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INTRODUCTION

Haskell is fun, and that’s what it’s all about!

This book is aimed at people who have experience programming in im-
perative languages—such as C++, Java, and Python—and now want to try out
Haskell. But even if you don’t have any significant programming experience,
I'll bet a smart person like you will be able to follow along and learn Haskell.

My first reaction to Haskell was that the language was just too weird. But
after getting over that initial hurdle, it was smooth sailing. Even if Haskell
seems strange to you at first, don’t give up. Learning Haskell is almost like
learning to program for the first time all over again. It’s fun, and it forces
you to think differently.

NOTE  Ifyou ever get really stuck, the IRC channel #haskell on the freenode network is a
great place to ask questions. The people there tend to be nice, patient, and understand-
ing. They’re a great resource for Haskell newbies.

So, What’s Haskell?

Haskell is a purely functional programming language.

In ¢mperative programming languages, you give the computer a sequence
of tasks, which it then executes. While executing them, the computer can
change state. For instance, you can set the variable a to 5 and then do some
stuff that might change the value of a. There are also flow-control structures
for executing instructions several times, such as for and while loops.
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Purely functional programming is differ-
ent. You don’t tell the computer what to do—
you tell it what stuff is. For instance, you can tell
the computer that the factorial of a number
is the product of every integer from 1 to that
number or that the sum of a list of numbers is
the first number plus the sum of the remaining
numbers. You can express both of these opera-
tions as functions.

In functional programming, you can’ set a
variable to one value and then set it to some-
thing else later on. If you say a is 5, you can’t just change your mind and
say it’s something else. After all, you said it was 5. (What are you, some kind
of liar?)

In purely functional languages, a function has no side effects. The only
thing a function can do is calculate something and return the result. At
first, this seems limiting, but it actually has some very nice consequences. If
a function is called twice with the same parameters, it’s guaranteed to return
the same result both times. This property is called referential transparency. It
lets the programmer easily deduce (and even prove) that a function is cor-
rect. You can then build more complex functions by gluing these simple
functions together.

Haskell is lazy. This means that
unless specifically told otherwise,
Haskell won’t execute functions
until it needs to show you a result.
This is made possible by referential
transparency. If you know that the
result of a function depends only
on the parameters that function is
given, it doesn’t matter when you
actually calculate the result of the
function. Haskell, being a lazy lan-
guage, takes advantage of this fact
and defers actually computing re-
sults for as long as possible. Once
you want your results to be displayed, Haskell will do just the bare minimum
computation required to display them. Laziness also allows you to make
seemingly infinite data structures, because only the parts of the data struc-
tures that you choose to display will actually be computed.

Let’s look at an example of Haskell’s laziness. Say you have a list of num-
bers, xs = [1,2,3,4,5,6,7,8], and a function called doubleMe that doubles every
element and returns the result as a new list. If you want to multiply your list
by 8, your code might look something like this:

doubleMe (doubleMe(doubleMe(xs)))




An imperative language would probably pass through the list once, make
a copy, and then return it. It would then pass through the list another two
times, making copies each time, and return the result.

In a lazy language, calling doubleMe on a list without forcing it to show
you the result just makes the program tell you, “Yeah yeah, I’ll do it later!”
Once you want to see the result, the first doubleMe calls the second one and
says it wants the result immediately. Then the second one says the same
thing to the third one, and the third one reluctantly gives back a doubled
1, which is 2. The second doubleMe receives that and returns 4 to the first
one. The first doubleMe then doubles this result and tells you that the first ele-
ment in the final resulting list is 8. Because of Haskell’s laziness, the doubleMe
calls pass through the list just once, and only when you really need that to
happen.

Haskell is statically typed. This means that
when you compile your program, the compiler
knows which piece of code is a number, which
is a string, and so on. Static typing means that a
lot of possible errors can be caught at compile
time. If you try to add together a number and
a string, for example, the compiler will whine
at you.

Haskell uses a very good type system that
has type inference. This means that you don’t
need to explicitly label every piece of code with a type, because Haskell’s
type system can intelligently figure it out. For example, if yousaya = 5 + 4,
you don’t need to tell Haskell that a is a number—it can figure that out by
itself. Type inference makes it easier for you to write code that’s more gen-
eral. If you write a function that takes two parameters and adds them to-
gether, but you don’t explicitly state their type, the function will work on
any two parameters that act like numbers.

Haskell is elegant and concise. Because it uses a lot of high-level con-
cepts, Haskell programs are usually shorter than their imperative equiva-
lents. Shorter programs are easier to maintain and have fewer bugs.

Haskell was made by some really smart guys (with PhDs). Work on
Haskell began in 1987 when a committee of researchers got together to
design a kick-ass language. The Haskell Report, which defines a stable ver-
sion of the language, was published in 1999.

What You Need to Dive In

In short, to get started with Haskell, you need a text editor and a Haskell
compiler. You probably already have your favorite text editor installed, so we
won’t waste time on that. The most popular Haskell compiler is the Glasgow
Haskell Compiler (GHC), which we will be using throughout this book.

The best way to get what you need is to download the Haskell Platform.
The Haskell Platform includes not only the GHC compiler but also a bunch
of useful Haskell libraries! To get the Haskell Platform for your system, go to

Introduction xvii
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http://hackage. haskell.org/platform/ and follow the instructions for your oper-
ating system.

GHC can compile Haskell scripts (usually with an .As extension), and
it also has an interactive mode. From there, you can load functions from
scripts and then call them directly to see immediate results. Especially when
you’re learning, it’s much easier to use the interactive mode than it is to
compile and run your code every time you make a change.

Once you've installed the Haskell Platform, open a new terminal win-
dow, assuming you’re on a Linux or Mac OS X system. If your operating sys-
tem of choice is Windows, go to the command prompt. Once there, type
ghci and press ENTER to start the interactive mode. (If your system fails to
find the GHCi program, you can try rebooting your computer.)

If you’ve defined some functions in a script—for example, myfunctions.hs—
you can load these functions into GHCi by typing :1 myfunctions. (Make sure
that myfunctions.hs is in the same folder from which you started GHCi.)

If you change the .hs script, run :1 myfunctions to load the file again or
run :1, which reloads the current script. My usual workflow is to define some
functions in an . ks file, load it into GHCi, mess around with it, change the
file, and repeat. This is what we’ll be doing in this book.

Acknowledgments

Introduction

Thanks to everyone who sent in corrections, suggestions, and words of en-
couragement. Also thanks to Keith, Sam, and Marilyn for making me look
like a real writer.



