-3>(); } void setCondition(Value *V) { assert(isConditional() && "Cannot set condition of unconditional branch!"); Op<-3>() = V; } unsigned getNumSuccessors() const { return 1+isConditional(); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); return cast_or_null((&Op<-1>() - i)->get()); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); *(&Op<-1>() - idx) = NewSucc; } /// Swap the successors of this branch instruction. /// /// Swaps the successors of the branch instruction. This also swaps any /// branch weight metadata associated with the instruction so that it /// continues to map correctly to each operand. void swapSuccessors(); iterator_range successors() { return make_range( succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), succ_op_iterator(value_op_end())); } iterator_range successors() const { return make_range(const_succ_op_iterator( std::next(value_op_begin(), isConditional() ? 1 : 0)), const_succ_op_iterator(value_op_end())); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Br); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public VariadicOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) //===----------------------------------------------------------------------===// // SwitchInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Multiway switch /// class SwitchInst : public Instruction { unsigned ReservedSpace; // Operand[0] = Value to switch on // Operand[1] = Default basic block destination // Operand[2n ] = Value to match // Operand[2n+1] = BasicBlock to go to on match SwitchInst(const SwitchInst &SI); /// Create a new switch instruction, specifying a value to switch on and a /// default destination. The number of additional cases can be specified here /// to make memory allocation more efficient. This constructor can also /// auto-insert before another instruction. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore); /// Create a new switch instruction, specifying a value to switch on and a /// default destination. The number of additional cases can be specified here /// to make memory allocation more efficient. This constructor also /// auto-inserts at the end of the specified BasicBlock. SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); } void init(Value *Value, BasicBlock *Default, unsigned NumReserved); void growOperands(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; SwitchInst *cloneImpl() const; public: void operator delete(void *Ptr) { User::operator delete(Ptr); } // -2 static const unsigned DefaultPseudoIndex = static_cast(~0L-1); template class CaseIteratorImpl; /// A handle to a particular switch case. It exposes a convenient interface /// to both the case value and the successor block. /// /// We define this as a template and instantiate it to form both a const and /// non-const handle. template class CaseHandleImpl { // Directly befriend both const and non-const iterators. friend class SwitchInst::CaseIteratorImpl< CaseHandleImpl>; protected: // Expose the switch type we're parameterized with to the iterator. using SwitchInstType = SwitchInstT; SwitchInstT *SI; ptrdiff_t Index; CaseHandleImpl() = default; CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} public: /// Resolves case value for current case. ConstantIntT *getCaseValue() const { assert((unsigned)Index < SI->getNumCases() && "Index out the number of cases."); return reinterpret_cast(SI->getOperand(2 + Index * 2)); } /// Resolves successor for current case. BasicBlockT *getCaseSuccessor() const { assert(((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."); return SI->getSuccessor(getSuccessorIndex()); } /// Returns number of current case. unsigned getCaseIndex() const { return Index; } /// Returns successor index for current case successor. unsigned getSuccessorIndex() const { assert(((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."); return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; } bool operator==(const CaseHandleImpl &RHS) const { assert(SI == RHS.SI && "Incompatible operators."); return Index == RHS.Index; } }; using ConstCaseHandle = CaseHandleImpl; class CaseHandle : public CaseHandleImpl { friend class SwitchInst::CaseIteratorImpl; public: CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} /// Sets the new value for current case. void setValue(ConstantInt *V) const { assert((unsigned)Index < SI->getNumCases() && "Index out the number of cases."); SI->setOperand(2 + Index*2, reinterpret_cast(V)); } /// Sets the new successor for current case. void setSuccessor(BasicBlock *S) const { SI->setSuccessor(getSuccessorIndex(), S); } }; template class CaseIteratorImpl : public iterator_facade_base, std::random_access_iterator_tag, const CaseHandleT> { using SwitchInstT = typename CaseHandleT::SwitchInstType; CaseHandleT Case; public: /// Default constructed iterator is in an invalid state until assigned to /// a case for a particular switch. CaseIteratorImpl() = default; /// Initializes case iterator for given SwitchInst and for given /// case number. CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} /// Initializes case iterator for given SwitchInst and for given /// successor index. static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, unsigned SuccessorIndex) { assert(SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"); return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) : CaseIteratorImpl(SI, DefaultPseudoIndex); } /// Support converting to the const variant. This will be a no-op for const /// variant. operator CaseIteratorImpl() const { return CaseIteratorImpl(Case.SI, Case.Index); } CaseIteratorImpl &operator+=(ptrdiff_t N) { // Check index correctness after addition. // Note: Index == getNumCases() means end(). assert(Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && "Case.Index out the number of cases."); Case.Index += N; return *this; } CaseIteratorImpl &operator-=(ptrdiff_t N) { // Check index correctness after subtraction. // Note: Case.Index == getNumCases() means end(). assert(Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && "Case.Index out the number of cases."); Case.Index -= N; return *this; } ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { assert(Case.SI == RHS.Case.SI && "Incompatible operators."); return Case.Index - RHS.Case.Index; } bool operator==(const CaseIteratorImpl &RHS) const { return Case == RHS.Case; } bool operator<(const CaseIteratorImpl &RHS) const { assert(Case.SI == RHS.Case.SI && "Incompatible operators."); return Case.Index < RHS.Case.Index; } const CaseHandleT &operator*() const { return Case; } }; using CaseIt = CaseIteratorImpl; using ConstCaseIt = CaseIteratorImpl; static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore = nullptr) { return new SwitchInst(Value, Default, NumCases, InsertBefore); } static SwitchInst *Create(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) { return new SwitchInst(Value, Default, NumCases, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for Switch stmt Value *getCondition() const { return getOperand(0); } void setCondition(Value *V) { setOperand(0, V); } BasicBlock *getDefaultDest() const { return cast(getOperand(1)); } void setDefaultDest(BasicBlock *DefaultCase) { setOperand(1, reinterpret_cast(DefaultCase)); } /// Return the number of 'cases' in this switch instruction, excluding the /// default case. unsigned getNumCases() const { return getNumOperands()/2 - 1; } /// Returns a read/write iterator that points to the first case in the /// SwitchInst. CaseIt case_begin() { return CaseIt(this, 0); } /// Returns a read-only iterator that points to the first case in the /// SwitchInst. ConstCaseIt case_begin() const { return ConstCaseIt(this, 0); } /// Returns a read/write iterator that points one past the last in the /// SwitchInst. CaseIt case_end() { return CaseIt(this, getNumCases()); } /// Returns a read-only iterator that points one past the last in the /// SwitchInst. ConstCaseIt case_end() const { return ConstCaseIt(this, getNumCases()); } /// Iteration adapter for range-for loops. iterator_range cases() { return make_range(case_begin(), case_end()); } /// Constant iteration adapter for range-for loops. iterator_range cases() const { return make_range(case_begin(), case_end()); } /// Returns an iterator that points to the default case. /// Note: this iterator allows to resolve successor only. Attempt /// to resolve case value causes an assertion. /// Also note, that increment and decrement also causes an assertion and /// makes iterator invalid. CaseIt case_default() { return CaseIt(this, DefaultPseudoIndex); } ConstCaseIt case_default() const { return ConstCaseIt(this, DefaultPseudoIndex); } /// Search all of the case values for the specified constant. If it is /// explicitly handled, return the case iterator of it, otherwise return /// default case iterator to indicate that it is handled by the default /// handler. CaseIt findCaseValue(const ConstantInt *C) { return CaseIt( this, const_cast(this)->findCaseValue(C)->getCaseIndex()); } ConstCaseIt findCaseValue(const ConstantInt *C) const { ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) { return Case.getCaseValue() == C; }); if (I != case_end()) return I; return case_default(); } /// Finds the unique case value for a given successor. Returns null if the /// successor is not found, not unique, or is the default case. ConstantInt *findCaseDest(BasicBlock *BB) { if (BB == getDefaultDest()) return nullptr; ConstantInt *CI = nullptr; for (auto Case : cases()) { if (Case.getCaseSuccessor() != BB) continue; if (CI) return nullptr; // Multiple cases lead to BB. CI = Case.getCaseValue(); } return CI; } /// Add an entry to the switch instruction. /// Note: /// This action invalidates case_end(). Old case_end() iterator will /// point to the added case. void addCase(ConstantInt *OnVal, BasicBlock *Dest); /// This method removes the specified case and its successor from the switch /// instruction. Note that this operation may reorder the remaining cases at /// index idx and above. /// Note: /// This action invalidates iterators for all cases following the one removed, /// including the case_end() iterator. It returns an iterator for the next /// case. CaseIt removeCase(CaseIt I); unsigned getNumSuccessors() const { return getNumOperands()/2; } BasicBlock *getSuccessor(unsigned idx) const { assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); return cast(getOperand(idx*2+1)); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); setOperand(idx * 2 + 1, NewSucc); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Switch; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; /// A wrapper class to simplify modification of SwitchInst cases along with /// their prof branch_weights metadata. class SwitchInstProfUpdateWrapper { SwitchInst &SI; std::optional> Weights; bool Changed = false; protected: MDNode *buildProfBranchWeightsMD(); void init(); public: using CaseWeightOpt = std::optional; SwitchInst *operator->() { return &SI; } SwitchInst &operator*() { return SI; } operator SwitchInst *() { return &SI; } SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } ~SwitchInstProfUpdateWrapper() { if (Changed) SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); } /// Delegate the call to the underlying SwitchInst::removeCase() and remove /// correspondent branch weight. SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); /// Delegate the call to the underlying SwitchInst::addCase() and set the /// specified branch weight for the added case. void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark /// this object to not touch the underlying SwitchInst in destructor. SymbolTableList::iterator eraseFromParent(); void setSuccessorWeight(unsigned idx, CaseWeightOpt W); CaseWeightOpt getSuccessorWeight(unsigned idx); static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); }; template <> struct OperandTraits : public HungoffOperandTraits<2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) //===----------------------------------------------------------------------===// // IndirectBrInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Indirect Branch Instruction. /// class IndirectBrInst : public Instruction { unsigned ReservedSpace; // Operand[0] = Address to jump to // Operand[n+1] = n-th destination IndirectBrInst(const IndirectBrInst &IBI); /// Create a new indirectbr instruction, specifying an /// Address to jump to. The number of expected destinations can be specified /// here to make memory allocation more efficient. This constructor can also /// autoinsert before another instruction. IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); /// Create a new indirectbr instruction, specifying an /// Address to jump to. The number of expected destinations can be specified /// here