{-# LANGUAGE BangPatterns #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} -- | -- Module : Data.Massiv.Array.Mutable -- Copyright : (c) Alexey Kuleshevich 2018-2019 -- License : BSD3 -- Maintainer : Alexey Kuleshevich -- Stability : experimental -- Portability : non-portable -- module Data.Massiv.Array.Mutable ( -- ** Size msize -- ** Element-wise mutation , read , readM , read' , write , write_ , writeM , write' , modify , modify_ , modifyM , modifyM_ , modify' , swap , swap_ , swapM , swapM_ , swap' -- ** Operations on @MArray@ -- *** Immutable conversion , new , thaw , thawS , freeze , freezeS -- *** Create mutable , makeMArray , makeMArrayLinear , makeMArrayS , makeMArrayLinearS -- *** Create pure , createArray_ , createArray , createArrayS_ , createArrayS , createArrayST_ , createArrayST -- *** Generate , generateArray , generateArrayLinear , generateArrayS , generateArrayLinearS -- *** Stateful worker threads , generateArrayWS , generateArrayLinearWS -- *** Unfold , unfoldrPrimM_ , iunfoldrPrimM_ , unfoldrPrimM , iunfoldrPrimM , unfoldlPrimM_ , iunfoldlPrimM_ , unfoldlPrimM , iunfoldlPrimM -- *** Mapping , forPrimM , forPrimM_ , iforPrimM , iforPrimM_ , iforLinearPrimM , iforLinearPrimM_ -- *** Modify , withMArray , withMArray_ , withMArrayS , withMArrayS_ , withMArrayST , withMArrayST_ -- *** Initialize , initialize , initializeNew -- ** Computation , Mutable , MArray , RealWorld , computeInto , loadArray , loadArrayS ) where -- TODO: add fromListM, et al. import Data.Maybe (fromMaybe) import Control.Monad (void, when, unless, (>=>)) import Control.Monad.ST import Control.Scheduler import Data.Massiv.Core.Common import Data.Massiv.Array.Mutable.Internal import Prelude hiding (mapM, read) -- | /O(n)/ - Initialize a new mutable array. All elements will be set to some default value. For -- boxed arrays in will be a thunk with `Uninitialized` exception, while for others it will be -- simply zeros. -- -- ==== __Examples__ -- -- >>> import Data.Massiv.Array -- >>> marr <- new (Sz2 2 6) :: IO (MArray RealWorld P Ix2 Int) -- >>> freeze Seq marr -- Array P Seq (Sz (2 :. 6)) -- [ [ 0, 0, 0, 0, 0, 0 ] -- , [ 0, 0, 0, 0, 0, 0 ] -- ] -- -- Or using @TypeApplications@: -- -- >>> :set -XTypeApplications -- >>> new @P @Ix2 @Int (Sz2 2 6) >>= freezeS -- Array P Seq (Sz (2 :. 6)) -- [ [ 0, 0, 0, 0, 0, 0 ] -- , [ 0, 0, 0, 0, 0, 0 ] -- ] -- >>> new @B @_ @Int (Sz2 2 6) >>= (`readM` 1) -- *** Exception: Uninitialized -- -- @since 0.1.0 new :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Sz ix -> m (MArray (PrimState m) r ix e) new = initializeNew Nothing {-# INLINE new #-} -- | /O(n)/ - Make a mutable copy of a pure array. Keep in mind that both `freeze` and `thaw` trigger a -- copy of the full array. -- -- ==== __Example__ -- -- >>> import Data.Massiv.Array -- >>> :set -XTypeApplications -- >>> arr <- fromListsM @U @Ix2 @Double Par [[12,21],[13,31]] -- >>> marr <- thaw arr -- >>> modify marr (pure . (+ 10)) (1 :. 0) -- Just 13.0 -- >>> freeze Par marr -- Array U Par (Sz (2 :. 