/////////////////////////////////////////////////////////////////////////////// // /// \file index.c /// \brief Handling of .xz Indexes and some other Stream information // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "index.h" #include "stream_flags_common.h" /// \brief How many Records to allocate at once /// /// This should be big enough to avoid making lots of tiny allocations /// but small enough to avoid too much unused memory at once. #define INDEX_GROUP_SIZE 512 /// \brief How many Records can be allocated at once at maximum #define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record)) /// \brief Base structure for index_stream and index_group structures typedef struct index_tree_node_s index_tree_node; struct index_tree_node_s { /// Uncompressed start offset of this Stream (relative to the /// beginning of the file) or Block (relative to the beginning /// of the Stream) lzma_vli uncompressed_base; /// Compressed start offset of this Stream or Block lzma_vli compressed_base; index_tree_node *parent; index_tree_node *left; index_tree_node *right; }; /// \brief AVL tree to hold index_stream or index_group structures typedef struct { /// Root node index_tree_node *root; /// Leftmost node. Since the tree will be filled sequentially, /// this won't change after the first node has been added to /// the tree. index_tree_node *leftmost; /// The rightmost node in the tree. Since the tree is filled /// sequentially, this is always the node where to add the new data. index_tree_node *rightmost; /// Number of nodes in the tree uint32_t count; } index_tree; typedef struct { lzma_vli uncompressed_sum; lzma_vli unpadded_sum; } index_record; typedef struct { /// Every Record group is part of index_stream.groups tree. index_tree_node node; /// Number of Blocks in this Stream before this group. lzma_vli number_base; /// Number of Records that can be put in records[]. size_t allocated; /// Index of the last Record in use. size_t last; /// The sizes in this array are stored as cumulative sums relative /// to the beginning of the Stream. This makes it possible to /// use binary search in lzma_index_locate(). /// /// Note that the cumulative summing is done specially for /// unpadded_sum: The previous value is rounded up to the next /// multiple of four before adding the Unpadded Size of the new /// Block. The total encoded size of the Blocks in the Stream /// is records[last].unpadded_sum in the last Record group of /// the Stream. /// /// For example, if the Unpadded Sizes are 39, 57, and 81, the /// stored values are 39, 97 (40 + 57), and 181 (100 + 181). /// The total encoded size of these Blocks is 184. /// /// This is a flexible array, because it makes easy to optimize /// memory usage in case someone concatenates many Streams that /// have only one or few Blocks. index_record records[]; } index_group; typedef struct { /// Every index_stream is a node in the tree of Sreams. index_tree_node node; /// Number of this Stream (first one is 1) uint32_t number; /// Total number of Blocks before this Stream lzma_vli block_number_base; /// Record groups of this Stream are stored in a tree. /// It's a T-tree with AVL-tree balancing. There are /// INDEX_GROUP_SIZE Records per node by default. /// This keeps the number of memory allocations reasonable /// and finding a Record is fast. index_tree groups; /// Number of Records in this Stream lzma_vli record_count; /// Size of the List of Records field in this Stream. This is used /// together with record_count to calculate the size of the Index /// field and thus the total size of the Stream. lzma_vli index_list_size; /// Stream Flags of this Stream. This is meaningful only if /// the Stream Flags have been told us with lzma_index_stream_flags(). /// Initially stream_flags.version is set to UINT32_MAX to indicate /// that the Stream Flags are unknown. lzma_stream_flags stream_flags; /// Amount of Stream Padding after this Stream. This defaults to /// zero and can be set with lzma_index_stream_padding(). lzma_vli stream_padding; } index_stream; struct lzma_index_s { /// AVL-tree containing the Stream(s). Often there is just one /// Stream, but using a tree keeps lookups