to make memory allocation more efficient. This constructor also /// autoinserts at the end of the specified BasicBlock. IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); } void init(Value *Address, unsigned NumDests); void growOperands(); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; IndirectBrInst *cloneImpl() const; public: void operator delete(void *Ptr) { User::operator delete(Ptr); } /// Iterator type that casts an operand to a basic block. /// /// This only makes sense because the successors are stored as adjacent /// operands for indirectbr instructions. struct succ_op_iterator : iterator_adaptor_base { explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} BasicBlock *operator*() const { return cast(*I); } BasicBlock *operator->() const { return operator*(); } }; /// The const version of `succ_op_iterator`. struct const_succ_op_iterator : iterator_adaptor_base { explicit const_succ_op_iterator(const_value_op_iterator I) : iterator_adaptor_base(I) {} const BasicBlock *operator*() const { return cast(*I); } const BasicBlock *operator->() const { return operator*(); } }; static IndirectBrInst *Create(Value *Address, unsigned NumDests, Instruction *InsertBefore = nullptr) { return new IndirectBrInst(Address, NumDests, InsertBefore); } static IndirectBrInst *Create(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd) { return new IndirectBrInst(Address, NumDests, InsertAtEnd); } /// Provide fast operand accessors. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for IndirectBrInst instruction. Value *getAddress() { return getOperand(0); } const Value *getAddress() const { return getOperand(0); } void setAddress(Value *V) { setOperand(0, V); } /// return the number of possible destinations in this /// indirectbr instruction. unsigned getNumDestinations() const { return getNumOperands()-1; } /// Return the specified destination. BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } /// Add a destination. /// void addDestination(BasicBlock *Dest); /// This method removes the specified successor from the /// indirectbr instruction. void removeDestination(unsigned i); unsigned getNumSuccessors() const { return getNumOperands()-1; } BasicBlock *getSuccessor(unsigned i) const { return cast(getOperand(i+1)); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { setOperand(i + 1, NewSucc); } iterator_range successors() { return make_range(succ_op_iterator(std::next(value_op_begin())), succ_op_iterator(value_op_end())); } iterator_range successors() const { return make_range(const_succ_op_iterator(std::next(value_op_begin())), const_succ_op_iterator(value_op_end())); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::IndirectBr; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public HungoffOperandTraits<1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value) //===----------------------------------------------------------------------===// // InvokeInst Class //===----------------------------------------------------------------------===// /// Invoke instruction. The SubclassData field is used to hold the /// calling convention of the call. /// class InvokeInst : public CallBase { /// The number of operands for this call beyond the called function, /// arguments, and operand bundles. static constexpr int NumExtraOperands = 2; /// The index from the end of the operand array to the normal destination. static constexpr int NormalDestOpEndIdx = -3; /// The index from the end of the operand array to the unwind destination. static constexpr int UnwindDestOpEndIdx = -2; InvokeInst(const InvokeInst &BI); /// Construct an InvokeInst given a range of arguments. /// /// Construct an InvokeInst from a range of arguments inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, Instruction *InsertBefore); inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr); /// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { // We need one operand for the called function, plus our extra operands and // the input operand counts provided. return 1 + NumExtraOperands + NumArgs + NumBundleInputs; } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; InvokeInst *cloneImpl() const; public: static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size()); return new (NumOperands) InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, NumOperands, NameStr, InsertBefore); } static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, NameStr, InsertBefore); } static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { int NumOperands = ComputeNumOperands(Args.size()); return new (NumOperands) InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, NumOperands, NameStr, InsertAtEnd); } static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { int NumOperands = ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, NameStr, InsertAtEnd); } static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, std::nullopt, NameStr, InsertBefore); } static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, Bundles, NameStr, InsertBefore); } static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, NameStr, InsertAtEnd); } static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, IfException, Args, Bundles, NameStr, InsertAtEnd); } /// Create a clone of \p II with a different set of operand bundles and /// insert it before \p InsertPt. /// /// The returned invoke instruction is identical to \p II in every way except /// that the operand bundles for the new instruction are set to the operand /// bundles in \p Bundles. static InvokeInst *Create(InvokeInst *II, ArrayRef Bundles, Instruction *InsertPt = nullptr); // get*Dest - Return the destination basic blocks... BasicBlock *getNormalDest() const { return cast(Op()); } BasicBlock *getUnwindDest() const { return cast(Op()); } void setNormalDest(BasicBlock *B) { Op() = reinterpret_cast(B); } void setUnwindDest(BasicBlock *B) { Op() = reinterpret_cast(B); } /// Get the landingpad instruction from the landing pad /// block (the unwind destination). LandingPadInst *getLandingPadInst() const; BasicBlock *getSuccessor(unsigned i) const { assert(i < 2 && "Successor # out of range for invoke!"); return i == 0 ? getNormalDest() : getUnwindDest(); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { assert(i < 2 && "Successor # out of range for invoke!"); if (i == 0) setNormalDest(NewSucc); else setUnwindDest(NewSucc); } unsigned