2)) -- [ [ 12.0, 21.0 ] -- , [ 23.0, 31.0 ] -- ] -- -- @since 0.1.0 thaw :: forall r ix e m. (Mutable r ix e, MonadIO m) => Array r ix e -> m (MArray RealWorld r ix e) thaw arr = liftIO $ do let sz = size arr totalLength = totalElem sz marr <- unsafeNew sz withScheduler_ (getComp arr) $ \scheduler -> splitLinearly (numWorkers scheduler) totalLength $ \chunkLength slackStart -> do loopM_ 0 (< slackStart) (+ chunkLength) $ \ !start -> scheduleWork_ scheduler $ unsafeArrayLinearCopy arr start marr start (SafeSz chunkLength) let slackLength = totalLength - slackStart when (slackLength > 0) $ scheduleWork_ scheduler $ unsafeArrayLinearCopy arr slackStart marr slackStart (SafeSz slackLength) pure marr {-# INLINE thaw #-} -- | Same as `thaw`, but restrict computation to sequential only. -- -- ==== __Example__ -- -- >>> import Data.Massiv.Array -- >>> :set -XOverloadedLists -- >>> thawS @P @Ix1 @Double [1..10] -- >>> marr <- thawS @P @Ix1 @Double [1..10] -- >>> writeM marr 5 100 -- >>> freezeS marr -- Array P Seq (Sz1 10) -- [ 1.0, 2.0, 3.0, 4.0, 5.0, 100.0, 7.0, 8.0, 9.0, 10.0 ] -- -- @since 0.3.0 thawS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Array r ix e -> m (MArray (PrimState m) r ix e) thawS arr = do tmarr <- unsafeNew (size arr) unsafeArrayLinearCopy arr 0 tmarr 0 (SafeSz (totalElem (size arr))) pure tmarr {-# INLINE thawS #-} -- | /O(n)/ - Yield an immutable copy of the mutable array. Note that mutable representations -- have to be the same. -- -- ==== __Example__ -- -- >>> import Data.Massiv.Array -- >>> marr <- new @P @_ @Int (Sz2 2 6) -- >>> forM_ (range Seq 0 (Ix2 1 4)) $ \ix -> write marr ix 9 -- >>> freeze Seq marr -- Array P Seq (Sz (2 :. 6)) -- [ [ 9, 9, 9, 9, 0, 0 ] -- , [ 0, 0, 0, 0, 0, 0 ] -- ] -- -- @since 0.1.0 freeze :: forall r ix e m. (Mutable r ix e, MonadIO m) => Comp -> MArray RealWorld r ix e -> m (Array r ix e) freeze comp smarr = liftIO $ do let sz = msize smarr totalLength = totalElem sz tmarr <- unsafeNew sz withScheduler_ comp $ \scheduler -> splitLinearly (numWorkers scheduler) totalLength $ \chunkLength slackStart -> do loopM_ 0 (< slackStart) (+ chunkLength) $ \ !start -> scheduleWork_ scheduler $ unsafeLinearCopy smarr start tmarr start (SafeSz chunkLength) let slackLength = totalLength - slackStart when (slackLength > 0) $ scheduleWork_ scheduler $ unsafeLinearCopy smarr slackStart tmarr slackStart (SafeSz slackLength) unsafeFreeze comp tmarr {-# INLINE freeze #-} -- | Same as `freeze`, but do the copy of supplied muable array sequentially. Also, unlike `freeze` -- that has to be done in `IO`, `freezeS` can be used with `ST`. -- -- @since 0.3.0 freezeS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> m (Array r ix e) freezeS smarr = do let sz = msize smarr tmarr <- unsafeNew sz unsafeLinearCopy smarr 0 tmarr 0 (SafeSz (totalElem sz)) unsafeFreeze Seq tmarr {-# INLINE freezeS #-} newMaybeInitialized :: (Load r' ix e, Mutable r ix e, PrimMonad m) => Array r' ix e -> m (MArray (PrimState m) r ix e) newMaybeInitialized !arr = initializeNew (defaultElement arr) (fromMaybe zeroSz (maxSize arr)) {-# INLINE newMaybeInitialized #-} -- | Load sequentially a pure array into the newly created mutable array. -- -- @since 0.3.0 loadArrayS :: forall r ix e r' m. (Load r' ix e, Mutable r ix e, PrimMonad m) => Array r' ix e -> m (MArray (PrimState m) r ix e) loadArrayS arr = do marr <- newMaybeInitialized arr unsafeLoadIntoS marr arr {-# INLINE loadArrayS #-} -- | Load a pure array into the newly created mutable array, while respecting computation startegy. -- -- @since 0.3.0 loadArray :: forall r ix e r' m. (Load r' ix e, Mutable r ix e, MonadIO m) => Array r' ix e -> m (MArray RealWorld r ix e) loadArray arr = liftIO $ do marr <- newMaybeInitialized arr unsafeLoadInto marr arr {-# INLINE loadArray #-} -- | Compute an Array while loading the results into the supplied mutable target array. Number of -- elements for