fast even when there /// are many concatenated Streams. index_tree streams; /// Uncompressed size of all the Blocks in the Stream(s) lzma_vli uncompressed_size; /// Total size of all the Blocks in the Stream(s) lzma_vli total_size; /// Total number of Records in all Streams in this lzma_index lzma_vli record_count; /// Size of the List of Records field if all the Streams in this /// lzma_index were packed into a single Stream (makes it simpler to /// take many .xz files and combine them into a single Stream). /// /// This value together with record_count is needed to calculate /// Backward Size that is stored into Stream Footer. lzma_vli index_list_size; /// How many Records to allocate at once in lzma_index_append(). /// This defaults to INDEX_GROUP_SIZE but can be overriden with /// lzma_index_prealloc(). size_t prealloc; /// Bitmask indicating what integrity check types have been used /// as set by lzma_index_stream_flags(). The bit of the last Stream /// is not included here, since it is possible to change it by /// calling lzma_index_stream_flags() again. uint32_t checks; }; static void index_tree_init(index_tree *tree) { tree->root = NULL; tree->leftmost = NULL; tree->rightmost = NULL; tree->count = 0; return; } /// Helper for index_tree_end() static void index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator, void (*free_func)(void *node, const lzma_allocator *allocator)) { // The tree won't ever be very huge, so recursion should be fine. // 20 levels in the tree is likely quite a lot already in practice. if (node->left != NULL) index_tree_node_end(node->left, allocator, free_func); if (node->right != NULL) index_tree_node_end(node->right, allocator, free_func); if (free_func != NULL) free_func(node, allocator); lzma_free(node, allocator); return; } /// Free the meory allocated for a tree. If free_func is not NULL, /// it is called on each node before freeing the node. This is used /// to free the Record groups from each index_stream before freeing /// the index_stream itself. static void index_tree_end(index_tree *tree, const lzma_allocator *allocator, void (*free_func)(void *node, const lzma_allocator *allocator)) { if (tree->root != NULL) index_tree_node_end(tree->root, allocator, free_func); return; } /// Add a new node to the tree. node->uncompressed_base and /// node->compressed_base must have been set by the caller already. static void index_tree_append(index_tree *tree, index_tree_node *node) { node->parent = tree->rightmost; node->left = NULL; node->right = NULL; ++tree->count; // Handle the special case of adding the first node. if (tree->root == NULL) { tree->root = node; tree->leftmost = node; tree->rightmost = node; return; } // The tree is always filled sequentially. assert(tree->rightmost->uncompressed_base <= node->uncompressed_base); assert(tree->rightmost->compressed_base < node->compressed_base); // Add the new node after the rightmost node. It's the correct // place due to the reason above. tree->rightmost->right = node; tree->rightmost = node; // Balance the AVL-tree if needed. We don't need to keep the balance // factors in nodes, because we always fill the tree sequentially, // and thus know the state of the tree just by looking at the node // count. From the node count we can calculate how many steps to go // up in the tree to find the rotation root. uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count)); if (up != 0) { // Locate the root node for the rotation. up = ctz32(tree->count) + 2; do { node = node->parent; } while (--up > 0); // Rotate left using node as the rotation root. index_tree_node *pivot = node->right; if (node->parent == NULL) { tree->root = pivot; } else { assert(node->parent->right == node); node->parent->right = pivot; } pivot->parent = node->parent; node->right = pivot->left; if (node->right != NULL) node->right->parent = node; pivot->left = node; node->parent = pivot; } return; } /// Get the next node in the tree. Return NULL if there are no more nodes. static void * index_tree_next(const index_tree_node *node) { if (node->right != NULL) { node = node->right; while (node->left != NULL) node = node->left; return (void *)(node); } while (node->parent != NULL && node->parent->right == node) node = node->parent; return (void *)(node->parent); } /// Locate a node that contains the given uncompressed offset. It is /// caller's job to check that target is not bigger than the uncompressed /// size of the tree (the last node would be returned in that case still). static void * index_tree_locate(const index_tree *tree, lzma_vli target) { const index_tree_node *result = NULL; const index_tree_node *node = tree->root; assert(tree->leftmost == NULL || tree->leftmost->uncompressed_base == 0); // Consecutive nodes may have the same uncompressed_base. // We must pick the rightmost one. while (node != NULL) { if (node->uncompressed_base > target) { node = node->left; } else { result = node; node = node->right; } } return (void *)(result); } /// Allocate and initialize a new Stream using the given base offsets. static index_stream * index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base, uint32_t stream_number, lzma_vli block_number_base, const lzma_allocator *allocator) { index_stream *s = lzma_alloc(sizeof(index_stream), allocator); if (s == NULL) return NULL; s->node.uncompressed_base = uncompressed_base; s->node.compressed_base = compressed_base; s->node.parent = NULL; s->node.left = NULL; s->node.right = NULL; s->number = stream_number; s->block_number_base = block_number_base; index_tree_init(&s->groups); s->record_count = 0; s->index_list_size = 0; s->stream_flags.version = UINT32_MAX; s->stream_padding = 0; return s; } /// Free the memory allocated for a Stream and its Record groups. static void index_stream_end(void *node, const lzma_allocator *allocator) { index_stream *s = node; index_tree_end(&s->groups, allocator, NULL); return; } static lzma_index * index_init_plain(const lzma_allocator *allocator) { lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator); if (i != NULL) { index_tree_init(&i->streams); i->uncompressed_size = 0; i->total_size = 0; i->record_count = 0; i->index_list_size = 0; i->prealloc = INDEX_GROUP_SIZE; i->checks = 0; } return i; } extern LZMA_API(lzma_index *) lzma_index_init(const lzma_allocator *allocator) { lzma_index *i = index_init_plain(allocator); if (i == NULL) return NULL; index_stream *s = index_stream_init(0, 0, 1, 0, allocator); if (s == NULL) { lzma_free(i, allocator); return NULL; } index_tree_append(&i->streams, &s->node); return i; } extern LZMA_API(void) lzma_index_end(lzma_index *i, const lzma_allocator *allocator) { // NOTE: If you modify this function, check also the bottom // of lzma_index_cat(). if (i != NULL) { index_tree_end(&i->streams, allocator, &index_stream_end); lzma_free(i, allocator); } return; } extern void lzma_index_prealloc(lzma_index *i, lzma_vli records) { if (records > PREALLOC_MAX) records = PREALLOC_MAX; i->prealloc = (size_t)(records); return; } extern LZMA_API(uint64_t) lzma_index_memusage(lzma_vli streams, lzma_vli blocks) { // This calculates an upper bound that is only a little bit // bigger than the exact maximum memory usage with the given // parameters. // Typical malloc() overhead is 2 * sizeof(void *) but we take // a little bit extra just in case. Using LZMA_MEMUSAGE_BASE // instead would give too inaccurate estimate. const size_t alloc_overhead = 4 * sizeof(void *); // Amount of memory needed for each Stream base structures. // We assume that every Stream has at least one Block and // thus at least one group. const size_t stream_base = sizeof(index_stream) + sizeof(index_group) + 2 * alloc_overhead; // Amount of memory needed per group. const size_t group_base = sizeof(index_group) + INDEX_GROUP_SIZE * sizeof(index_record) + alloc_overhead; // Number of groups. There may actually be more, but that overhead // has been taken into account in stream_base already. const lzma_vli groups = (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE; // Memory used by index_stream and index_group structures. const uint64_t streams_mem = streams * stream_base; const uint64_t groups_mem = groups * group_base; // Memory used by the base structure. const uint64_t index_base = sizeof(lzma_index) + alloc_overhead; // Validate the arguments and catch integer overflows. // Maximum