/////////////////////////////////////////////////////////////////////////////// // /// \file simple_coder.c /// \brief Wrapper for simple filters /// /// Simple filters don't change the size of the data i.e. number of bytes /// in equals the number of bytes out. // // Author: Lasse Collin // // This file has been put into the public domain. // You can do whatever you want with this file. // /////////////////////////////////////////////////////////////////////////////// #include "simple_private.h" /// Copied or encodes/decodes more data to out[]. static lzma_ret copy_or_code(lzma_coder *coder, const lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { assert(!coder->end_was_reached); if (coder->next.code == NULL) { lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size); // Check if end of stream was reached. if (coder->is_encoder && action == LZMA_FINISH && *in_pos == in_size) coder->end_was_reached = true; } else { // Call the next coder in the chain to provide us some data. const lzma_ret ret = coder->next.code( coder->next.coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); if (ret == LZMA_STREAM_END) { assert(!coder->is_encoder || action == LZMA_FINISH); coder->end_was_reached = true; } else if (ret != LZMA_OK) { return ret; } } return LZMA_OK; } static size_t call_filter(lzma_coder *coder, uint8_t *buffer, size_t size) { const size_t filtered = coder->filter(coder->simple, coder->now_pos, coder->is_encoder, buffer, size); coder->now_pos += filtered; return filtered; } static lzma_ret simple_code(lzma_coder *coder, const lzma_allocator *allocator, const uint8_t *restrict in, size_t *restrict in_pos, size_t in_size, uint8_t *restrict out, size_t *restrict out_pos, size_t out_size, lzma_action action) { // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it // in cases when the filter is able to filter everything. With most // simple filters it can be done at offset that is a multiple of 2, // 4, or 16. With x86 filter, it needs good luck, and thus cannot // be made to work predictably. if (action == LZMA_SYNC_FLUSH) return LZMA_OPTIONS_ERROR; // Flush already filtered data from coder->buffer[] to out[]. if (coder->pos < coder->filtered) { lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, out, out_pos, out_size); // If we couldn't flush all the filtered data, return to // application immediately. if (coder->pos < coder->filtered) return LZMA_OK; if (coder->end_was_reached) { assert(coder->filtered == coder->size); return LZMA_STREAM_END; } } // If we get here, there is no filtered data left in the buffer. coder->filtered = 0; assert(!coder->end_was_reached); // If there is more output space left than there is unfiltered data // in coder->buffer[], flush coder->buffer[] to out[], and copy/code // more data to out[] hopefully filling it completely. Then filter // the data in out[]. This step is where most of the data gets // filtered if the buffer sizes used by the application are reasonable. const size_t out_avail = out_size - *out_pos; const size_t buf_avail = coder->size - coder->pos; if (out_avail > buf_avail || buf_avail == 0) { // Store the old position so that we know from which byte // to start filtering. const size_t out_start = *out_pos; // Flush data from coder->buffer[] to out[], but don't reset // coder->pos and coder->size yet. This way the coder can be // restarted if the next filter in the chain returns e.g. // LZMA_MEM_ERROR. memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail); *out_pos += buf_avail; // Copy/Encode/Decode more data to out[]. { const lzma_ret ret = copy_or_code(coder, allocator, in, in_pos, in_size, out, out_pos, out_size, action); assert(ret != LZMA_STREAM_END); if (ret != LZMA_OK) return ret; } // Filter out[]. const size_t size = *out_pos - out_start; const size_t filtered = call_filter( coder, out + out_start, size); const size_t unfiltered = size - filtered; assert(unfiltered <= coder->allocated / 2); // Now we can update coder->pos and coder->size, because // the next coder in the chain (if any) was successful. coder->pos = 0; coder->size = unfiltered; if (coder->end_was_reached) { // The last byte has been copied to out[] already. // They are left as is. coder->size = 0; } else if (unfiltered > 0) { // There is unfiltered data left in out[]. Copy it to // coder->buffer[] and rewind *out_pos appropriately. *out_pos -= unfiltered; memcpy(coder->buffer, out + *out_pos, unfiltered); } } else if (coder->pos > 0) { memmove(coder->buffer, coder->buffer + coder->pos, buf_avail); coder->size -= coder->pos; coder->pos = 0; } assert(coder->pos == 0); // If coder->buffer[] isn't empty, try to fill it by copying/decoding // more data. Then filter coder->buffer[] and copy the successfully // filtered data to out[]. It is probable, that some filtered and // unfiltered data will be left to coder->buffer[]. if (coder->size > 0) { { const lzma_ret ret = copy_or_code(coder, allocator, in, in_pos, in_size, coder->buffer, &coder->size, coder->allocated, action); assert(ret != LZMA_STREAM_END); if (ret != LZMA_OK) return ret; } coder->filtered = call_filter( coder, coder->buffer, coder->size); // Everything is considered to be filtered if coder->buffer[] // contains the last bytes of the data. if (coder->end_was_reached) coder->filtered = coder->size; // Flush as much as possible. lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, out, out_pos, out_size); } // Check if we got everything done. if (coder->end_was_reached && coder->pos == coder->size) return LZMA_STREAM_END; return LZMA_OK; } static void simple_coder_end(lzma_coder *coder, const lzma_allocator *allocator) { lzma_next_end(&coder->next, allocator); lzma_free(coder->simple, allocator); lzma_free(coder, allocator); return; } static lzma_ret simple_coder_update(lzma_coder *coder, const lzma_allocator *allocator, const lzma_filter *filters_null lzma_attribute((__unused__)), const lzma_filter *reversed_filters) { // No update support, just call the next filter in the chain. return lzma_next_filter_update( &coder->next, allocator, reversed_filters + 1); } extern lzma_ret lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator, const lzma_filter_info *filters, size_t (*filter)(lzma_simple *simple, uint32_t now_pos, bool is_encoder, uint8_t *buffer, size_t size), size_t simple_size, size_t unfiltered_max, uint32_t alignment, bool is_encoder) { // Allocate memory for the lzma_coder structure if needed. if (next->coder == NULL) { // Here we allocate space also for the temporary buffer. We // need twice the size of unfiltered_max, because then it // is always possible to filter at least unfiltered_max bytes // more data in coder->buffer[] if it can be filled completely. next->coder = lzma_alloc(sizeof(lzma_coder) + 2 * unfiltered_max, allocator); if (next->coder == NULL) return LZMA_MEM_ERROR; next->code = &simple_code; next->end = &simple_coder_end; next->update = &simple_coder_update; next->coder->next = LZMA_NEXT_CODER_INIT; next->coder->filter = filter; next->coder->allocated = 2 * unfiltered_max; // Allocate memory for filter-specific data structure. if (simple_size > 0) { next->coder->simple = lzma_alloc( simple_size, allocator); if (next->coder->simple == NULL) return LZMA_MEM_ERROR; } else { next->coder->simple = NULL; } } if (filters[0].options != NULL) { const lzma_options_bcj *simple = filters[0].options; next->coder->now_pos = simple->start_offset; if (next->coder->now_pos & (alignment - 1)) return LZMA_OPTIONS_ERROR; } else { next->coder->now_pos = 0; } // Reset variables. next->coder->is_encoder = is_encoder; next->coder->end_was_reached = false; next->coder->pos = 0; next->coder->filtered = 0; next->coder->size = 0; return lzma_next_filter_init( &next->coder->next, allocator, filters + 1); }