arrays must agree, otherwise `SizeElementsMismatchException` exception is thrown. -- -- @since 0.1.3 computeInto :: (Load r' ix' e, Mutable r ix e, MonadIO m) => MArray RealWorld r ix e -- ^ Target Array -> Array r' ix' e -- ^ Array to load -> m () computeInto !mArr !arr = liftIO $ do unless (totalElem (msize mArr) == totalElem (size arr)) $ throwM $ SizeElementsMismatchException (msize mArr) (size arr) withScheduler_ (getComp arr) $ \scheduler -> loadArrayM scheduler arr (unsafeLinearWrite mArr) {-# INLINE computeInto #-} -- | Create a mutable array using an index aware generating action. -- -- @since 0.3.0 makeMArrayS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the create array -> (ix -> m e) -- ^ Element generating action -> m (MArray (PrimState m) r ix e) makeMArrayS sz f = makeMArrayLinearS sz (f . fromLinearIndex sz) {-# INLINE makeMArrayS #-} -- | Same as `makeMArrayS`, but index supplied to the action is row-major linear index. -- -- @since 0.3.0 makeMArrayLinearS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Sz ix -> (Int -> m e) -> m (MArray (PrimState m) r ix e) makeMArrayLinearS sz f = do marr <- unsafeNew sz loopM_ 0 (< totalElem (msize marr)) (+ 1) (\ !i -> f i >>= unsafeLinearWrite marr i) return marr {-# INLINE makeMArrayLinearS #-} -- | Just like `makeMArrayS`, but also accepts computation strategy and runs in `IO`. -- -- @since 0.3.0 makeMArray :: forall r ix e m. (PrimMonad m, MonadUnliftIO m, Mutable r ix e) => Comp -> Sz ix -> (ix -> m e) -> m (MArray (PrimState m) r ix e) makeMArray comp sz f = makeMArrayLinear comp sz (f . fromLinearIndex sz) {-# INLINE makeMArray #-} -- | Just like `makeMArrayLinearS`, but also accepts computation strategy and runs in `IO`. -- -- @since 0.3.0 makeMArrayLinear :: forall r ix e m. (PrimMonad m, MonadUnliftIO m, Mutable r ix e) => Comp -> Sz ix -> (Int -> m e) -> m (MArray (PrimState m) r ix e) makeMArrayLinear comp sz f = do marr <- unsafeNew sz withScheduler_ comp $ \scheduler -> splitLinearlyWithM_ scheduler (totalElem sz) f (unsafeLinearWrite marr) return marr {-# INLINE makeMArrayLinear #-} -- | Create a new array by supplying an action that will fill the new blank mutable array. Use -- `createArray` if you'd like to keep the result of the filling function. -- -- ====__Examples__ -- -- >>> :set -XTypeApplications -- >>> import Data.Massiv.Array -- >>> createArray_ @P @_ @Int Seq (Sz1 2) (\ s marr -> scheduleWork s (writeM marr 0 10) >> scheduleWork s (writeM marr 1 11)) -- Array P Seq (Sz1 2) -- [ 10, 11 ] -- -- @since 0.3.0 -- createArray_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m, MonadUnliftIO m) => Comp -- ^ Computation strategy to use after `MArray` gets frozen and onward. -> Sz ix -- ^ Size of the newly created array -> (Scheduler m () -> MArray (PrimState m) r ix e -> m a) -- ^ An action that should fill all elements of the brand new mutable array -> m (Array r ix e) createArray_ comp sz action = do marr <- new sz withScheduler_ comp (`action` marr) unsafeFreeze comp marr {-# INLINE createArray_ #-} -- | Just like `createArray_`, but together with `Array` it returns results of scheduled filling -- actions. -- -- @since 0.3.0 -- createArray :: forall r ix e a m b. (Mutable r ix e, PrimMonad m, MonadUnliftIO m) => Comp -- ^ Computation strategy to use after `MArray` gets frozen and onward. -> Sz ix -- ^ Size of the newly created array -> (Scheduler m a -> MArray (PrimState m) r ix e -> m b) -- ^ An action that should fill all