number of Streams is "only" UINT32_MAX, because // that limit is used by the tree containing the Streams. const uint64_t limit = UINT64_MAX - index_base; if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX || streams > limit / stream_base || groups > limit / group_base || limit - streams_mem < groups_mem) return UINT64_MAX; return index_base + streams_mem + groups_mem; } extern LZMA_API(uint64_t) lzma_index_memused(const lzma_index *i) { return lzma_index_memusage(i->streams.count, i->record_count); } extern LZMA_API(lzma_vli) lzma_index_block_count(const lzma_index *i) { return i->record_count; } extern LZMA_API(lzma_vli) lzma_index_stream_count(const lzma_index *i) { return i->streams.count; } extern LZMA_API(lzma_vli) lzma_index_size(const lzma_index *i) { return index_size(i->record_count, i->index_list_size); } extern LZMA_API(lzma_vli) lzma_index_total_size(const lzma_index *i) { return i->total_size; } extern LZMA_API(lzma_vli) lzma_index_stream_size(const lzma_index *i) { // Stream Header + Blocks + Index + Stream Footer return LZMA_STREAM_HEADER_SIZE + i->total_size + index_size(i->record_count, i->index_list_size) + LZMA_STREAM_HEADER_SIZE; } static lzma_vli index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum, lzma_vli record_count, lzma_vli index_list_size, lzma_vli stream_padding) { // Earlier Streams and Stream Paddings + Stream Header // + Blocks + Index + Stream Footer + Stream Padding // // This might go over LZMA_VLI_MAX due to too big unpadded_sum // when this function is used in lzma_index_append(). lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE + stream_padding + vli_ceil4(unpadded_sum); if (file_size > LZMA_VLI_MAX) return LZMA_VLI_UNKNOWN; // The same applies here. file_size += index_size(record_count, index_list_size); if (file_size > LZMA_VLI_MAX) return LZMA_VLI_UNKNOWN; return file_size; } extern LZMA_API(lzma_vli) lzma_index_file_size(const lzma_index *i) { const index_stream *s = (const index_stream *)(i->streams.rightmost); const index_group *g = (const index_group *)(s->groups.rightmost); return index_file_size(s->node.compressed_base, g == NULL ? 0 : g->records[g->last].unpadded_sum, s->record_count, s->index_list_size, s->stream_padding); } extern LZMA_API(lzma_vli) lzma_index_uncompressed_size(const lzma_index *i) { return i->uncompressed_size; } extern LZMA_API(uint32_t) lzma_index_checks(const lzma_index *i) { uint32_t checks = i->checks; // Get the type of the Check of the last Stream too. const index_stream *s = (const index_stream *)(i->streams.rightmost); if (s->stream_flags.version != UINT32_MAX) checks |= UINT32_C(1) << s->stream_flags.check; return checks; } extern uint32_t lzma_index_padding_size(const lzma_index *i) { return (LZMA_VLI_C(4) - index_size_unpadded( i->record_count, i->index_list_size)) & 3; } extern LZMA_API(lzma_ret) lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags) { if (i == NULL || stream_flags == NULL) return LZMA_PROG_ERROR; // Validate the Stream Flags. return_if_error(lzma_stream_flags_compare( stream_flags, stream_flags)); index_stream *s = (index_stream *)(i->streams.rightmost); s->stream_flags = *stream_flags; return LZMA_OK; } extern LZMA_API(lzma_ret) lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding) { if (i == NULL || stream_padding > LZMA_VLI_MAX || (stream_padding & 3) != 0) return LZMA_PROG_ERROR; index_stream *s = (index_stream *)(i->streams.rightmost); // Check that the new value won't make the file grow too big. const lzma_vli old_stream_padding = s->stream_padding; s->stream_padding = 0; if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) { s->stream_padding = old_stream_padding; return LZMA_DATA_ERROR; } s->stream_padding = stream_padding; return LZMA_OK; } extern LZMA_API(lzma_ret) lzma_index_append(lzma_index *i, const lzma_allocator *allocator, lzma_vli unpadded_size, lzma_vli uncompressed_size) { // Validate. if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN || unpadded_size > UNPADDED_SIZE_MAX || uncompressed_size > LZMA_VLI_MAX) return LZMA_PROG_ERROR; index_stream *s = (index_stream *)(i->streams.rightmost); index_group *g = (index_group *)(s->groups.rightmost); const lzma_vli compressed_base = g == NULL ? 