Learn You a
Haskell for

Great Good!

A Beginner’s Guide

m

Miran Lipovaca

LEARN YOU A HASKELL FOR
GREAT GOOD!

Learn You a
Haskell for

Great Good!

A Beginner’s Guide

Miran Lipovaca

LEARN YOU A HASKELL FOR GREAT GOOD!. Copyright © 2011 Miran Lipovaca

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

1514131211 123456789

ISBN-10: 1-59327-283-9
ISBN-13: 978-1-59327-283-8

Publisher: William Pollock

Production Editors: Ansel Staton and Serena Yang
Cover and Interior Design: Octopod Studios
Developmental Editor: Keith Fancher

Technical Reviewer: Samuel Hughes

Copyeditor: Marilyn Smith

Compositor: Alison Law

Proofreader: Ellen Brink

Indexer: Valerie Haynes Perry

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Lipovaca, Miran.
Learn you a Haskell for great good! : a beginner’s guide / by Miran Lipovaca.
p. cm.
ISBN-13: 978-1-59327-283-8
ISBN-10: 1-59327-283-9
1. Haskell (Computer program language) I. Title.
QA76.73.H37L69 2012
005.13”3-dc22
2011000790

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

BRIEF CONTENTS

INrodUCHONo XV
Chapter T: Starting Out e 1
Chapter 2: Believe the Typeot 23
Chapter 3: Syntax in FUNCHONSt 35
Chapter 4: Hello Recursion! 51
Chapter 5: Higher-Order Functionsot 59
Chapter 6: Modules 87
Chapter 7: Making Our Own Types and Type Classescccoviiiiiiiinann... 109
Chapter 8: Input and OUIPULottt 153
Chapter 9: More Input and More OUtputot 169
Chapter 10: Functionally Solving Problems i 203
Chapter 11: Applicative Functors.oo 217
Chapter 12: Monoidsot 243
Chapter 13: AFistful of Monads 267
Chapter 14: For a Few Monads Moreoiiiiii i 297
Chapter 15: ZIiPPers . .o .ottt ettt et e e e e 343

CONTENTS IN DETAIL

INTRODUCTION b 4%
So, What's Haskell2o XV
What You Need to Dive Ino xvii
Acknowledgments xviii
1
STARTING OUT 1
Calling FUNCHONSot 3
Baby's First FUNCHONSot e 5
AnIntroto Lists . ..o e 7
Concatenationt e 8
Accessing List Elementsueii e 9
Lists Inside Listsouenet et 9
Comparing Listst 9
More List Operationsouiuiniiniii e 10
Texas RANGES . .ottt e 13
I'm a List Comprehension.ouueiei e 15
TUPlES - ettt 18
Using TUPLes. .« .o e et e e e 19
Using Pairs . ..o 20
Finding the Right Triangle 21
2
BELIEVE THE TYPE 23
Explicit Type Declarationeie e 24
Common Haskell Typesovni e 25
Type Variables 26
Type Classes TOT ...t et e 27
The EQ Type Classt 28
The Ord Type Classo vttt 28
The Show Type Class.ou it 29
The Read Type Class . ..o vuvue et 29
The Enum Type Classo vne et 31
The Bounded Type Class.o.utue e 31
The Num Type Classun e 32
The Floating Type Classot e 32
The Integral Type Classovuvun e 33
Some Final Notes on Type Classescoviiiiiiiiiiiiiiinnnn... 33

3

SYNTAX IN FUNCTIONS

Pattern Matchingttt
Pattern Matching with Tuplesoooiii
Pattern Matching with Lists and List Comprehensions.
ASPAHEINS « oo e

Guards, Guards!

Where®l Lo
Where's SCOPEttt
Pattern Matching with where o o
Functions in where Blocks i

et 1t Be .
let in List Comprehensionscoiiiiiiii i
letin GHCi . ..ot

case EXPressions

4

HELLO RECURSION!

