{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE UndecidableInstances #-} -- | -- Module : Data.Massiv.Array.Manifest.Primitive -- Copyright : (c) Alexey Kuleshevich 2018-2019 -- License : BSD3 -- Maintainer : Alexey Kuleshevich -- Stability : experimental -- Portability : non-portable -- module Data.Massiv.Array.Manifest.Primitive ( P(..) , Array(..) , Prim , toByteArray , fromByteArrayM , fromByteArray , toMutableByteArray , fromMutableByteArrayM , fromMutableByteArray , unsafeAtomicReadIntArray , unsafeAtomicWriteIntArray , unsafeCasIntArray , unsafeAtomicModifyIntArray , unsafeAtomicAddIntArray , unsafeAtomicSubIntArray , unsafeAtomicAndIntArray , unsafeAtomicNandIntArray , unsafeAtomicOrIntArray , unsafeAtomicXorIntArray ) where import Control.DeepSeq (NFData(..), deepseq) import Control.Monad.Primitive (PrimMonad(primitive), PrimState, primitive_) import Data.Massiv.Array.Delayed.Pull (eq, ord) import Data.Massiv.Array.Manifest.Internal import Data.Massiv.Array.Manifest.List as A import Data.Massiv.Array.Mutable import Data.Massiv.Core.Common import Data.Massiv.Core.List import Data.Primitive (sizeOf) import Data.Primitive.ByteArray import Data.Primitive.Types import GHC.Base (Int(..)) import GHC.Exts as GHC import Prelude hiding (mapM) import System.IO.Unsafe (unsafePerformIO) #include "massiv.h" -- | Representation for `Prim`itive elements data P = P deriving Show type instance EltRepr P ix = M data instance Array P ix e = PArray { pComp :: !Comp , pSize :: !(Sz ix) , pData :: {-# UNPACK #-} !ByteArray } instance (Ragged L ix e, Show e, Prim e) => Show (Array P ix e) where showsPrec = showsArrayPrec id showList = showArrayList instance Index ix => NFData (Array P ix e) where rnf (PArray c sz a) = c `deepseq` sz `deepseq` a `seq` () {-# INLINE rnf #-} instance (Prim e, Eq e, Index ix) => Eq (Array P ix e) where (==) = eq (==) {-# INLINE (==) #-} instance (Prim e, Ord e, Index ix) => Ord (Array P ix e) where compare = ord compare {-# INLINE compare #-} instance (Prim e, Index ix) => Construct P ix e where setComp c arr = arr { pComp = c } {-# INLINE setComp #-} makeArray !comp !sz f = unsafePerformIO $ generateArray comp sz (return . f) {-# INLINE makeArray #-} instance (Prim e, Index ix) => Source P ix e where unsafeLinearIndex _pa@(PArray _ _ a) = INDEX_CHECK("(Source P ix e).unsafeLinearIndex", Sz . elemsBA _pa, indexByteArray) a {-# INLINE unsafeLinearIndex #-} instance Index ix => Resize P ix where unsafeResize !sz !arr = arr { pSize = sz } {-# INLINE unsafeResize #-} instance (Prim e, Index ix) => Extract P ix e where unsafeExtract !sIx !newSz !arr = unsafeExtract sIx newSz (toManifest arr) {-# INLINE unsafeExtract #-} instance {-# OVERLAPPING #-} Prim e => Slice P Ix1 e where unsafeSlice arr i _ _ = pure (unsafeLinearIndex arr i) {-# INLINE unsafeSlice #-} instance ( Prim e , Index ix , Index (Lower ix) , Elt P ix e ~ Elt M ix e , Elt M ix e ~ Array M (Lower ix) e ) => Slice P ix e where unsafeSlice arr = unsafeSlice (toManifest arr) {-# INLINE unsafeSlice #-} instance {-# OVERLAPPING #-} Prim e => OuterSlice P Ix1 e where unsafeOuterSlice = unsafeLinearIndex {-# INLINE unsafeOuterSlice #-} instance ( Prim e , Index ix , Index (Lower ix) , Elt M ix e ~ Array M (Lower ix) e , Elt P ix e ~ Array M (Lower ix) e ) => OuterSlice P ix e where unsafeOuterSlice arr = unsafeOuterSlice (toManifest arr) {-# INLINE unsafeOuterSlice #-} instance {-# OVERLAPPING #-} Prim e => InnerSlice P Ix1 e where unsafeInnerSlice arr _ = unsafeLinearIndex arr {-# INLINE unsafeInnerSlice #-} instance ( Prim e , Index ix , Index (Lower ix) , Elt M ix e ~ Array M (Lower ix) e , Elt P ix e ~ Array M (Lower ix) e ) => InnerSlice P ix e where unsafeInnerSlice arr = unsafeInnerSlice (toManifest arr) {-# INLINE unsafeInnerSlice #-} instance (Index ix, Prim e) => Manifest P ix e where unsafeLinearIndexM _pa@(PArray _ _ a) = INDEX_CHECK("(Manifest P ix e).unsafeLinearIndexM", Sz . elemsBA _pa, indexByteArray) a {-# INLINE unsafeLinearIndexM #-} instance (Index ix, Prim e) => Mutable P ix e where data MArray s P ix e = MPArray !