/////////////////////////////////////////////////////////////////////////////// // /// \file sha256.c /// \brief SHA-256 /// /// \todo Crypto++ has x86 ASM optimizations. They use SSE so if they /// are imported to liblzma, SSE instructions need to be used /// conditionally to keep the code working on older boxes. // // This code is based on the code found from 7-Zip, which has a modified // version of the SHA-256 found from Crypto++ . // The code was modified a little to fit into liblzma. // // Authors: Kevin Springle // Wei Dai // Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "check.h" // Rotate a uint32_t. GCC can optimize this to a rotate instruction // at least on x86. static inline uint32_t rotr_32(uint32_t num, unsigned amount) { return (num >> amount) | (num << (32 - amount)); } #define blk0(i) (W[i] = conv32be(data[i])) #define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \ + s0(W[(i - 15) & 15])) #define Ch(x, y, z) (z ^ (x & (y ^ z))) #define Maj(x, y, z) ((x & (y ^ z)) + (y & z)) #define a(i) T[(0 - i) & 7] #define b(i) T[(1 - i) & 7] #define c(i) T[(2 - i) & 7] #define d(i) T[(3 - i) & 7] #define e(i) T[(4 - i) & 7] #define f(i) T[(5 - i) & 7] #define g(i) T[(6 - i) & 7] #define h(i) T[(7 - i) & 7] #define R(i, j, blk) \ h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \ d(i) += h(i); \ h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) #define R0(i) R(i, 0, blk0(i)) #define R2(i) R(i, j, blk2(i)) #define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2) #define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6) #define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3)) #define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10)) static const uint32_t SHA256_K[64] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; static void transform(uint32_t state[8], const uint32_t data[16]) { uint32_t W[16]; uint32_t T[8]; // Copy state[] to working vars. memcpy(T, state, sizeof(T)); // The first 16 operations unrolled R0( 0); R0( 1); R0( 2); R0( 3); R0( 4); R0( 5); R0( 6); R0( 7); R0( 8); R0( 9); R0(10); R0(11); R0(12); R0(13); R0(14); R0(15); // The remaining 48 operations partially unrolled for (unsigned int j = 16; j < 64; j += 16) { R2( 0); R2( 1); R2( 2); R2( 3); R2( 4); R2( 5); R2( 6); R2( 7); R2( 8); R2( 9); R2(10); R2(11); R2(12); R2(13); R2(14); R2(15); } // Add the working vars back into state[]. state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } static void process(lzma_check_state *check) { transform(check->state.sha256.state, check->buffer.u32); return; } extern void lzma_sha256_init(lzma_check_state *check) { static const uint32_t s[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, }; memcpy(check->state.sha256.state, s, sizeof(s)); check->state.sha256.size = 0; return; } extern void lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check) { // Copy the input data into a properly aligned temporary buffer. // This way we can be called with arbitrarily sized buffers // (no need to be multiple of 64 bytes), and the code works also // on architectures that don't allow unaligned memory access. while (size > 0) { const size_t copy_start = check->state.sha256.size & 0x3F; size_t copy_size = 64 - copy_start; if (copy_size > size) copy_size = size; memcpy(check->buffer.u8 + copy_start, buf, copy_size); buf += copy_size; size -= copy_size; check->state.sha256.size += copy_size; if ((check->state.sha256.size & 0x3F) == 0) process(check); } return; } extern void lzma_sha256_finish(lzma_check_state *check) { // Add padding as described in RFC 3174 (it describes SHA-1 but // the same padding style is used for SHA-256 too). size_t pos = check->state.sha256.size & 0x3F; check->buffer.u8[pos++] = 0x80; while (pos != 64 - 8) { if (pos == 64) { process(check); pos = 0; } check->buffer.u8[pos++] = 0x00; } // Convert the message size from bytes to bits. check->state.sha256.size *= 8; check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size); process(check); for (size_t i = 0; i < 8; ++i) check->buffer.u32[i] = conv32be(check->state.sha256.state[i]); return; }