Maximum AWESOME

A Few More Recursive Funchions
replicate ..o
HOKE et
FEVEISE . . . ettt ettt et e et e et e e e e e e e
TEPEAl o
Zi P e
Y

QuUICk, SOl
The Algorithm ...
The Code ..ot

Thinking Recursively

5

HIGHER-ORDER FUNCTIONS

Curried FUNCHONSo ettt e e e e
S ONS . ettt
Printing Functions

Some Higher-Orderism Is in Order ..o
Implementing zipWitho i
Implementing flipooii i

The Functional Programmer’s Toolboxoouiiiii i,
The map FUNCHON . ..o
The filter FUnCtiono. i
More Examples of map and filtero
Mapping Functions with Multiple Parameters

Lambdas ...

viii Contents in Detail

35

35
37
38
40
40
42
44
44
45
45
47
47
48

51

52
53
53
54
55
55
55
56
56
56
57
58

FFOld YOU SO .ottt 73

Left Folds with foldl.o 74
Right Folds with foldr ... 75
The foldl and foldr1 Functionsoviiiii e 76
Some Fold Examplesoouieii 76
Another Way to Look at Foldso 77
Folding Infinite Listsooioi 78
SN ettt 79
Function Application with § o 80
Function Compositionuu ittt 82
Function Composition with Multiple Parameters 83
PointFree Styleo i 84
6
MODULES 87
Importing Modules i 88
Solving Problems with Module Functions i i 90
Counting Words . ..o i ittt 90
Needle in the Haystack. ... 91
Caesar Cipher Salad. ... 92
On Strict Left Folds 94
Let's Find Some Cool Numbers, 95
Mapping Keys to Values ...t 98
Almost As Good: Association Listso.euninii i 98
Enter Data.Map ... 100
Making Our Own Modules.oui e 104
A Geometry Moduleoo.ii 104
Hierarchical Moduleso 106
7
MAKING OUR OWN TYPES AND TYPE CLASSES 109
Defining @ New Data TYpe v ettt e 109
ShAPING U et 110
Improving Shape with the Point Data Type......ovviiiiiiniii e, 112
Exporting Our ShapesinaModule ... 113
RECOTd SYNTOX .ttt ettt et e ettt e 114
Type Parameterso e 117
Should We Parameterize Our Car2.........oiiiiiiiiiiiiiiiieiiennnns 119
Vector von Doom 121
Derived INSHANCES . .« ¢ .ttt et ettt e e e e e e 122
Equating Peopleot 123
Show Me Howto Readoooie i 124
Order inthe Courtl .. . o i e e 125
Any Day of the Week ..o 126

Contents in Detail

ix

TYPE SYNONYMS e ettt et e e e et e e e e 127

Making Our Phonebook Preftier 128
Parameterizing Type Synonyms i 129
Go Left, Then Righto oo e 130
Recursive Data Structures. 132
Improving Our List e 133
Let's Plant @ Tree . ..o e ettt e e e 135
Type Classes 102 ...t e e e 138
Inside the Eq Type Classovvinieeie e 138
A Traffic Light Data TYpe . .vvneee et 139
SUBCIASSING et 140
Parameterized Types As Instances of Type Classesc..... 141
A Yes-NO Type Classt 143
The Functor Type Class.o ettt 146
Maybe As a FUNCIOr ..o 147
Trees Are FUNCIOrs, TOO . ..ot e s 148
Either @ As @ FUNCIOT . ..ot 149
Kinds and Some Type-FOoot 150
8
INPUT AND OUTPUT 153
Separating the Pure from the Impure...... ... 153
Hello, World! e 154
Gluing I/O Actions Together ..ot e 156
Using let Inside [/O ACHONS . .« v v vttt 158
Putting It in Reverseo e 159
Some Useful 1/O FUNCHONS . ..ot e e 161
PUL ST ettt 161
PUICRAr . L 162
0T3P 162
WhEN L 163
SEOUEBNCE .ttt te ettt et et e e et et e e e e e e 164
MOPM L 165
forever . . o 165
forM 166
[/O ACHON REVIEW . . e oottt e e e e e e e 167
9
MORE INPUT AND MORE OUTPUT 169
Files and Streams.ot 169
INpUt RedireCtion v ettt et 170
Getting Strings from Input Streams ...t 171
Transforming INPuUtot 173

