/////////////////////////////////////////////////////////////////////////////// // /// \file lzma_encoder.c /// \brief LZMA encoder /// // Authors: Igor Pavlov // Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "lzma2_encoder.h" #include "lzma_encoder_private.h" #include "fastpos.h" ///////////// // Literal // ///////////// static inline void literal_matched(lzma_range_encoder *rc, probability *subcoder, uint32_t match_byte, uint32_t symbol) { uint32_t offset = 0x100; symbol += UINT32_C(1) << 8; do { match_byte <<= 1; const uint32_t match_bit = match_byte & offset; const uint32_t subcoder_index = offset + match_bit + (symbol >> 8); const uint32_t bit = (symbol >> 7) & 1; rc_bit(rc, &subcoder[subcoder_index], bit); symbol <<= 1; offset &= ~(match_byte ^ symbol); } while (symbol < (UINT32_C(1) << 16)); } static inline void literal(lzma_coder *coder, lzma_mf *mf, uint32_t position) { // Locate the literal byte to be encoded and the subcoder. const uint8_t cur_byte = mf->buffer[ mf->read_pos - mf->read_ahead]; probability *subcoder = literal_subcoder(coder->literal, coder->literal_context_bits, coder->literal_pos_mask, position, mf->buffer[mf->read_pos - mf->read_ahead - 1]); if (is_literal_state(coder->state)) { // Previous LZMA-symbol was a literal. Encode a normal // literal without a match byte. rc_bittree(&coder->rc, subcoder, 8, cur_byte); } else { // Previous LZMA-symbol was a match. Use the last byte of // the match as a "match byte". That is, compare the bits // of the current literal and the match byte. const uint8_t match_byte = mf->buffer[ mf->read_pos - coder->reps[0] - 1 - mf->read_ahead]; literal_matched(&coder->rc, subcoder, match_byte, cur_byte); } update_literal(coder->state); } ////////////////// // Match length // ////////////////// static void length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state) { const uint32_t table_size = lc->table_size; lc->counters[pos_state] = table_size; const uint32_t a0 = rc_bit_0_price(lc->choice); const uint32_t a1 = rc_bit_1_price(lc->choice); const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2); const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2); uint32_t *const prices = lc->prices[pos_state]; uint32_t i; for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i) prices[i] = a0 + rc_bittree_price(lc->low[pos_state], LEN_LOW_BITS, i); for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i) prices[i] = b0 + rc_bittree_price(lc->mid[pos_state], LEN_MID_BITS, i - LEN_LOW_SYMBOLS); for (; i < table_size; ++i) prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS, i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS); return; } static inline void length(lzma_range_encoder *rc, lzma_length_encoder *lc, const uint32_t pos_state, uint32_t len, const bool fast_mode) { assert(len <= MATCH_LEN_MAX); len -= MATCH_LEN_MIN; if (len < LEN_LOW_SYMBOLS) { rc_bit(rc, &lc->choice, 0); rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len); } else { rc_bit(rc, &lc->choice, 1); len -= LEN_LOW_SYMBOLS; if (len < LEN_MID_SYMBOLS) { rc_bit(rc, &lc->choice2, 0); rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len); } else { rc_bit(rc, &lc->choice2, 1); len -= LEN_MID_SYMBOLS; rc_bittree(rc, lc->high, LEN_HIGH_BITS, len); } } // Only getoptimum uses the prices so don't update the table when // in fast mode. if (!fast_mode) if (--lc->counters[pos_state] == 0) length_update_prices(lc, pos_state); } /////////// // Match // /////////// static inline void match(lzma_coder *coder, const uint32_t pos_state, const uint32_t distance, const uint32_t len) { update_match(coder->state); length(&coder->rc, &coder->match_len_encoder, pos_state, len, coder->fast_mode); const uint32_t dist_slot = get_dist_slot(distance); const uint32_t dist_state = get_dist_state(len); rc_bittree(&coder->rc, coder->dist_slot[dist_state], DIST_SLOT_BITS, dist_slot); if (dist_slot >= DIST_MODEL_START) { const uint32_t footer_bits = (dist_slot >> 1) - 1; const uint32_t base = (2 | (dist_slot & 1)) << footer_bits; const uint32_t dist_reduced = distance - base; if (dist_slot < DIST_MODEL_END) { // Careful here: base - dist_slot - 1 can be -1, but // rc_bittree_reverse starts at probs[1], not probs[0]. rc_bittree_reverse(&coder->rc, coder->dist_special + base - dist_slot - 