getNumSuccessors() const { return 2; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::Invoke); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } }; InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, Instruction *InsertBefore) : CallBase(Ty->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - NumOperands, NumOperands, InsertBefore) { init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); } InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, BasicBlock *InsertAtEnd) : CallBase(Ty->getReturnType(), Instruction::Invoke, OperandTraits::op_end(this) - NumOperands, NumOperands, InsertAtEnd) { init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); } //===----------------------------------------------------------------------===// // CallBrInst Class //===----------------------------------------------------------------------===// /// CallBr instruction, tracking function calls that may not return control but /// instead transfer it to a third location. The SubclassData field is used to /// hold the calling convention of the call. /// class CallBrInst : public CallBase { unsigned NumIndirectDests; CallBrInst(const CallBrInst &BI); /// Construct a CallBrInst given a range of arguments. /// /// Construct a CallBrInst from a range of arguments inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, Instruction *InsertBefore); inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, BasicBlock *InsertAtEnd); void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr); /// Compute the number of operands to allocate. static int ComputeNumOperands(int NumArgs, int NumIndirectDests, int NumBundleInputs = 0) { // We need one operand for the called function, plus our extra operands and // the input operand counts provided. return 2 + NumIndirectDests + NumArgs + NumBundleInputs; } protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CallBrInst *cloneImpl() const; public: static CallBrInst *Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); return new (NumOperands) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, NumOperands, NameStr, InsertBefore); } static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NumOperands, NameStr, InsertBefore); } static CallBrInst *Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); return new (NumOperands) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, NumOperands, NameStr, InsertAtEnd); } static CallBrInst *Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), CountBundleInputs(Bundles)); unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); return new (NumOperands, DescriptorBytes) CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NumOperands, NameStr, InsertAtEnd); } static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, const Twine &NameStr, Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, NameStr, InsertBefore); } static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, Bundles, NameStr, InsertBefore); } static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, NameStr, InsertAtEnd); } static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, const Twine &NameStr, BasicBlock *InsertAtEnd) { return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, IndirectDests, Args, Bundles, NameStr, InsertAtEnd); } /// Create a clone of \p CBI with a different set of operand bundles and /// insert it before \p InsertPt. /// /// The returned callbr instruction is identical to \p CBI in every way /// except that the operand bundles for the new instruction are set to the /// operand bundles in \p Bundles. static CallBrInst *Create(CallBrInst *CBI, ArrayRef Bundles, Instruction *InsertPt = nullptr); /// Return the number of callbr indirect dest labels. /// unsigned getNumIndirectDests() const { return NumIndirectDests; } /// getIndirectDestLabel - Return the i-th indirect dest label. /// Value *getIndirectDestLabel(unsigned i) const { assert(i < getNumIndirectDests() && "Out of bounds!"); return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1); } Value *getIndirectDestLabelUse(unsigned i) const { assert(i < getNumIndirectDests() && "Out of bounds!"); return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1); } // Return the destination basic blocks... BasicBlock *getDefaultDest() const { return cast(*(&Op<-1>() - getNumIndirectDests() - 1)); } BasicBlock *getIndirectDest(unsigned i) const { return cast_or_null(*(&Op<-1>() - getNumIndirectDests() + i)); } SmallVector getIndirectDests() const { SmallVector IndirectDests; for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) IndirectDests.push_back(getIndirectDest(i)); return IndirectDests; } void setDefaultDest(BasicBlock *B) { *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast(B); } void setIndirectDest(unsigned i, BasicBlock *B) { *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast(B); } BasicBlock *getSuccessor(unsigned i) const { assert(i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"); return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); } void setSuccessor(unsigned i, BasicBlock *NewSucc) { assert(i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"); return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); } unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CallBr); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } }; CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, Instruction *InsertBefore) : CallBase(Ty->getReturnType(), Instruction::CallBr, OperandTraits::op_end(this) - NumOperands, NumOperands, InsertBefore) { init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); } CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef IndirectDests, ArrayRef Args, ArrayRef Bundles, int NumOperands, const Twine &NameStr, BasicBlock *InsertAtEnd) : CallBase(Ty->getReturnType(), Instruction::CallBr, OperandTraits::op_end(this) - NumOperands, NumOperands, InsertAtEnd) { init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); } //===----------------------------------------------------------------------===// // ResumeInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// Resume the propagation of an exception. /// class ResumeInst : public Instruction { ResumeInst(const ResumeInst &RI); explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; ResumeInst *cloneImpl() const; public: static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { return new(1) ResumeInst(Exn, InsertBefore); } static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { return new(1) ResumeInst(Exn, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessor. Value *getValue() const { return Op<0>(); } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Resume; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("ResumeInst has no successors!"); } void setSuccessor(unsigned idx, BasicBlock *NewSucc) { llvm_unreachable("ResumeInst has no successors!"); } }; template <> struct OperandTraits : public FixedNumOperandTraits { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value) //===----------------------------------------------------------------------===// // CatchSwitchInst Class //===----------------------------------------------------------------------===// class CatchSwitchInst : public Instruction { using UnwindDestField = BoolBitfieldElementT<0>; /// The number of operands actually allocated. NumOperands is /// the number actually in use. unsigned ReservedSpace; // Operand[0] = Outer scope // Operand[1] = Unwind block destination // Operand[n] = BasicBlock to go to on match CatchSwitchInst(const CatchSwitchInst &CSI); /// Create a new switch instruction, specifying a /// default destination. The number of additional handlers can be specified /// here to make memory allocation more efficient. /// This constructor can also autoinsert before another instruction. CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr, Instruction *InsertBefore); /// Create a new switch instruction, specifying a /// default destination. The number of additional handlers can be specified /// here to make memory allocation more efficient. /// This constructor also autoinserts at the end of the specified BasicBlock. CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S); } void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); void growOperands(unsigned Size); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CatchSwitchInst *cloneImpl() const; public: void operator delete(void *Ptr) { return User::operator delete(Ptr); } static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, InsertBefore); } static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumHandlers, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Accessor Methods for CatchSwitch stmt Value *getParentPad() const { return getOperand(0); } void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } // Accessor Methods for CatchSwitch stmt bool hasUnwindDest() const { return getSubclassData(); } bool unwindsToCaller() const { return !hasUnwindDest(); } BasicBlock *getUnwindDest() const { if (hasUnwindDest()) return cast(getOperand(1)); return nullptr; } void setUnwindDest(BasicBlock *UnwindDest) { assert(UnwindDest); assert(hasUnwindDest()); setOperand(1, UnwindDest); } /// return the number of 'handlers' in this catchswitch /// instruction, except the default handler unsigned getNumHandlers() const { if (hasUnwindDest()) return getNumOperands() - 2; return getNumOperands() - 1; } private: static BasicBlock *handler_helper(Value *V) { return cast(V); } static const BasicBlock *handler_helper(const Value *V) { return cast(V); } public: using DerefFnTy = BasicBlock *(*)(Value *); using handler_iterator = mapped_iterator; using handler_range = iterator_range; using ConstDerefFnTy = const BasicBlock *(*)(const Value *); using const_handler_iterator = mapped_iterator; using const_handler_range = iterator_range; /// Returns an iterator that points to the first handler in CatchSwitchInst. handler_iterator handler_begin() { op_iterator It = op_begin() + 1; if (hasUnwindDest()) ++It; return handler_iterator(It, DerefFnTy(handler_helper)); } /// Returns an iterator that points to the first handler in the /// CatchSwitchInst. const_handler_iterator handler_begin() const { const_op_iterator It = op_begin() + 1; if (hasUnwindDest()) ++It; return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); } /// Returns a read-only iterator that points one past the last /// handler in the CatchSwitchInst. handler_iterator handler_end() { return handler_iterator(op_end(), DerefFnTy(handler_helper)); } /// Returns an iterator that points one past the last handler in the /// CatchSwitchInst. const_handler_iterator handler_end() const { return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); } /// iteration adapter for range-for loops. handler_range handlers() { return make_range(handler_begin(), handler_end()); } /// iteration adapter for range-for loops. const_handler_range handlers() const { return make_range(handler_begin(), handler_end()); } /// Add an entry to the switch instruction... /// Note: /// This action invalidates handler_end(). Old handler_end() iterator will /// point to the added handler. void addHandler(BasicBlock *Dest); void removeHandler(handler_iterator HI); unsigned getNumSuccessors() const { return getNumOperands() - 1; } BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"); return cast(getOperand(Idx + 1)); } void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { assert(Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"); setOperand(Idx + 1, NewSucc); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CatchSwitch; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; template <> struct OperandTraits : public HungoffOperandTraits<2> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value) //===----------------------------------------------------------------------===// // CleanupPadInst Class //===----------------------------------------------------------------------===// class CleanupPadInst : public FuncletPadInst { private: explicit CleanupPadInst(Value *ParentPad, ArrayRef Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, NameStr, InsertBefore) {} explicit CleanupPadInst(Value *ParentPad, ArrayRef Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, NameStr, InsertAtEnd) {} public: static CleanupPadInst *Create(Value *ParentPad, ArrayRef Args = std::nullopt, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { unsigned Values = 1 + Args.size(); return new (Values) CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); } static CleanupPadInst *Create(Value *ParentPad, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + Args.size(); return new (Values) CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CleanupPad; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // CatchPadInst Class //===----------------------------------------------------------------------===// class CatchPadInst : public FuncletPadInst { private: explicit CatchPadInst(Value *CatchSwitch, ArrayRef Args, unsigned Values, const Twine &NameStr, Instruction *InsertBefore) : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, NameStr, InsertBefore) {} explicit CatchPadInst(Value *CatchSwitch, ArrayRef Args, unsigned Values, const Twine &NameStr, BasicBlock *InsertAtEnd) : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, NameStr, InsertAtEnd) {} public: static CatchPadInst *Create(Value *CatchSwitch, ArrayRef Args, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { unsigned Values = 1 + Args.size(); return new (Values) CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); } static CatchPadInst *Create(Value *CatchSwitch, ArrayRef Args, const Twine &NameStr, BasicBlock *InsertAtEnd) { unsigned Values = 1 + Args.size(); return new (Values) CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); } /// Convenience accessors CatchSwitchInst *getCatchSwitch() const { return cast(Op<-1>()); } void setCatchSwitch(Value *CatchSwitch) { assert(CatchSwitch); Op<-1>() = CatchSwitch; } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::CatchPad; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // CatchReturnInst Class //===----------------------------------------------------------------------===// class CatchReturnInst : public Instruction { CatchReturnInst(const CatchReturnInst &RI); CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); void init(Value *CatchPad, BasicBlock *BB); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CatchReturnInst *cloneImpl() const; public: static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore = nullptr) { assert(CatchPad); assert(BB); return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); } static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd) { assert(CatchPad); assert(BB); return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Convenience accessors. CatchPadInst *getCatchPad() const { return cast(Op<0>()); } void setCatchPad(CatchPadInst *CatchPad) { assert(CatchPad); Op<0>() = CatchPad; } BasicBlock *getSuccessor() const { return cast(Op<1>()); } void setSuccessor(BasicBlock *NewSucc) { assert(NewSucc); Op<1>() = NewSucc; } unsigned getNumSuccessors() const { return 1; } /// Get the parentPad of this catchret's catchpad's catchswitch. /// The successor block is implicitly a member of this funclet. Value *getCatchSwitchParentPad() const { return getCatchPad()->getCatchSwitch()->getParentPad(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CatchRet); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); return getSuccessor(); } void setSuccessor(unsigned Idx, BasicBlock *B) { assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); setSuccessor(B); } }; template <> struct OperandTraits : public FixedNumOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value) //===----------------------------------------------------------------------===// // CleanupReturnInst Class //===----------------------------------------------------------------------===// class CleanupReturnInst : public Instruction { using UnwindDestField = BoolBitfieldElementT<0>; private: CleanupReturnInst(const CleanupReturnInst &RI); CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, Instruction *InsertBefore = nullptr); CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, BasicBlock *InsertAtEnd); void init(Value *CleanupPad, BasicBlock *UnwindBB); protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; CleanupReturnInst *cloneImpl() const; public: static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB = nullptr, Instruction *InsertBefore = nullptr) { assert(CleanupPad); unsigned Values = 1; if (UnwindBB) ++Values; return new (Values) CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); } static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, BasicBlock *InsertAtEnd) { assert(CleanupPad); unsigned Values = 1; if (UnwindBB) ++Values; return new (Values) CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); } /// Provide fast operand accessors DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); bool hasUnwindDest() const { return getSubclassData(); } bool unwindsToCaller() const { return !hasUnwindDest(); } /// Convenience accessor. CleanupPadInst *getCleanupPad() const { return cast(Op<0>()); } void setCleanupPad(CleanupPadInst *CleanupPad) { assert(CleanupPad); Op<0>() = CleanupPad; } unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } BasicBlock *getUnwindDest() const { return hasUnwindDest() ? cast(Op<1>()) : nullptr; } void setUnwindDest(BasicBlock *NewDest) { assert(NewDest); assert(hasUnwindDest()); Op<1>() = NewDest; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return (I->getOpcode() == Instruction::CleanupRet); } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: BasicBlock *getSuccessor(unsigned Idx) const { assert(Idx == 0); return getUnwindDest(); } void setSuccessor(unsigned Idx, BasicBlock *B) { assert(Idx == 0); setUnwindDest(B); } // Shadow Instruction::setInstructionSubclassData with a private forwarding // method so that subclasses cannot accidentally use it. template void setSubclassData(typename Bitfield::Type Value) { Instruction::setSubclassData(Value); } }; template <> struct OperandTraits : public VariadicOperandTraits {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value) //===----------------------------------------------------------------------===// // UnreachableInst Class //===----------------------------------------------------------------------===// //===--------------------------------------------------------------------------- /// This function has undefined behavior. In particular, the /// presence of this instruction indicates some higher level knowledge that the /// end of the block cannot be reached. /// class UnreachableInst : public Instruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; UnreachableInst *cloneImpl() const; public: explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); // allocate space for exactly zero operands void *operator new(size_t S) { return User::operator new(S, 0); } void operator delete(void *Ptr) { User::operator delete(Ptr); } unsigned getNumSuccessors() const { return 0; } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Unreachable; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } private: BasicBlock *getSuccessor(unsigned idx) const { llvm_unreachable("UnreachableInst has no successors!"); } void setSuccessor(unsigned idx, BasicBlock *B) { llvm_unreachable("UnreachableInst has no successors!"); } }; //===----------------------------------------------------------------------===// // TruncInst Class //===----------------------------------------------------------------------===// /// This class represents a truncation of integer types. class TruncInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical TruncInst TruncInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics TruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The (smaller) type to truncate to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics TruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The (smaller) type to truncate to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == Trunc; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // ZExtInst Class //===----------------------------------------------------------------------===// /// This class represents zero extension of integer types. class ZExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical ZExtInst ZExtInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics ZExtInst( Value *S, ///< The value to be zero extended Type *Ty, ///< The type to zero extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end semantics. ZExtInst( Value *S, ///< The value to be zero extended Type *Ty, ///< The type to zero extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == ZExt; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SExtInst Class //===----------------------------------------------------------------------===// /// This class represents a sign extension of integer types. class SExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical SExtInst SExtInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics SExtInst( Value *S, ///< The value to be sign extended Type *Ty, ///< The type to sign extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics SExtInst( Value *S, ///< The value to be sign extended Type *Ty, ///< The type to sign extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == SExt; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPTruncInst Class //===----------------------------------------------------------------------===// /// This class represents a truncation of floating point types. class FPTruncInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FPTruncInst FPTruncInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The type to truncate to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-before-instruction semantics FPTruncInst( Value *S, ///< The value to be truncated Type *Ty, ///< The type to truncate to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPTrunc; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPExtInst Class //===----------------------------------------------------------------------===// /// This class represents an extension of floating point types. class FPExtInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FPExtInst FPExtInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics FPExtInst( Value *S, ///< The value to be extended Type *Ty, ///< The type to extend to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics FPExtInst( Value *S, ///< The value to be extended Type *Ty, ///< The type to extend to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPExt; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // UIToFPInst Class //===----------------------------------------------------------------------===// /// This class represents a cast unsigned integer to floating point. class UIToFPInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical UIToFPInst UIToFPInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics UIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics UIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == UIToFP; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // SIToFPInst Class //===----------------------------------------------------------------------===// /// This class represents a cast from signed integer to floating point. class SIToFPInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical SIToFPInst SIToFPInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics SIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics SIToFPInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == SIToFP; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToUIInst Class //===----------------------------------------------------------------------===// /// This class represents a cast from floating point to unsigned integer class FPToUIInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FPToUIInst FPToUIInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics FPToUIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics FPToUIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< Where to insert the new instruction ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPToUI; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // FPToSIInst Class //===----------------------------------------------------------------------===// /// This class represents a cast from floating point to signed integer. class FPToSIInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FPToSIInst FPToSIInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics FPToSIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics FPToSIInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == FPToSI; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // IntToPtrInst Class //===----------------------------------------------------------------------===// /// This class represents a cast from an integer to a pointer. class IntToPtrInst : public CastInst { public: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Constructor with insert-before-instruction semantics IntToPtrInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics IntToPtrInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Clone an identical IntToPtrInst. IntToPtrInst *cloneImpl() const; /// Returns the address space of this instruction's pointer type. unsigned getAddressSpace() const { return getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == IntToPtr; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // PtrToIntInst