X Contents in Detail

Reading and Writing Files. oo 175

Using the withFile Function..... 177
[t's Bracket Time ... ou ittt 178
Grabthe Handles!o 179
To-Do Lists ..t 180
Deleting lems in e 181
Cleaning Up .. ue et e e e e e 183
Command-Line Argumentsttt 184
More Fun with To-Do Lists ..o 185
A Multitasking Task Listvuneee 186
Dealing with Bad Input ..o 190
RANAOMNESS .o\ttt e et e e e e e e 190
Tossing @ COiN . vttt 193
More Random FUNCHONSo.uu e 194
Randomness and 1/O ..o 195
By testTiNgS - . oot 198
Strict and Lazy Bytestringsovuees e 199
Copying Files with Bytestringso.oiiiii i 201
10
FUNCTIONALLY SOLVING PROBLEMS 203
Reverse Polish Notation Calculator 203
Caleulating RPN EXPressionsc.ueu et 204
Writing an RPN Function e 205
Adding More Operatorsvuu ettt 207
Heathrow 10 Londont 208
Calculating the Quickest Path ..o 209
Representing the Road System in Haskell i, 211
Writing the Optimal Path Functiono 212
Getting a Road System from the Input ... 215
11
APPLICATIVE FUNCTORS 217
FUNCIOrS REAUX . . o et e ettt 218
[/O Actions As FUNCIOTS . ..o vt 218
Functions As Functors. oo 220
Functor Laws 223
LaW T 223
LW 2 224
Breaking the Lawooiii 225
Using Applicative FUNCIOrS ...ttt 227
Say Hello to Applicativeooui 228
Maybe the Applicative Functor 229
The Applicative Styleo 230

Contents in Detail

xi

LSES ettt 232

IO Is An Applicative Functor, ToO. vui e 234
Functions As Applicativesoooi 235
i ListS e e 237
Applicative Lawsttt 238
Useful Functions for Applicativesoieiiii s 238
12
MONOIDS 243
Wrapping an Existing Type into a New Typeot 243
Using newtype to Make Type Class Instancesccocoviiinnen.... 246
On newtype Laziness. ..o 247
type vs. newtype vs. data 249
About Those Monoids. vun e e 250
The Monoid Type Classouueue e 252
The Monoid Laws ... oo 253
Meet Some Monoids.t 253
Lists Are Monoidso ou it 253
Product and Sum ... oo 254
Any and All Lo 256
The Ordering Monoidt e 257
Maybe the Monoidooouiiii 260
Folding with Monoidso 262
13
A FISTFUL OF MONADS 267
Upgrading Our Applicative Functorso e 267
Getting Your Feet Wet with Maybe 269
The Monad Type Class ...ttt 272
Walk the Line ..o 274
Code, Code, Code ..ot e 274
FILFlY AWGY © e e e e e e e e e e 276
BananaonaWire .. .o 278
do NOKGHON ..ttt e 280
Do AsTDO .t e 282
Pierre Returnso .o 282
Pattern Matching and Failure......... ..o 284
The List Monad . ..o e 285
do Notation and List Comprehensions...........ccoviiiiiiiiiiiiennan... 288
MonadPlus and the guard Functioncooiiiiii i 288
A KNight's QUEST. .ot e et 290
Monad LaWs . . .o 292
Left Identity ..ot 293
Right Identityo 294
ASSOCIANIVITY « ¢ e ettt e 294