(Sz ix) {-# UNPACK #-} !(MutableByteArray s) msize (MPArray sz _) = sz {-# INLINE msize #-} unsafeThaw (PArray _ sz a) = MPArray sz <$> unsafeThawByteArray a {-# INLINE unsafeThaw #-} unsafeFreeze comp (MPArray sz a) = PArray comp sz <$> unsafeFreezeByteArray a {-# INLINE unsafeFreeze #-} unsafeNew sz | n <= (maxBound :: Int) `div` eSize = MPArray sz <$> newByteArray (n * eSize) | otherwise = error $ "Array size is too big: " ++ show sz where !n = totalElem sz !eSize = sizeOf (undefined :: e) {-# INLINE unsafeNew #-} initialize (MPArray sz mba) = fillByteArray mba 0 (totalElem sz * sizeOf (undefined :: e)) 0 {-# INLINE initialize #-} unsafeLinearRead _mpa@(MPArray _ ma) = INDEX_CHECK("(Mutable P ix e).unsafeLinearRead", Sz . elemsMBA _mpa, readByteArray) ma {-# INLINE unsafeLinearRead #-} unsafeLinearWrite _mpa@(MPArray _ ma) = INDEX_CHECK("(Mutable P ix e).unsafeLinearWrite", Sz . elemsMBA _mpa, writeByteArray) ma {-# INLINE unsafeLinearWrite #-} unsafeLinearSet (MPArray _ ma) = setByteArray ma {-# INLINE unsafeLinearSet #-} instance (Prim e, Index ix) => Load P ix e where size = pSize {-# INLINE size #-} getComp = pComp {-# INLINE getComp #-} loadArrayM !scheduler !arr = splitLinearlyWith_ scheduler (elemsCount arr) (unsafeLinearIndex arr) {-# INLINE loadArrayM #-} instance (Prim e, Index ix) => StrideLoad P ix e instance ( Prim e , IsList (Array L ix e) , Nested LN ix e , Nested L ix e , Ragged L ix e ) => IsList (Array P ix e) where type Item (Array P ix e) = Item (Array L ix e) fromList = A.fromLists' Seq {-# INLINE fromList #-} toList = GHC.toList . toListArray {-# INLINE toList #-} elemsBA :: forall proxy e . Prim e => proxy e -> ByteArray -> Int elemsBA _ a = sizeofByteArray a `div` sizeOf (undefined :: e) {-# INLINE elemsBA #-} elemsMBA :: forall proxy e s . Prim e => proxy e -> MutableByteArray s -> Int elemsMBA _ a = sizeofMutableByteArray a `div` sizeOf (undefined :: e) {-# INLINE elemsMBA #-} -- | /O(1)/ - Extract the internal `ByteArray`. -- -- @since 0.2.1 toByteArray :: Array P ix e -> ByteArray toByteArray = pData {-# INLINE toByteArray #-} -- | /O(1)/ - Construct a primitive array from the `ByteArray`. Will return `Nothing` if number of -- elements doesn't match. -- -- @since 0.3.0 fromByteArrayM :: (MonadThrow m, Index ix, Prim e) => Comp -> Sz ix -> ByteArray -> m (Array P ix e) fromByteArrayM comp sz ba = guardNumberOfElements sz (Sz (elemsBA arr ba)) >> pure arr where arr = PArray comp sz ba {-# INLINE fromByteArrayM #-} -- | See `fromByteArrayM`. -- -- @since 0.2.1 fromByteArray :: (Index ix, Prim e) => Comp -> Sz ix -> ByteArray -> Maybe (Array P ix e) fromByteArray = fromByteArrayM {-# INLINE fromByteArray #-} {-# DEPRECATED fromByteArray "In favor of more general `fromByteArrayM`" #-} -- | /O(1)/ - Extract the internal `MutableByteArray`. -- -- @since 0.2.1 toMutableByteArray :: MArray s P ix e -> MutableByteArray s toMutableByteArray (MPArray _ mba) = mba {-# INLINE toMutableByteArray #-} -- | /O(1)/ - Construct a primitive mutable array from the `MutableByteArray`. Will return `Nothing` -- if number of elements doesn't match. -- -- @since 0.3.0 fromMutableByteArrayM :: (MonadThrow m, Index ix, Prim e) => Sz ix -> MutableByteArray s -> m (MArray s P ix e) fromMutableByteArrayM sz mba = guardNumberOfElements sz (Sz (elemsMBA marr mba)) >> pure marr where marr = MPArray sz mba {-# INLINE fromMutableByteArrayM #-} -- | See `fromMutableByteArray`. -- -- @since 0.2.1 fromMutableByteArray :: (Index ix, Prim e) => Sz ix -> MutableByteArray s -> Maybe (MArray s P ix e) fromMutableByteArray = fromMutableByteArrayM {-# INLINE fromMutableByteArray #-} {-# DEPRECATED fromMutableByteArray "In favor of more general `fromMutableByteArrayM`" #-} -- | Atomically read an `Int` element from the array -- -- @since 0.3.0 unsafeAtomicReadIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> m Int