elements of the brand new mutable array -> m ([a], Array r ix e) createArray comp sz action = do marr <- new sz a <- withScheduler comp (`action` marr) arr <- unsafeFreeze comp marr return (a, arr) {-# INLINE createArray #-} -- | Create a new array by supplying an action that will fill the new blank mutable array. Use -- `createArrayS` if you'd like to keep the result of the filling function. -- -- ====__Examples__ -- -- >>> :set -XTypeApplications -- >>> import Data.Massiv.Array -- >>> createArrayS_ @P @_ @Int (Sz1 2) (\ marr -> write marr 0 10 >> write marr 1 12) -- Array P Seq (Sz1 2) -- [ 10, 12 ] -- -- @since 0.3.0 createArrayS_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the newly created array -> (MArray (PrimState m) r ix e -> m a) -- ^ An action that should fill all elements of the brand new mutable array -> m (Array r ix e) createArrayS_ sz action = snd <$> createArrayS sz action {-# INLINE createArrayS_ #-} -- | Just like `createArray_`, but together with `Array` it returns the result of the filling action. -- -- @since 0.3.0 createArrayS :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the newly created array -> (MArray (PrimState m) r ix e -> m a) -- ^ An action that should fill all elements of the brand new mutable array -> m (a, Array r ix e) createArrayS sz action = do marr <- new sz a <- action marr arr <- unsafeFreeze Seq marr return (a, arr) {-# INLINE createArrayS #-} -- | Just like `createArrayS_`, but restricted to `ST`. -- -- @since 0.3.0 createArrayST_ :: forall r ix e a. Mutable r ix e => Sz ix -> (forall s. MArray s r ix e -> ST s a) -> Array r ix e createArrayST_ sz action = runST $ createArrayS_ sz action {-# INLINE createArrayST_ #-} -- | Just like `createArrayS`, but restricted to `ST`. -- -- @since 0.2.6 createArrayST :: forall r ix e a. Mutable r ix e => Sz ix -> (forall s. MArray s r ix e -> ST s a) -> (a, Array r ix e) createArrayST sz action = runST $ createArrayS sz action {-# INLINE createArrayST #-} -- | Sequentially generate a pure array. Much like `makeArray` creates a pure array this -- function will use `Mutable` interface to generate a pure `Array` in the end, except that -- computation strategy is set to `Seq`. Element producing function no longer has to be pure -- but is a stateful action, becuase it is restricted to `PrimMonad` thus allows for sharing -- the state between computation of each element. -- -- ====__Examples__ -- -- >>> import Data.Massiv.Array -- >>> import Data.IORef -- >>> ref <- newIORef (0 :: Int) -- >>> generateArrayS (Sz1 6) (\ i -> modifyIORef' ref (+i) >> print i >> pure i) :: IO (Array U Ix1 Int) -- 0 -- 1 -- 2 -- 3 -- 4 -- 5 -- Array U Seq (Sz1 6) -- [ 0, 1, 2, 3, 4, 5 ] -- >>> readIORef ref -- 15 -- -- @since 0.2.6 generateArrayS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Resulting size of the array -> (ix -> m e) -- ^ Element producing generator -> m (Array r ix e) generateArrayS sz gen = generateArrayLinearS sz (gen . fromLinearIndex sz) {-# INLINE generateArrayS #-} -- | Same as `generateArray` but with action that accepts row-major linear index. -- -- @since 0.3.0 generateArrayLinearS :: forall r ix e m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Resulting size of the array -> (Int -> m e) -- ^ Element producing generator -> m (Array r ix e) generateArrayLinearS sz gen = do marr <- unsafeNew sz loopM_ 0 (< totalElem (msize marr)) (+ 1) $ \i -> gen i >>= unsafeLinearWrite marr i unsafeFreeze Seq marr {-# INLINE