{-# LANGUAGE ConstraintKinds, DataKinds, DeriveDataTypeable, FlexibleContexts, FlexibleInstances, GeneralizedNewtypeDeriving, MultiParamTypeClasses, NoImplicitPrelude, PolyKinds, RebindableSyntax, RoleAnnotations, ScopedTypeVariables, StandaloneDeriving, TypeFamilies, UndecidableInstances #-} -- | An implementation of modular arithmetic, i.e., the ring Zq. module Crypto.Lol.Types.ZqBasic ( ZqBasic -- export the type, but not the constructor (for safety) ) where import Crypto.Lol.LatticePrelude as LP import Crypto.Lol.Reflects import Crypto.Lol.CRTrans import Crypto.Lol.Types.FiniteField import Crypto.Lol.Types.ZPP import Crypto.Lol.Gadget import Control.Applicative import Control.DeepSeq (NFData) import Control.Monad (liftM) import Data.Coerce import Data.Maybe import Data.Typeable import NumericPrelude.Numeric as NP (round) import System.Random import Test.QuickCheck -- for the Unbox instances import qualified Data.Vector.Generic as V import qualified Data.Vector.Generic.Mutable as M import qualified Data.Vector.Unboxed as U import Foreign.Storable -- for the Elt instance import qualified Data.Array.Repa.Eval as E import qualified Algebra.Additive as Additive (C) import qualified Algebra.Field as Field (C) import qualified Algebra.IntegralDomain as IntegralDomain (C) import qualified Algebra.Ring as Ring (C) import qualified Algebra.ZeroTestable as ZeroTestable (C) -- | The ring @Z_q@ of integers modulo 'q', using underlying integer -- type 'z'. newtype ZqBasic q z = ZqB z deriving (Eq, Ord, ZeroTestable.C, E.Elt, Show, NFData, Storable) -- the q argument, though phantom, matters for safety type role ZqBasic nominal representational --deriving instance (U.Unbox i) => V.Vector U.Vector (ZqBasic q i) --deriving instance (U.Unbox i) => M.MVector U.MVector (ZqBasic q i) --deriving instance (U.Unbox i) => U.Unbox (ZqBasic q i) -- convenience synonym for many instances type ReflectsTI q z = (Reflects q z, ToInteger z) reduce' :: forall q z . (ReflectsTI q z) => z -> ZqBasic q z reduce' = coerce . (`mod` proxy value (Proxy::Proxy q)) -- puts value in range [-q/2, q/2) decode' :: forall q z . (ReflectsTI q z) => ZqBasic q z -> z decode' = let qval = proxy value (Proxy::Proxy q) in \(ZqB x) -> if 2 * x < qval then x else x - qval instance (ReflectsTI q z, Enum z) => Enumerable (ZqBasic q z) where values = let qval :: z = proxy value (Proxy::Proxy q) in coerce [0..(qval-1)] instance (ReflectsTI q z) => Mod (ZqBasic q z) where type ModRep (ZqBasic q z) = z modulus = retag (value :: Tagged q z) type instance CharOf (ZqBasic p z) = p instance (PPow pp, zq ~ ZqBasic pp z, PrimeField (ZPOf zq), Ring zq, Ring (ZPOf zq)) => ZPP (ZqBasic (pp :: PrimePower) z) where type ZPOf (ZqBasic pp z) = ZqBasic (PrimePP pp) z modulusZPP = retag (ppPPow :: Tagged pp PP) liftZp = coerce instance (ReflectsTI q z) => Reduce z (ZqBasic q z) where reduce = reduce' instance (Reflects q z, Ring (ZqBasic q z)) => Reduce Integer (ZqBasic q z) where reduce = fromInteger instance (ReflectsTI q z) => Lift' (ZqBasic q z) where type LiftOf (ZqBasic q z) = z lift = decode' instance (ReflectsTI q z, ReflectsTI q' z, Ring z) => Rescale (ZqBasic q z) (ZqBasic q' z) where rescale = rescaleMod instance (Reflects p z, ReflectsTI q z, Field (ZqBasic p z), Field (ZqBasic q z)) => Encode (ZqBasic p z) (ZqBasic q z) where lsdToMSD = let pval :: z = proxy value (Proxy::Proxy p) negqval :: z = negate $ proxy value (Proxy::Proxy q) in (reduce' negqval, recip $ reduce' pval) -- instance of CRTrans instance (Reflects q z, PID z, r ~ (ZqBasic q z), Mod r, Enumerable r, Show z) -- for DT.trace => CRTrans (ZqBasic q z) where crtInfo = --DT.trace ("ZqBasic.crtInfo: q = " ++ -- show (proxy value (Proxy::Proxy q) :: z)) $ let qval :: z = proxy value (Proxy::Proxy q) in \m -> (,) <$> omegaPowMod m <*> -- CJP: using coerce depends on modinv returning in [0..q-1] (coerce $ fromIntegral (valueHat m) `modinv` qval) -- instance of CRTEmbed instance (ReflectsTI q z, Ring (ZqBasic q z)) => CRTEmbed (ZqBasic q z) where type CRTExt (ZqBasic q z) = Complex Double toExt (ZqB x) = fromReal $ fromIntegral x fromExt x = reduce' $ NP.round $ real x -- instance of Additive instance (ReflectsTI q z, Additive z) => Additive.C (ZqBasic q z) where -- CJP: "LHS too complicated to desugar"; might be fixed in 7.10: -- https://ghc.haskell.org/trac/ghc/ticket/8848 {-# SPECIALIZE instance ReflectsTI q Int => Additive.C (ZqBasic q Int) #-} {-# SPECIALIZE instance ReflectsTI q Int64 => Additive.C (ZqBasic q Int64) #-} zero = ZqB zero (+) = let qval = proxy value (Proxy::Proxy q) in \ (ZqB x) (ZqB y) -> let z = x + y in ZqB (if z >= qval then z - qval else z) negate (ZqB x) = reduce' $ negate x -- instance of Ring instance (ReflectsTI q z, Ring z) => Ring.C (ZqBasic q z) where (ZqB x) * (ZqB y) = reduce' $ x * y fromInteger x = let qval = toInteger (proxy value (Proxy::Proxy q) :: z) -- this is safe as long as type z can hold the value of q in ZqB $ fromInteger $ x `mod` qval -- instance of Field instance (ReflectsTI q z, PID z, Show z) => Field.C (ZqBasic q z) where recip = let qval = proxy value (Proxy::Proxy q) -- safe because modinv returns in range 0..qval-1 in \(ZqB x) -> ZqB $ fromMaybe (error $ "ZqB.recip fail: " ++ show x ++ "\t" ++ show qval) $ modinv x qval -- (canonical) instance of IntegralDomain, needed for FastCyc instance (Field (ZqBasic q z)) => IntegralDomain.C (ZqBasic q z) where divMod a b = (a/b, zero) -- Gadget-related instances instance (ReflectsTI q z, Additive z) => Gadget TrivGad (ZqBasic q z) where gadget = tag [one] instance (ReflectsTI q z, Ring z) => Decompose TrivGad (ZqBasic q z) where type DecompOf (ZqBasic q z) = z decompose x = tag [lift x] instance (ReflectsTI q z, Ring z) => Correct TrivGad (ZqBasic q z) where correct a = case untag a of [b] -> b _ -> error "Correct TrivGad: wrong length" instance (ReflectsTI q z, Additive z, Reflects b z) => Gadget (BaseBGad b) (ZqBasic q z) where gadget = let qval = proxy value (Proxy :: Proxy q) bval = proxy value (Proxy :: Proxy b) k = logCeil bval qval in tag $ map reduce' (take k (iterate (*bval) one)) instance (ReflectsTI q z, Ring z, Reflects b z) => Decompose (BaseBGad b) (ZqBasic q z) where type DecompOf (ZqBasic q z) = z decompose = let qval = proxy value (Proxy :: Proxy q) bval = proxy value (Proxy :: Proxy b) k = logCeil bval qval radices = replicate (k-1) bval in tag . decomp radices . lift -- TODO: implement Correct for BaseBGad b -- instance of Random instance (ReflectsTI q z, Random z) => Random (ZqBasic q z) where random = let high = proxy value (Proxy::Proxy q) - 1 in \g -> let (x,g') = randomR (0,high) g in (ZqB x, g') randomR _ = error "randomR non-sensical for Zq types" -- instance of Arbitrary instance (ReflectsTI q z, Random z) => Arbitrary (ZqBasic q z) where arbitrary = let qval :: z = proxy value (Proxy::Proxy q) in fromIntegral <$> choose (0, qval-1) shrink = shrinkNothing -- CJP: restored manual Unbox instances, until we have a better way -- (NewtypeDeriving or TH) newtype instance U.MVector s (ZqBasic q z) = MV_ZqBasic (U.MVector s z) newtype instance U.Vector (ZqBasic q z) = V_ZqBasic (U.Vector z) -- Unbox, when underlying representation is instance (U.Unbox z) => U.Unbox (ZqBasic q z) {- purloined and tweaked from code in `vector` package that defines types as unboxed -} instance (U.Unbox z) => M.MVector U.MVector (ZqBasic q z) where basicLength (MV_ZqBasic v) = M.basicLength v basicUnsafeSlice z n (MV_ZqBasic v) = MV_ZqBasic $ M.basicUnsafeSlice z n v basicOverlaps (MV_ZqBasic v1) (MV_ZqBasic v2) = M.basicOverlaps v1 v2 basicInitialize (MV_ZqBasic v) = M.basicInitialize v basicUnsafeNew n = MV_ZqBasic `liftM` M.basicUnsafeNew n basicUnsafeReplicate n (ZqB x) = MV_ZqBasic `liftM` M.basicUnsafeReplicate n x basicUnsafeRead (MV_ZqBasic v) z = ZqB `liftM` M.basicUnsafeRead v z basicUnsafeWrite (MV_ZqBasic v) z (ZqB x) = M.basicUnsafeWrite v z x basicClear (MV_ZqBasic v) = M.basicClear v basicSet (MV_ZqBasic v) (ZqB x) = M.basicSet v x basicUnsafeCopy (MV_ZqBasic v1) (MV_ZqBasic v2) = M.basicUnsafeCopy v1 v2 basicUnsafeMove (MV_ZqBasic v1) (MV_ZqBasic v2) = M.basicUnsafeMove v1 v2 basicUnsafeGrow (MV_ZqBasic v) n = MV_ZqBasic `liftM` M.basicUnsafeGrow v n instance (U.Unbox z) => V.Vector U.Vector (ZqBasic q z) where basicUnsafeFreeze (MV_ZqBasic v) = V_ZqBasic `liftM` V.basicUnsafeFreeze v basicUnsafeThaw (V_ZqBasic v) = MV_ZqBasic `liftM` V.basicUnsafeThaw v basicLength (V_ZqBasic v) = V.basicLength v basicUnsafeSlice z n (V_ZqBasic v) = V_ZqBasic $ V.basicUnsafeSlice z n v basicUnsafeIndexM (V_ZqBasic v) z = ZqB `liftM` V.basicUnsafeIndexM v z basicUnsafeCopy (MV_ZqBasic mv) (V_ZqBasic v) = V.basicUnsafeCopy mv v elemseq _ = seq