unsafeAtomicReadIntArray _mpa@(MPArray sz mba) ix = INDEX_CHECK( "unsafeAtomicReadIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case atomicReadIntArray# mba# i# s# of (# s'#, e# #) -> (# s'#, I# e# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicReadIntArray #-} -- | Atomically write an `Int` element int the array -- -- @since 0.3.0 unsafeAtomicWriteIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m () unsafeAtomicWriteIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicWriteIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive_ (atomicWriteIntArray# mba# i# e#)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicWriteIntArray #-} -- | Atomically CAS an `Int` in the array. Returns the old value. -- -- @since 0.3.0 unsafeCasIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> Int -> m Int unsafeCasIntArray _mpa@(MPArray sz mba) ix (I# e#) (I# n#) = INDEX_CHECK( "unsafeCasIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case casIntArray# mba# i# e# n# s# of (# s'#, o# #) -> (# s'#, I# o# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeCasIntArray #-} -- | Atomically modify an `Int` element of the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicModifyIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> (Int -> Int) -> m Int unsafeAtomicModifyIntArray _mpa@(MPArray sz mba) ix f = INDEX_CHECK("unsafeAtomicModifyIntArray", Sz . elemsMBA _mpa, atomicModify) mba (toLinearIndex sz ix) where atomicModify (MutableByteArray mba#) (I# i#) = let go s# o# = let !(I# n#) = f (I# o#) in case casIntArray# mba# i# o# n# s# of (# s'#, o'# #) -> case o# ==# o'# of 0# -> go s# o'# _ -> (# s'#, I# o# #) in primitive $ \s# -> case atomicReadIntArray# mba# i# s# of (# s'#, o# #) -> go s'# o# {-# INLINE atomicModify #-} {-# INLINE unsafeAtomicModifyIntArray #-} -- | Atomically add to an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicAddIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicAddIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicAddIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchAddIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicAddIntArray #-} -- | Atomically subtract from an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicSubIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicSubIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicSubIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchSubIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicSubIntArray #-} -- | Atomically AND an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicAndIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicAndIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicAndIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchAndIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicAndIntArray #-} -- | Atomically NAND an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicNandIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicNandIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicNandIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchNandIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicNandIntArray #-} -- | Atomically OR an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicOrIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicOrIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicOrIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchOrIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicOrIntArray #-} -- | Atomically XOR an `Int` element in the array. Returns the old value. -- -- @since 0.3.0 unsafeAtomicXorIntArray :: (Index ix, PrimMonad m) => MArray (PrimState m) P ix Int -> ix -> Int -> m Int unsafeAtomicXorIntArray _mpa@(MPArray sz mba) ix (I# e#) = INDEX_CHECK( "unsafeAtomicXorIntArray" , Sz . elemsMBA _mpa , \(MutableByteArray mba#) (I# i#) -> primitive $ \s# -> case fetchXorIntArray# mba# i# e# s# of (# s'#, p# #) -> (# s'#, I# p# #)) mba (toLinearIndex sz ix) {-# INLINE unsafeAtomicXorIntArray #-}