1, footer_bits, dist_reduced); } else { rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS, footer_bits - ALIGN_BITS); rc_bittree_reverse( &coder->rc, coder->dist_align, ALIGN_BITS, dist_reduced & ALIGN_MASK); ++coder->align_price_count; } } coder->reps[3] = coder->reps[2]; coder->reps[2] = coder->reps[1]; coder->reps[1] = coder->reps[0]; coder->reps[0] = distance; ++coder->match_price_count; } //////////////////// // Repeated match // //////////////////// static inline void rep_match(lzma_coder *coder, const uint32_t pos_state, const uint32_t rep, const uint32_t len) { if (rep == 0) { rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0); rc_bit(&coder->rc, &coder->is_rep0_long[coder->state][pos_state], len != 1); } else { const uint32_t distance = coder->reps[rep]; rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1); if (rep == 1) { rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0); } else { rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1); rc_bit(&coder->rc, &coder->is_rep2[coder->state], rep - 2); if (rep == 3) coder->reps[3] = coder->reps[2]; coder->reps[2] = coder->reps[1]; } coder->reps[1] = coder->reps[0]; coder->reps[0] = distance; } if (len == 1) { update_short_rep(coder->state); } else { length(&coder->rc, &coder->rep_len_encoder, pos_state, len, coder->fast_mode); update_long_rep(coder->state); } } ////////// // Main // ////////// static void encode_symbol(lzma_coder *coder, lzma_mf *mf, uint32_t back, uint32_t len, uint32_t position) { const uint32_t pos_state = position & coder->pos_mask; if (back == UINT32_MAX) { // Literal i.e. eight-bit byte assert(len == 1); rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 0); literal(coder, mf, position); } else { // Some type of match rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1); if (back < REPS) { // It's a repeated match i.e. the same distance // has been used earlier. rc_bit(&coder->rc, &coder->is_rep[coder->state], 1); rep_match(coder, pos_state, back, len); } else { // Normal match rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); match(coder, pos_state, back - REPS, len); } } assert(mf->read_ahead >= len); mf->read_ahead -= len; } static bool encode_init(lzma_coder *coder, lzma_mf *mf) { assert(mf_position(mf) == 0); if (mf->read_pos == mf->read_limit) { if (mf->action == LZMA_RUN) return false; // We cannot do anything. // We are finishing (we cannot get here when flushing). assert(mf->write_pos == mf->read_pos); assert(mf->action == LZMA_FINISH); } else { // Do the actual initialization. The first LZMA symbol must // always be a literal. mf_skip(mf, 1); mf->read_ahead = 0; rc_bit(&coder->rc, &coder->is_match[0][0], 0); rc_bittree(&coder->rc, coder->literal[0], 8, mf->buffer[0]); } // Initialization is done (except if empty file). coder->is_initialized = true; return true; } static void encode_eopm(lzma_coder *coder, uint32_t position) { const uint32_t pos_state = position & coder->pos_mask; rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1); rc_bit(&coder->rc, &coder->is_rep[coder->state], 0); match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN); } /// Number of bytes that a single encoding loop in lzma_lzma_encode() can /// consume from the dictionary. This limit comes from lzma_lzma_optimum() /// and may need to be updated if that function is significantly modified. #define LOOP_INPUT_MAX (OPTS + 1) extern lzma_ret lzma_lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, uint32_t limit) { // Initialize the stream if no data has been encoded yet. if (!coder->is_initialized && !encode_init(coder, mf)) return LZMA_OK; // Get the lowest bits of the uncompressed offset from the LZ layer. uint32_t position = mf_position(mf); while (true) { // Encode pending bits, if any. Calling this before encoding // the next symbol is needed only with plain LZMA, since // LZMA2 always provides big enough buffer to flush // everything out from the range encoder. For the same reason, // rc_encode() never returns true when this function is used // as part of LZMA2 encoder. if (rc_encode(&coder->rc, out, out_pos, out_size)) { assert(limit == UINT32_MAX); return LZMA_OK; } // With LZMA2 we need to take care that compressed size of // a chunk doesn't get too big. // FIXME? Check if this could be improved. if (limit != UINT32_MAX && (mf->read_pos - mf->read_ahead >= limit || *out_pos + rc_pending(&coder->rc) >= LZMA2_CHUNK_MAX - LOOP_INPUT_MAX)) break; // Check that there is some input to process. if (mf->read_pos >= mf->read_limit) { if (mf->action == LZMA_RUN) return LZMA_OK; if (mf->read_ahead == 0) break; } // Get optimal match (repeat position and length). // Value ranges for pos: // - [0, REPS): repeated match // - [REPS, UINT32_MAX): // match at (pos - REPS) // - UINT32_MAX: not a match but a literal // Value ranges for len: // - [MATCH_LEN_MIN, MATCH_LEN_MAX] uint32_t len; uint32_t back; if (coder->fast_mode) lzma_lzma_optimum_fast(coder, mf, &back, &len); else lzma_lzma_optimum_normal( coder, mf, &back, &len, position); encode_symbol(coder, mf, back, len, position); position += len; } if (!coder->is_flushed) { coder->is_flushed = true; // We don't support encoding plain LZMA streams without EOPM, // and LZMA2 doesn't use EOPM at LZMA level. if (limit == UINT32_MAX) encode_eopm(coder, position); // Flush the remaining bytes from the range encoder. rc_flush(&coder->rc); // Copy the remaining bytes to the output buffer. If there // isn't enough output space, we will copy out the remaining // bytes on the next call to this function by using // the rc_encode() call in the encoding loop above. if (rc_encode(&coder->rc, out, out_pos, out_size)) { assert(limit == UINT32_MAX); return LZMA_OK; } } // Make it ready for the next LZMA2 chunk. coder->is_flushed = false; return LZMA_STREAM_END; } static lzma_ret lzma_encode(lzma_coder *restrict coder, lzma_mf *restrict mf, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size) { // Plain LZMA has no support for sync-flushing. if (unlikely(mf->action == LZMA_SYNC_FLUSH)) return LZMA_OPTIONS_ERROR; return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX); } //////////////////// // Initialization // //////////////////// static bool is_options_valid(const lzma_options_lzma *options) { // Validate some of the options. LZ encoder validates nice_len too // but we need a valid value here earlier. return is_lclppb_valid(options) && options->nice_len >= MATCH_LEN_MIN && options->nice_len <= MATCH_LEN_MAX && (options->mode == LZMA_MODE_FAST || options->mode == LZMA_MODE_NORMAL); } static void set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options) { // LZ encoder initialization does the validation for these so we // don't need to validate here. lz_options->before_size = OPTS; lz_options->dict_size = options->dict_size; lz_options->after_size = LOOP_INPUT_MAX; lz_options->match_len_max = MATCH_LEN_MAX; lz_options->nice_len = options->nice_len; lz_options->match_finder = options->mf; lz_options->depth = options->depth; lz_options->preset_dict = options->preset_dict; lz_options->preset_dict_size = options->preset_dict_size; return; } static void length_encoder_reset(lzma_length_encoder *lencoder, const uint32_t num_pos_states, const bool fast_mode) { bit_reset(lencoder->choice); bit_reset(lencoder->choice2); for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) { bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS); bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS); } bittree_reset(lencoder->high, LEN_HIGH_BITS); if (!fast_mode) for (uint32_t pos_state = 0; pos_state < num_pos_states; ++pos_state) length_update_prices(lencoder, pos_state); return; } extern lzma_ret lzma_lzma_encoder_reset(lzma_coder *coder, const lzma_options_lzma *options) { if (!is_options_valid(options)) return LZMA_OPTIONS_ERROR; coder->pos_mask = (1U << options->pb) - 1; coder->literal_context_bits = options->lc; coder->literal_pos_mask = (1U << options->lp) - 1; // Range coder rc_reset(&coder->rc); // State coder->state = STATE_LIT_LIT; for (size_t i = 0; i < REPS; ++i) coder->reps[i] = 0; literal_init(coder->literal, options->lc, options->lp); // Bit encoders for (size_t i = 0; i < STATES; ++i) { for (size_t j = 0; j <= coder->pos_mask; ++j) { bit_reset(coder->is_match[i][j]); bit_reset(coder->is_rep0_long[i][j]); } bit_reset(coder->is_rep[i]); bit_reset(coder->is_rep0[i]); bit_reset(coder->is_rep1[i]); bit_reset(coder->is_rep2[i]); } for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i) bit_reset(coder->dist_special[i]); // Bit tree encoders for (size_t i = 0; i < DIST_STATES; ++i) bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS); bittree_reset(coder->dist_align, ALIGN_BITS); // Length encoders length_encoder_reset(&coder->match_len_encoder, 1U << options->pb, coder->fast_mode); length_encoder_reset(&coder->rep_len_encoder, 1U << options->pb, coder->fast_mode); // Price counts are incremented every time appropriate probabilities // are changed. price counts are set to zero when the price tables // are updated, which is done when the appropriate price counts have // big enough value, and lzma_mf.read_ahead == 0 which happens at // least every OPTS (a few thousand) possible price count increments. // // By resetting price counts to UINT32_MAX / 2, we make sure that the // price tables will be initialized before they will be used (since // the value is definitely big enough), and that it is OK to increment // price counts without risk of integer overflow (since UINT32_MAX / 2 // is small enough). The current code doesn't increment price counts // before initializing price tables, but it maybe done in future if // we add support for saving the state between LZMA2 chunks. coder->match_price_count = UINT32_MAX / 2; coder->align_price_count = UINT32_MAX / 2; coder->opts_end_index = 0; coder->opts_current_index = 0; return LZMA_OK; } extern lzma_ret lzma_lzma_encoder_create(lzma_coder **coder_ptr, const lzma_allocator *allocator, const lzma_options_lzma *options, lzma_lz_options *lz_options) { // Allocate lzma_coder if it wasn't already allocated. if (*coder_ptr == NULL) { *coder_ptr = lzma_alloc(sizeof(lzma_coder), allocator); if (*coder_ptr == NULL) return LZMA_MEM_ERROR; } lzma_coder *coder = *coder_ptr; // Set compression mode. We haven't validates the options yet, // but it's OK here, since nothing bad happens with invalid // options in the code below, and they will get rejected by // lzma_lzma_encoder_reset() call at the end of this function. switch (options->mode) { case LZMA_MODE_FAST: coder->fast_mode = true; break; case LZMA_MODE_NORMAL: { coder->fast_mode = false; // Set dist_table_size. // Round the dictionary size up to next 2^n. uint32_t log_size = 0; while ((UINT32_C(1) << log_size) < options->dict_size) ++log_size; coder->dist_table_size = log_size * 2; // Length encoders' price table size coder->match_len_encoder.table_size = options->nice_len + 1 - MATCH_LEN_MIN; coder->rep_len_encoder.table_size = options->nice_len + 1 - MATCH_LEN_MIN; break; } default: return LZMA_OPTIONS_ERROR; } // We don't need to write the first byte as literal if there is // a non-empty preset dictionary. encode_init() wouldn't even work // if there is a non-empty preset dictionary, because encode_init() // assumes that position is zero and previous byte is also zero. coder->is_initialized = options->preset_dict != NULL && options->preset_dict_size > 0; coder->is_flushed = false; set_lz_options(lz_options, options); return lzma_lzma_encoder_reset(coder, options); } static lzma_ret lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator, const void *options, lzma_lz_options *lz_options) { lz->code = &lzma_encode; return lzma_lzma_encoder_create( &lz->coder, allocator, options, lz_options); } extern lzma_ret lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters) { return lzma_lz_encoder_init( next, allocator, filters, &lzma_encoder_init); } extern uint64_t lzma_lzma_encoder_memusage(const void *options) { if (!is_options_valid(options)) return UINT64_MAX; lzma_lz_options lz_options; set_lz_options(&lz_options, options); const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options); if (lz_memusage == UINT64_MAX) return UINT64_MAX; return (uint64_t)(sizeof(lzma_coder)) + lz_memusage; } extern bool lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte) { if (!is_lclppb_valid(options)) return true; *byte = (options->pb * 5 + options->lp) * 9 + options->lc; assert(*byte <= (4 * 5 + 4) * 9 + 8); return false; } #ifdef HAVE_ENCODER_LZMA1 extern lzma_ret lzma_lzma_props_encode(const void *options, uint8_t *out) { const lzma_options_lzma *const opt = options; if (lzma_lzma_lclppb_encode(opt, out)) return LZMA_PROG_ERROR; unaligned_write32le(out + 1, opt->dict_size); return LZMA_OK; } #endif extern LZMA_API(lzma_bool) lzma_mode_is_supported(lzma_mode mode) { return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL; }