0 : vli_ceil4(g->records[g->last].unpadded_sum); const lzma_vli uncompressed_base = g == NULL ? 0 : g->records[g->last].uncompressed_sum; const uint32_t index_list_size_add = lzma_vli_size(unpadded_size) + lzma_vli_size(uncompressed_size); // Check that the file size will stay within limits. if (index_file_size(s->node.compressed_base, compressed_base + unpadded_size, s->record_count + 1, s->index_list_size + index_list_size_add, s->stream_padding) == LZMA_VLI_UNKNOWN) return LZMA_DATA_ERROR; // The size of the Index field must not exceed the maximum value // that can be stored in the Backward Size field. if (index_size(i->record_count + 1, i->index_list_size + index_list_size_add) > LZMA_BACKWARD_SIZE_MAX) return LZMA_DATA_ERROR; if (g != NULL && g->last + 1 < g->allocated) { // There is space in the last group at least for one Record. ++g->last; } else { // We need to allocate a new group. g = lzma_alloc(sizeof(index_group) + i->prealloc * sizeof(index_record), allocator); if (g == NULL) return LZMA_MEM_ERROR; g->last = 0; g->allocated = i->prealloc; // Reset prealloc so that if the application happens to // add new Records, the allocation size will be sane. i->prealloc = INDEX_GROUP_SIZE; // Set the start offsets of this group. g->node.uncompressed_base = uncompressed_base; g->node.compressed_base = compressed_base; g->number_base = s->record_count + 1; // Add the new group to the Stream. index_tree_append(&s->groups, &g->node); } // Add the new Record to the group. g->records[g->last].uncompressed_sum = uncompressed_base + uncompressed_size; g->records[g->last].unpadded_sum = compressed_base + unpadded_size; // Update the totals. ++s->record_count; s->index_list_size += index_list_size_add; i->total_size += vli_ceil4(unpadded_size); i->uncompressed_size += uncompressed_size; ++i->record_count; i->index_list_size += index_list_size_add; return LZMA_OK; } /// Structure to pass info to index_cat_helper() typedef struct { /// Uncompressed size of the destination lzma_vli uncompressed_size; /// Compressed file size of the destination lzma_vli file_size; /// Same as above but for Block numbers lzma_vli block_number_add; /// Number of Streams that were in the destination index before we /// started appending new Streams from the source index. This is /// used to fix the Stream numbering. uint32_t stream_number_add; /// Destination index' Stream tree index_tree *streams; } index_cat_info; /// Add the Stream nodes from the source index to dest using recursion. /// Simplest iterative traversal of the source tree wouldn't work, because /// we update the pointers in nodes when moving them to the destination tree. static void index_cat_helper(const index_cat_info *info, index_stream *this) { index_stream *left = (index_stream *)(this->node.left); index_stream *right = (index_stream *)(this->node.right); if (left != NULL) index_cat_helper(info, left); this->node.uncompressed_base += info->uncompressed_size; this->node.compressed_base += info->file_size; this->number += info->stream_number_add; this->block_number_base += info->block_number_add; index_tree_append(info->streams, &this->node); if (right != NULL) index_cat_helper(info, right); return; } extern LZMA_API(lzma_ret) lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src, const lzma_allocator *allocator) { const lzma_vli dest_file_size = lzma_index_file_size(dest); // Check that we don't exceed the file size limits. if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX || dest->uncompressed_size + src->uncompressed_size > LZMA_VLI_MAX) return LZMA_DATA_ERROR; // Check that the encoded size of the combined lzma_indexes stays // within limits. In theory, this should be done only if we know // that the user plans to actually combine the Streams and thus // construct a single Index (probably rare). However, exceeding // this limit is quite theoretical, so we do this check always // to simplify things elsewhere. { const lzma_vli dest_size = index_size_unpadded( dest->record_count, dest->index_list_size); const lzma_vli src_size = index_size_unpadded( src->record_count, src->index_list_size); if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX) return