Class //===----------------------------------------------------------------------===// /// This class represents a cast from a pointer to an integer. class PtrToIntInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical PtrToIntInst. PtrToIntInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics PtrToIntInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics PtrToIntInst( Value *S, ///< The value to be converted Type *Ty, ///< The type to convert to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// Gets the pointer operand. Value *getPointerOperand() { return getOperand(0); } /// Gets the pointer operand. const Value *getPointerOperand() const { return getOperand(0); } /// Gets the operand index of the pointer operand. static unsigned getPointerOperandIndex() { return 0U; } /// Returns the address space of the pointer operand. unsigned getPointerAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == PtrToInt; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // BitCastInst Class //===----------------------------------------------------------------------===// /// This class represents a no-op cast from one type to another. class BitCastInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical BitCastInst. BitCastInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics BitCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics BitCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == BitCast; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; //===----------------------------------------------------------------------===// // AddrSpaceCastInst Class //===----------------------------------------------------------------------===// /// This class represents a conversion between pointers from one address space /// to another. class AddrSpaceCastInst : public CastInst { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical AddrSpaceCastInst. AddrSpaceCastInst *cloneImpl() const; public: /// Constructor with insert-before-instruction semantics AddrSpaceCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr = "", ///< A name for the new instruction Instruction *InsertBefore = nullptr ///< Where to insert the new instruction ); /// Constructor with insert-at-end-of-block semantics AddrSpaceCastInst( Value *S, ///< The value to be casted Type *Ty, ///< The type to casted to const Twine &NameStr, ///< A name for the new instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); // Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Instruction *I) { return I->getOpcode() == AddrSpaceCast; } static bool classof(const Value *V) { return isa(V) && classof(cast(V)); } /// Gets the pointer operand. Value *getPointerOperand() { return getOperand(0); } /// Gets the pointer operand. const Value *getPointerOperand() const { return getOperand(0); } /// Gets the operand index of the pointer operand. static unsigned getPointerOperandIndex() { return 0U; } /// Returns the address space of the pointer operand. unsigned getSrcAddressSpace() const { return getPointerOperand()->getType()->getPointerAddressSpace(); } /// Returns the address space of the result. unsigned getDestAddressSpace() const { return getType()->getPointerAddressSpace(); } }; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// /// A helper function that returns the pointer operand of a load or store /// instruction. Returns nullptr if not load or store. inline const Value *getLoadStorePointerOperand(const Value *V) { if (auto *Load = dyn_cast(V)) return Load->getPointerOperand(); if (auto *Store = dyn_cast(V)) return Store->getPointerOperand(); return nullptr; } inline Value *getLoadStorePointerOperand(Value *V) { return const_cast( getLoadStorePointerOperand(static_cast(V))); } /// A helper function that returns the pointer operand of a load, store /// or GEP instruction. Returns nullptr if not load, store, or GEP. inline const Value *getPointerOperand(const Value *V) { if (auto *Ptr = getLoadStorePointerOperand(V)) return Ptr; if (auto *Gep = dyn_cast(V)) return Gep->getPointerOperand(); return nullptr; } inline Value *getPointerOperand(Value *V) { return const_cast(getPointerOperand(static_cast(V))); } /// A helper function that returns the alignment of load or store instruction. inline Align getLoadStoreAlignment(Value *I) { assert((isa(I) || isa(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast(I)) return LI->getAlign(); return cast(I)->getAlign(); } /// A helper function that returns the address space of the pointer operand of /// load or store instruction. inline unsigned getLoadStoreAddressSpace(Value *I) { assert((isa(I) || isa(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast(I)) return LI->getPointerAddressSpace(); return cast(I)->getPointerAddressSpace(); } /// A helper function that returns the type of a load or store instruction. inline Type *getLoadStoreType(Value *I) { assert((isa(I) || isa(I)) && "Expected Load or Store instruction"); if (auto *LI = dyn_cast(I)) return LI->getType(); return cast(I)->getValueOperand()->getType(); } /// A helper function that returns an atomic operation's sync scope; returns /// std::nullopt if it is not an atomic operation. inline std::optional getAtomicSyncScopeID(const Instruction *I) { if (!I->isAtomic()) return std::nullopt; if (auto *AI = dyn_cast(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast(I)) return AI->getSyncScopeID(); if (auto *AI = dyn_cast(I)) return AI->getSyncScopeID(); llvm_unreachable("unhandled atomic operation"); } //===----------------------------------------------------------------------===// // FreezeInst Class //===----------------------------------------------------------------------===// /// This class represents a freeze function that returns random concrete /// value if an operand is either a poison value or an undef value class FreezeInst : public UnaryInstruction { protected: // Note: Instruction needs to be a friend here to call cloneImpl. friend class Instruction; /// Clone an identical FreezeInst FreezeInst *cloneImpl() const; public: explicit FreezeInst(Value *S, const Twine &NameStr = "", Instruction *InsertBefore = nullptr); FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Instruction *I) { return I->getOpcode() == Freeze; } static inline bool classof(const Value *V) { return isa(V) && classof(cast(V)); } }; } // end namespace llvm #endif // LLVM_IR_INSTRUCTIONS_H