Xii Contents in Detail

14

FOR A FEW MONADS MORE 297
Writer? | Hardly Knew Her! e 298
Monoids fo the Rescueveuiiiiiiii e 300
The WIIHEr TYPE ..ottt ettt e e e e 302
Using do Notation with Writer 303
Adding Logging to Programscoouiiii i 304
Inefficient List Constructionooui it 306
Using Difference Listsoouvtei e 307
Comparing Performance 309
Reader? Ugh, Not This Joke Again..... ..ot 310
Functions As Monads.o.uintin i 311
The Reader Monad ..ot 312
Tasteful Stateful Computationsie i e 313
Stateful Computationsoouuiii i 314
Stacks and Stones. ...t 314
The State Monad 316
Getting and Sething Statettt 318
Randomness and the State Monadoviiiiiiii 320
Error Error onthe Wall. ... oo 321
Some Useful Monadic Functions i 323
[iftM and Friends.o o 323
The join FUNCHON . ..t 326
filerM 328
FoldM L 331
Making a Safe RPN Calculator ... e 332
Composing Monadic FUNCHONSt 335
Making Monads 336
15
ZIPPERS 343
Taking @ Walk ..o 344
A Trail of Breaderumbsoooi o 346
Going Back Up . ..o 348
Manipulating Trees Under Focuso.vvuiiiiiiiiiiiiiii i, 350
Going Straight to the Top, Where the Air Is Fresh and Clean! 351
Focusing on Listst e 352
A Very Simple Filesystem 353
Making a Zipper for Our Filesystemccviiiiiiiiiiiiiiiieia.. 355
Manipulating a Filesystem 357
Wateh YOUR STEP .« v ettt ettt ettt e e e 358
Thanks for Reading!l 360
INDEX 363

Contents in Detail

xiii

INTRODUCTION

Haskell is fun, and that’s what it’s all about!

This book is aimed at people who have experience programming in im-
perative languages—such as C++, Java, and Python—and now want to try out
Haskell. But even if you don’t have any significant programming experience,
I'll bet a smart person like you will be able to follow along and learn Haskell.

My first reaction to Haskell was that the language was just too weird. But
after getting over that initial hurdle, it was smooth sailing. Even if Haskell
seems strange to you at first, don’t give up. Learning Haskell is almost like
learning to program for the first time all over again. It’s fun, and it forces
you to think differently.

NOTE Ifyou ever get really stuck, the IRC channel #haskell on the freenode network is a
great place to ask questions. The people there tend to be nice, patient, and understand-
ing. They’re a great resource for Haskell newbies.

So, What’s Haskell?

Haskell is a purely functional programming language.

In ¢mperative programming languages, you give the computer a sequence
of tasks, which it then executes. While executing them, the computer can
change state. For instance, you can set the variable a to 5 and then do some
stuff that might change the value of a. There are also flow-control structures
for executing instructions several times, such as for and while loops.

xvi

Introduction

Purely functional programming is differ-
ent. You don’t tell the computer what to do—
you tell it what stuff is. For instance, you can tell
the computer that the factorial of a number
is the product of every integer from 1 to that
number or that the sum of a list of numbers is
the first number plus the sum of the remaining
numbers. You can express both of these opera-
tions as functions.

In functional programming, you can’ set a
variable to one value and then set it to some-
thing else later on. If you say a is 5, you can’t just change your mind and
say it’s something else. After all, you said it was 5. (What are you, some kind
of liar?)

In purely functional languages, a function has no side effects. The only
thing a function can do is calculate something and return the result. At
first, this seems limiting, but it actually has some very nice consequences. If
a function is called twice with the same parameters, it’s guaranteed to return
the same result both times. This property is called referential transparency. It
lets the programmer easily deduce (and even prove) that a function is cor-
rect. You can then build more complex functions by gluing these simple
functions together.

Haskell is lazy. This means that
unless specifically told otherwise,
Haskell won’t execute functions
until it needs to show you a result.
This is made possible by referential
transparency. If you know that the
result of a function depends only
on the parameters that function is
given, it doesn’t matter when you
actually calculate the result of the
function. Haskell, being a lazy lan-
guage, takes advantage of this fact
and defers actually computing re-
sults for as long as possible. Once
you want your results to be displayed, Haskell will do just the bare minimum
computation required to display them. Laziness also allows you to make
seemingly infinite data structures, because only the parts of the data struc-
tures that you choose to display will actually be computed.