LZMA_DATA_ERROR; } // Optimize the last group to minimize memory usage. Allocation has // to be done before modifying dest or src. { index_stream *s = (index_stream *)(dest->streams.rightmost); index_group *g = (index_group *)(s->groups.rightmost); if (g != NULL && g->last + 1 < g->allocated) { assert(g->node.left == NULL); assert(g->node.right == NULL); index_group *newg = lzma_alloc(sizeof(index_group) + (g->last + 1) * sizeof(index_record), allocator); if (newg == NULL) return LZMA_MEM_ERROR; newg->node = g->node; newg->allocated = g->last + 1; newg->last = g->last; newg->number_base = g->number_base; memcpy(newg->records, g->records, newg->allocated * sizeof(index_record)); if (g->node.parent != NULL) { assert(g->node.parent->right == &g->node); g->node.parent->right = &newg->node; } if (s->groups.leftmost == &g->node) { assert(s->groups.root == &g->node); s->groups.leftmost = &newg->node; s->groups.root = &newg->node; } if (s->groups.rightmost == &g->node) s->groups.rightmost = &newg->node; lzma_free(g, allocator); } } // Add all the Streams from src to dest. Update the base offsets // of each Stream from src. const index_cat_info info = { .uncompressed_size = dest->uncompressed_size, .file_size = dest_file_size, .stream_number_add = dest->streams.count, .block_number_add = dest->record_count, .streams = &dest->streams, }; index_cat_helper(&info, (index_stream *)(src->streams.root)); // Update info about all the combined Streams. dest->uncompressed_size += src->uncompressed_size; dest->total_size += src->total_size; dest->record_count += src->record_count; dest->index_list_size += src->index_list_size; dest->checks = lzma_index_checks(dest) | src->checks; // There's nothing else left in src than the base structure. lzma_free(src, allocator); return LZMA_OK; } /// Duplicate an index_stream. static index_stream * index_dup_stream(const index_stream *src, const lzma_allocator *allocator) { // Catch a somewhat theoretical integer overflow. if (src->record_count > PREALLOC_MAX) return NULL; // Allocate and initialize a new Stream. index_stream *dest = index_stream_init(src->node.compressed_base, src->node.uncompressed_base, src->number, src->block_number_base, allocator); // Return immediately if allocation failed or if there are // no groups to duplicate. if (dest == NULL || src->groups.leftmost == NULL) return dest; // Copy the overall information. dest->record_count = src->record_count; dest->index_list_size = src->index_list_size; dest->stream_flags = src->stream_flags; dest->stream_padding = src->stream_padding; // Allocate memory for the Records. We put all the Records into // a single group. It's simplest and also tends to make // lzma_index_locate() a little bit faster with very big Indexes. index_group *destg = lzma_alloc(sizeof(index_group) + src->record_count * sizeof(index_record), allocator); if (destg == NULL) { index_stream_end(dest, allocator); return NULL; } // Initialize destg. destg->node.uncompressed_base = 0; destg->node.compressed_base = 0; destg->number_base = 1; destg->allocated = src->record_count; destg->last = src->record_count - 1; // Go through all the groups in src and copy the Records into destg. const index_group *srcg = (const index_group *)(src->groups.leftmost); size_t i = 0; do { memcpy(destg->records + i, srcg->records, (srcg->last + 1) * sizeof(index_record)); i += srcg->last + 1; srcg = index_tree_next(&srcg->node); } while (srcg != NULL); assert(i == destg->allocated); // Add the group to the new Stream. index_tree_append(&dest->groups, &destg->node); return dest; } extern LZMA_API(lzma_index *) lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator) { // Allocate the base structure (no initial Stream). lzma_index *dest = index_init_plain(allocator); if (dest == NULL) return NULL; // Copy the totals. dest->uncompressed_size = src->uncompressed_size; dest->total_size = src->total_size; dest->record_count = src->record_count; dest->index_list_size = src->index_list_size; // Copy the Streams and the groups in them. const index_stream *srcstream = (const index_stream *)(src->streams.leftmost); do { index_stream *deststream = index_dup_stream( srcstream, allocator); if (deststream == NULL) { lzma_index_end(dest, allocator); return NULL; } index_tree_append(&dest->streams, &deststream->node); srcstream = index_tree_next(&srcstream->node); } while (srcstream != NULL); return dest; } /// Indexing for lzma_index_iter.internal[] enum { ITER_INDEX, ITER_STREAM, ITER_GROUP, ITER_RECORD, ITER_METHOD, }; /// Values for lzma_index_iter.internal[ITER_METHOD].s enum { ITER_METHOD_NORMAL, ITER_METHOD_NEXT, ITER_METHOD_LEFTMOST, }; static void iter_set_info(lzma_index_iter *iter) { const lzma_index *i = iter->internal[ITER_INDEX].p; const index_stream *stream = iter->internal[ITER_STREAM].p; const index_group *group = iter->internal[ITER_GROUP].p; const size_t record = iter->internal[ITER_RECORD].s; // lzma_index_iter.internal must not contain a pointer to the last // group in the index, because that may be reallocated by // lzma_index_cat(). if (group == NULL) { // There are no groups. assert(stream->groups.root == NULL); iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; } else if (i->streams.rightmost != &stream->node || stream->groups.rightmost != &group->node) { // The group is not not the last group in the index. iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; } else if (stream->groups.leftmost != &group->node) { // The group isn't the only group in the Stream, thus we // know that it must have a parent group i.e. it's not // the root node. assert(stream->groups.root != &group->node); assert(group->node.parent->right == &group->node); iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT; iter->internal[ITER_GROUP].p = group->node.parent; } else { // The Stream has only one group. assert(stream->groups.root == &group->node); assert(group->node.parent == NULL); iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST; iter->internal[ITER_GROUP].p = NULL; } // NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t // internally. iter->stream.number = stream->number; iter->stream.block_count = stream->record_count; iter->stream.compressed_offset = stream->node.compressed_base; iter->stream.uncompressed_offset = stream->node.uncompressed_base; // iter->stream.flags will be NULL if the Stream Flags haven't been // set with lzma_index_stream_flags(). iter->stream.flags = stream->stream_flags.version == UINT32_MAX ? NULL : &stream->stream_flags; iter->stream.padding = stream->stream_padding; if (stream->groups.rightmost == NULL) { // Stream has no Blocks. iter->stream.compressed_size = index_size(0, 0) + 2 * LZMA_STREAM_HEADER_SIZE; iter->stream.uncompressed_size = 0; } else { const index_group *g = (const index_group *)( stream->groups.rightmost); // Stream Header + Stream Footer + Index + Blocks iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE + index_size(stream->record_count, stream->index_list_size) + vli_ceil4(g->records[g->last].unpadded_sum); iter->stream.uncompressed_size = g->records[g->last].uncompressed_sum; } if (group != NULL) { iter->block.number_in_stream = group->number_base + record; iter->block.number_in_file = iter->block.number_in_stream + stream->block_number_base; iter->block.compressed_stream_offset = record == 0 ? group->node.compressed_base : vli_ceil4(group->records[ record - 1].unpadded_sum); iter->block.uncompressed_stream_offset = record == 0 ? group->node.uncompressed_base : group->records[record - 1].uncompressed_sum; iter->block.uncompressed_size = group->records[record].uncompressed_sum - iter->block.uncompressed_stream_offset; iter->block.unpadded_size = group->records[record].unpadded_sum - iter->block.compressed_stream_offset; iter->block.total_size = vli_ceil4(iter->block.unpadded_size); iter->block.compressed_stream_offset += LZMA_STREAM_HEADER_SIZE; iter->block.compressed_file_offset = iter->block.compressed_stream_offset + iter->stream.compressed_offset; iter->block.uncompressed_file_offset = iter->block.uncompressed_stream_offset + iter->stream.uncompressed_offset; } return; } extern LZMA_API(void) lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i) { iter->internal[ITER_INDEX].p = i; lzma_index_iter_rewind(iter); return; } extern LZMA_API(void) lzma_index_iter_rewind(lzma_index_iter *iter) { iter->internal[ITER_STREAM].p = NULL; iter->internal[ITER_GROUP].p = NULL; iter->internal[ITER_RECORD].s = 0; iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL; return; } extern LZMA_API(lzma_bool) lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode) { // Catch unsupported mode values. if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK) return true; const lzma_index *i = iter->internal[ITER_INDEX].p; const index_stream *stream = iter->internal[ITER_STREAM].p; const index_group *group = NULL; size_t record = iter->internal[ITER_RECORD].s; // If we are being asked for the next Stream, leave group to NULL // so that the rest of the this function thinks that this Stream // has no groups and will thus go to the next Stream. if (mode != LZMA_INDEX_ITER_STREAM) { // Get the pointer to the current group. See iter_set_inf() // for explanation. switch (iter->internal[ITER_METHOD].s) { case ITER_METHOD_NORMAL: group = iter->internal[ITER_GROUP].p; break; case ITER_METHOD_NEXT: group = index_tree_next(iter->internal[ITER_GROUP].p); break; case ITER_METHOD_LEFTMOST: group = (const index_group *)( stream->groups.leftmost); break; } } again: if (stream == NULL) { // We at the beginning of the lzma_index. // Locate the first Stream. stream = (const index_stream *)(i->streams.leftmost); if (mode >= LZMA_INDEX_ITER_BLOCK) { // Since we are being asked to return information // about the first a Block, skip Streams that have // no Blocks. while (stream->groups.leftmost == NULL) { stream = index_tree_next(&stream->node); if (stream == NULL) return true; } } // Start from the first Record in the Stream. group = (const index_group *)(stream->groups.leftmost); record = 0; } else if (group != NULL && record < group->last) { // The next Record is in the same group. ++record; } else { // This group has no more Records or this Stream has // no Blocks at all. record = 0; // If group is not NULL, this Stream has at least one Block // and thus at least one group. Find the next group. if (group != NULL) group = index_tree_next(&group->node); if (group == NULL) { // This Stream has no more Records. Find the next // Stream. If we are being asked to return information // about a Block, we skip empty Streams. do { stream = index_tree_next(&stream->node); if (stream == NULL) return true; } while (mode >= LZMA_INDEX_ITER_BLOCK && stream->groups.leftmost == NULL); group = (const index_group *)( stream->groups.leftmost); } } if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) { // We need to look for the next Block again if this Block // is empty. if (record == 0) { if (group->node.uncompressed_base == group->records[0].uncompressed_sum) goto again; } else if (group->records[record - 1].uncompressed_sum == group->records[record].uncompressed_sum) { goto again; } } iter->internal[ITER_STREAM].p = stream; iter->internal[ITER_GROUP].p = group; iter->internal[ITER_RECORD].s = record; iter_set_info(iter); return false; } extern LZMA_API(lzma_bool) lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target) { const lzma_index *i = iter->internal[ITER_INDEX].p; // If the target is past the end of the file, return immediately. if (i->uncompressed_size <= target) return true; // Locate the Stream containing the target offset. const index_stream *stream = index_tree_locate(&i->streams, target); assert(stream != NULL); target -= stream->node.uncompressed_base; // Locate the group containing the target offset. const index_group *group = index_tree_locate(&stream->groups, target); assert(group != NULL); // Use binary search to locate the exact Record. It is the first // Record whose uncompressed_sum is greater than target. // This is because we want the rightmost Record that fullfills the // search criterion. It is possible that there are empty Blocks; // we don't want to return them. size_t left = 0; size_t right = group->last; while (left < right) { const size_t pos = left + (right - left) / 2; if (group->records[pos].uncompressed_sum <= target) left = pos + 1; else right = pos; } iter->internal[ITER_STREAM].p = stream; iter->internal[ITER_GROUP].p = group; iter->internal[ITER_RECORD].s = left; iter_set_info(iter); return false; }