/////////////////////////////////////////////////////////////////////////////// // /// \file lzma2_encoder.c /// \brief LZMA2 encoder /// // Authors: Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "lz_encoder.h" #include "lzma_encoder.h" #include "fastpos.h" #include "lzma2_encoder.h" struct lzma_coder_s { enum { SEQ_INIT, SEQ_LZMA_ENCODE, SEQ_LZMA_COPY, SEQ_UNCOMPRESSED_HEADER, SEQ_UNCOMPRESSED_COPY, } sequence; /// LZMA encoder lzma_coder *lzma; /// LZMA options currently in use. lzma_options_lzma opt_cur; bool need_properties; bool need_state_reset; bool need_dictionary_reset; /// Uncompressed size of a chunk size_t uncompressed_size; /// Compressed size of a chunk (excluding headers); this is also used /// to indicate the end of buf[] in SEQ_LZMA_COPY. size_t compressed_size; /// Read position in buf[] size_t buf_pos; /// Buffer to hold the chunk header and LZMA compressed data uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX]; }; static void lzma2_header_lzma(lzma_coder *coder) { assert(coder->uncompressed_size > 0); assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX); assert(coder->compressed_size > 0); assert(coder->compressed_size <= LZMA2_CHUNK_MAX); size_t pos; if (coder->need_properties) { pos = 0; if (coder->need_dictionary_reset) coder->buf[pos] = 0x80 + (3 << 5); else coder->buf[pos] = 0x80 + (2 << 5); } else { pos = 1; if (coder->need_state_reset) coder->buf[pos] = 0x80 + (1 << 5); else coder->buf[pos] = 0x80; } // Set the start position for copying. coder->buf_pos = pos; // Uncompressed size size_t size = coder->uncompressed_size - 1; coder->buf[pos++] += size >> 16; coder->buf[pos++] = (size >> 8) & 0xFF; coder->buf[pos++] = size & 0xFF; // Compressed size size = coder->compressed_size - 1; coder->buf[pos++] = size >> 8; coder->buf[pos++] = size & 0xFF; // Properties, if needed if (coder->need_properties) lzma_lzma_lclppb_encode(&coder->opt_cur, coder->buf + pos); coder->need_properties = false; coder->need_state_reset = false; coder->need_dictionary_reset = false; // The copying code uses coder->compressed_size to indicate the end // of coder->buf[], so we need add the maximum size of the header here. coder->compressed_size += LZMA2_HEADER_MAX; return; } static void lzma2_header_uncompressed(lzma_coder *coder) { assert(coder->uncompressed_size > 0); assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX); // If this is the first chunk, we need to include dictionary // reset indicator. if (coder->need_dictionary_reset) coder->buf[0] = 1; else coder->buf[0] = 2; coder->need_dictionary_reset = false; // "Compressed" size coder->buf[1] = (coder->uncompressed_size - 1) >> 8; coder->buf[2] = (coder->uncompressed_size - 1) & 0xFF; // Set the start position for copying. coder->buf_pos = 0; return; } static lzma_ret lzma2_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size) { while (*out_pos < out_size) switch (coder->sequence) { case SEQ_INIT: // If there's no input left and we are flushing or finishing, // don't start a new chunk. if (mf_unencoded(mf) == 0) { // Write end of payload marker if finishing. if (mf->action == LZMA_FINISH) out[(*out_pos)++] = 0; return mf->action == LZMA_RUN ? LZMA_OK : LZMA_STREAM_END; } if (coder->need_state_reset) return_if_error(lzma_lzma_encoder_reset( coder->lzma, &coder->opt_cur)); coder->uncompressed_size = 0; coder->compressed_size = 0; coder->sequence = SEQ_LZMA_ENCODE; // Fall through case SEQ_LZMA_ENCODE: { // Calculate how much more uncompressed data this chunk // could accept. const uint32_t left = LZMA2_UNCOMPRESSED_MAX - coder->uncompressed_size; uint32_t limit; if (left < mf->match_len_max) { // Must flush immediately since the next LZMA symbol // could make the uncompressed size of the chunk too // big. limit = 0; } else { // Calculate maximum read_limit that is OK from point // of view of LZMA2 chunk size. limit = mf->read_pos - mf->read_ahead + left - mf->match_len_max; } // Save the start position so that we can update // coder->uncompressed_size. const uint32_t read_start = mf->read_pos - mf->read_ahead; // Call the LZMA encoder until the chunk is finished. const lzma_ret ret = lzma_lzma_encode(coder->lzma, mf, coder->buf + LZMA2_HEADER_MAX, &coder->compressed_size, LZMA2_CHUNK_MAX, limit); coder->uncompressed_size += mf->read_pos - mf->read_ahead - read_start; assert(coder->compressed_size <= LZMA2_CHUNK_MAX); assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX); if (ret != LZMA_STREAM_END) return LZMA_OK; // See if the chunk compressed. If it didn't, we encode it // as uncompressed chunk. This saves a few bytes of space // and makes decoding faster. if (coder->compressed_size >= coder->uncompressed_size) { coder->uncompressed_size += mf->read_ahead; assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX); mf->read_ahead = 0; lzma2_header_uncompressed(coder); coder->need_state_reset = true; coder->sequence = SEQ_UNCOMPRESSED_HEADER; break; } // The chunk did compress at least by one byte, so we store // the chunk as LZMA. lzma2_header_lzma(coder); coder->sequence = SEQ_LZMA_COPY; } // Fall through case SEQ_LZMA_COPY: // Copy the compressed chunk along its headers to the // output buffer. lzma_bufcpy(coder->buf, &coder->buf_pos, coder->compressed_size, out, out_pos, out_size); if (coder->buf_pos != coder->compressed_size) return LZMA_OK; coder->sequence = SEQ_INIT; break; case SEQ_UNCOMPRESSED_HEADER: // Copy the three-byte header to indicate uncompressed chunk. lzma_bufcpy(coder->buf, &coder->buf_pos, LZMA2_HEADER_UNCOMPRESSED, out, out_pos, out_size); if (coder->buf_pos != LZMA2_HEADER_UNCOMPRESSED) return LZMA_OK; coder->sequence = SEQ_UNCOMPRESSED_COPY; // Fall through case SEQ_UNCOMPRESSED_COPY: // Copy the uncompressed data as is from the dictionary // to the output buffer. mf_read(mf, out, out_pos, out_size, &coder->uncompressed_size); if (coder->uncompressed_size != 0) return LZMA_OK; coder->sequence = SEQ_INIT; break; } return LZMA_OK; } static void lzma2_encoder_end(lzma_coder *coder, const lzma_allocator *allocator) { lzma_free(coder->lzma, allocator); lzma_free(coder, allocator); return; } static lzma_ret lzma2_encoder_options_update(lzma_coder *coder, const lzma_filter *filter) { // New options can be set only when there is no incomplete chunk. // This is the case at the beginning of the raw stream and right // after LZMA_SYNC_FLUSH. if (filter->options == NULL || coder->sequence != SEQ_INIT) return LZMA_PROG_ERROR; // Look if there are new options. At least for now, // only lc/lp/pb can be changed. const lzma_options_lzma *opt = filter->options; if (coder->opt_cur.lc != opt->lc || coder->opt_cur.lp != opt->lp || coder->opt_cur.pb != opt->pb) { // Validate the options. if (opt->lc > LZMA_LCLP_MAX || opt->lp > LZMA_LCLP_MAX || opt->lc + opt->lp > LZMA_LCLP_MAX || opt->pb > LZMA_PB_MAX) return LZMA_OPTIONS_ERROR; // The new options will be used when the encoder starts // a new LZMA2 chunk. coder->opt_cur.lc = opt->lc; coder->opt_cur.lp = opt->lp; coder->opt_cur.pb = opt->pb; coder->need_properties = true; coder->need_state_reset = true; } return LZMA_OK; } static lzma_ret lzma2_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator, const void *options, lzma_lz_options *lz_options) { if (options == NULL) return LZMA_PROG_ERROR; if (lz->coder == NULL) { lz->coder = lzma_alloc(sizeof(lzma_coder), allocator); if (lz->coder == NULL) return LZMA_MEM_ERROR; lz->code = &lzma2_encode; lz->end = &lzma2_encoder_end; lz->options_update = &lzma2_encoder_options_update; lz->coder->lzma = NULL; } lz->coder->opt_cur = *(const lzma_options_lzma *)(options); lz->coder->sequence = SEQ_INIT; lz->coder->need_properties = true; lz->coder->need_state_reset = false; lz->coder->need_dictionary_reset = lz->coder->opt_cur.preset_dict == NULL || lz->coder->opt_cur.preset_dict_size == 0; // Initialize LZMA encoder return_if_error(lzma_lzma_encoder_create(&lz->coder->lzma, allocator, &lz->coder->opt_cur, lz_options)); // Make sure that we will always have enough history available in // case we need to use uncompressed chunks. They are used when the // compressed size of a chunk is not smaller than the uncompressed // size, so we need to have at least LZMA2_COMPRESSED_MAX bytes // history available. if (lz_options->before_size + lz_options->dict_size < LZMA2_CHUNK_MAX) lz_options->before_size = LZMA2_CHUNK_MAX - lz_options->dict_size; return LZMA_OK; } extern lzma_ret lzma_lzma2_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return lzma_lz_encoder_init( next, allocator, filters, &lzma2_encoder_init); } extern uint64_t lzma_lzma2_encoder_memusage(const void *options) { const uint64_t lzma_mem = lzma_lzma_encoder_memusage(options); if (lzma_mem == UINT64_MAX) return UINT64_MAX; return sizeof(lzma_coder) + lzma_mem; } extern lzma_ret lzma_lzma2_props_encode(const void *options, uint8_t *out) { const lzma_options_lzma *const opt = options; uint32_t d = my_max(opt->dict_size, LZMA_DICT_SIZE_MIN); // Round up to the next 2^n - 1 or 2^n + 2^(n - 1) - 1 depending // on which one is the next: --d; d |= d >> 2; d |= d >> 3; d |= d >> 4; d |= d >> 8; d |= d >> 16; // Get the highest two bits using the proper encoding: if (d == UINT32_MAX) out[0] = 40; else out[0] = get_dist_slot(d + 1) - 24; return LZMA_OK; } extern uint64_t lzma_lzma2_block_size(const void *options) { const lzma_options_lzma *const opt = options; // Use at least 1 MiB to keep compression ratio better. return my_max((uint64_t)(opt->dict_size) * 3, UINT64_C(1) << 20); }