Let’s look at an example of Haskell’s laziness. Say you have a list of num-
bers, xs = [1,2,3,4,5,6,7,8], and a function called doubleMe that doubles every
element and returns the result as a new list. If you want to multiply your list
by 8, your code might look something like this:

doubleMe (doubleMe(doubleMe(xs)))

An imperative language would probably pass through the list once, make
a copy, and then return it. It would then pass through the list another two
times, making copies each time, and return the result.

In a lazy language, calling doubleMe on a list without forcing it to show
you the result just makes the program tell you, “Yeah yeah, I’ll do it later!”
Once you want to see the result, the first doubleMe calls the second one and
says it wants the result immediately. Then the second one says the same
thing to the third one, and the third one reluctantly gives back a doubled
1, which is 2. The second doubleMe receives that and returns 4 to the first
one. The first doubleMe then doubles this result and tells you that the first ele-
ment in the final resulting list is 8. Because of Haskell’s laziness, the doubleMe
calls pass through the list just once, and only when you really need that to
happen.

Haskell is statically typed. This means that
when you compile your program, the compiler
knows which piece of code is a number, which
is a string, and so on. Static typing means that a
lot of possible errors can be caught at compile
time. If you try to add together a number and
a string, for example, the compiler will whine
at you.

Haskell uses a very good type system that
has type inference. This means that you don’t
need to explicitly label every piece of code with a type, because Haskell’s
type system can intelligently figure it out. For example, if yousaya = 5 + 4,
you don’t need to tell Haskell that a is a number—it can figure that out by
itself. Type inference makes it easier for you to write code that’s more gen-
eral. If you write a function that takes two parameters and adds them to-
gether, but you don’t explicitly state their type, the function will work on
any two parameters that act like numbers.

Haskell is elegant and concise. Because it uses a lot of high-level con-
cepts, Haskell programs are usually shorter than their imperative equiva-
lents. Shorter programs are easier to maintain and have fewer bugs.

Haskell was made by some really smart guys (with PhDs). Work on
Haskell began in 1987 when a committee of researchers got together to
design a kick-ass language. The Haskell Report, which defines a stable ver-
sion of the language, was published in 1999.

What You Need to Dive In

In short, to get started with Haskell, you need a text editor and a Haskell
compiler. You probably already have your favorite text editor installed, so we
won’t waste time on that. The most popular Haskell compiler is the Glasgow
Haskell Compiler (GHC), which we will be using throughout this book.

The best way to get what you need is to download the Haskell Platform.
The Haskell Platform includes not only the GHC compiler but also a bunch
of useful Haskell libraries! To get the Haskell Platform for your system, go to

Introduction xvii

xviii

http://hackage. haskell.org/platform/ and follow the instructions for your oper-
ating system.

GHC can compile Haskell scripts (usually with an .As extension), and
it also has an interactive mode. From there, you can load functions from
scripts and then call them directly to see immediate results. Especially when
you’re learning, it’s much easier to use the interactive mode than it is to
compile and run your code every time you make a change.

Once you've installed the Haskell Platform, open a new terminal win-
dow, assuming you’re on a Linux or Mac OS X system. If your operating sys-
tem of choice is Windows, go to the command prompt. Once there, type
ghci and press ENTER to start the interactive mode. (If your system fails to
find the GHCi program, you can try rebooting your computer.)

If you’ve defined some functions in a script—for example, myfunctions.hs—
you can load these functions into GHCi by typing :1 myfunctions. (Make sure
that myfunctions.hs is in the same folder from which you started GHCi.)

If you change the .hs script, run :1 myfunctions to load the file again or
run :1, which reloads the current script. My usual workflow is to define some
functions in an . ks file, load it into GHCi, mess around with it, change the
file, and repeat. This is what we’ll be doing in this book.

Acknowledgments

Introduction

Thanks to everyone who sent in corrections, suggestions, and words of en-
couragement. Also thanks to Keith, Sam, and Marilyn for making me look
like a real writer.

