/////////////////////////////////////////////////////////////////////////////// // /// \file fastpos.h /// \brief Kind of two-bit version of bit scan reverse /// // Authors: Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_FASTPOS_H #define LZMA_FASTPOS_H // LZMA encodes match distances by storing the highest two bits using // a six-bit value [0, 63], and then the missing lower bits. // Dictionary size is also stored using this encoding in the .xz // file format header. // // fastpos.h provides a way to quickly find out the correct six-bit // values. The following table gives some examples of this encoding: // // dist return // 0 0 // 1 1 // 2 2 // 3 3 // 4 4 // 5 4 // 6 5 // 7 5 // 8 6 // 11 6 // 12 7 // ... ... // 15 7 // 16 8 // 17 8 // ... ... // 23 8 // 24 9 // 25 9 // ... ... // // // Provided functions or macros // ---------------------------- // // get_dist_slot(dist) is the basic version. get_dist_slot_2(dist) // assumes that dist >= FULL_DISTANCES, thus the result is at least // FULL_DISTANCES_BITS * 2. Using get_dist_slot(dist) instead of // get_dist_slot_2(dist) would give the same result, but get_dist_slot_2(dist) // should be tiny bit faster due to the assumption being made. // // // Size vs. speed // -------------- // // With some CPUs that have fast BSR (bit scan reverse) instruction, the // size optimized version is slightly faster than the bigger table based // approach. Such CPUs include Intel Pentium Pro, Pentium II, Pentium III // and Core 2 (possibly others). AMD K7 seems to have slower BSR, but that // would still have speed roughly comparable to the table version. Older // x86 CPUs like the original Pentium have very slow BSR; on those systems // the table version is a lot faster. // // On some CPUs, the table version is a lot faster when using position // dependent code, but with position independent code the size optimized // version is slightly faster. This occurs at least on 32-bit SPARC (no // ASM optimizations). // // I'm making the table version the default, because that has good speed // on all systems I have tried. The size optimized version is sometimes // slightly faster, but sometimes it is a lot slower. #ifdef HAVE_SMALL # define get_dist_slot(dist) \ ((dist) <= 4 ? (dist) : get_dist_slot_2(dist)) static inline uint32_t get_dist_slot_2(uint32_t dist) { const uint32_t i = bsr32(dist); return (i + i) + ((dist >> (i - 1)) & 1); } #else #define FASTPOS_BITS 13 extern const uint8_t lzma_fastpos[1 << FASTPOS_BITS]; #define fastpos_shift(extra, n) \ ((extra) + (n) * (FASTPOS_BITS - 1)) #define fastpos_limit(extra, n) \ (UINT32_C(1) << (FASTPOS_BITS + fastpos_shift(extra, n))) #define fastpos_result(dist, extra, n) \ lzma_fastpos[(dist) >> fastpos_shift(extra, n)] \ + 2 * fastpos_shift(extra, n) static inline uint32_t get_dist_slot(uint32_t dist) { // If it is small enough, we can pick the result directly from // the precalculated table. if (dist < fastpos_limit(0, 0)) return lzma_fastpos[dist]; if (dist < fastpos_limit(0, 1)) return fastpos_result(dist, 0, 1); return fastpos_result(dist, 0, 2); } #ifdef FULL_DISTANCES_BITS static inline uint32_t get_dist_slot_2(uint32_t dist) { assert(dist >= FULL_DISTANCES); if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 0)) return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 0); if (dist < fastpos_limit(FULL_DISTANCES_BITS - 1, 1)) return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 1); return fastpos_result(dist, FULL_DISTANCES_BITS - 1, 2); } #endif #endif #endif