generateArrayLinearS #-} -- | Just like `generateArrayS`, except this generator __will__ respect the supplied computation -- strategy, and for that reason it is restricted to `IO`. -- -- @since 0.2.6 generateArray :: forall r ix e m. (MonadUnliftIO m, PrimMonad m, Mutable r ix e) => Comp -> Sz ix -> (ix -> m e) -> m (Array r ix e) generateArray comp sz f = generateArrayLinear comp sz (f . fromLinearIndex sz) {-# INLINE generateArray #-} -- | Just like `generateArray`, except generating action will receive a row-major linear -- index. -- -- @since 0.3.0 generateArrayLinear :: forall r ix e m. (MonadUnliftIO m, PrimMonad m, Mutable r ix e) => Comp -> Sz ix -> (Int -> m e) -> m (Array r ix e) generateArrayLinear comp sz f = makeMArrayLinear comp sz f >>= unsafeFreeze comp {-# INLINE generateArrayLinear #-} -- | Same as `generateArrayWS`, but use linear indexing instead. -- -- @since 0.3.4 generateArrayLinearWS :: forall r ix e s m. (Mutable r ix e, MonadUnliftIO m, PrimMonad m) => WorkerStates s -> Sz ix -> (Int -> s -> m e) -> m (Array r ix e) generateArrayLinearWS states sz make = do marr <- unsafeNew sz withSchedulerWS_ states $ \schedulerWS -> splitLinearlyWithStatefulM_ schedulerWS (totalElem sz) make (unsafeLinearWrite marr) unsafeFreeze (workerStatesComp states) marr {-# INLINE generateArrayLinearWS #-} -- | Use per worker thread state while generating elements of the array. Very useful for -- things that are not thread safe. -- -- @since 0.3.4 generateArrayWS :: forall r ix e s m. (Mutable r ix e, MonadUnliftIO m, PrimMonad m) => WorkerStates s -> Sz ix -> (ix -> s -> m e) -> m (Array r ix e) generateArrayWS states sz make = generateArrayLinearWS states sz (make . fromLinearIndex sz) {-# INLINE generateArrayWS #-} -- | Sequentially unfold an array from the left. -- -- ====__Examples__ -- -- Create an array with Fibonacci numbers while performing and `IO` action on the accumulator for -- each element of the array. -- -- >>> import Data.Massiv.Array -- >>> unfoldrPrimM_ (Sz1 10) (\a@(f0, f1) -> let fn = f0 + f1 in print a >> return (f0, (f1, fn))) (0, 1) :: IO (Array P Ix1 Int) -- (0,1) -- (1,1) -- (1,2) -- (2,3) -- (3,5) -- (5,8) -- (8,13) -- (13,21) -- (21,34) -- (34,55) -- Array P Seq (Sz1 10) -- [ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ] -- -- @since 0.3.0 unfoldrPrimM_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> m (e, a)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (Array r ix e) unfoldrPrimM_ sz gen acc0 = snd <$> unfoldrPrimM sz gen acc0 {-# INLINE unfoldrPrimM_ #-} -- | Same as `unfoldrPrimM_` but do the unfolding with index aware function. -- -- @since 0.3.0 iunfoldrPrimM_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> ix -> m (e, a)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (Array r ix e) iunfoldrPrimM_ sz gen acc0 = snd <$> iunfoldrPrimM sz gen acc0 {-# INLINE iunfoldrPrimM_ #-} -- | Just like `iunfoldrPrimM_`, but also returns the final value of the accumulator. -- -- @since 0.3.0 iunfoldrPrimM :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> ix -> m (e, a)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (a, Array r ix e) iunfoldrPrimM sz gen acc0 = unsafeCreateArrayS sz $ \marr -> let sz' = msize marr in iterLinearM sz' 0 (totalElem sz') 1 (<) acc0 $ \ !i ix !acc -> do (e, acc') <- gen acc ix unsafeLinearWrite marr i e pure acc' {-# INLINE iunfoldrPrimM #-} -- | Just like `iunfoldrPrimM`, but do the unfolding with index aware function. -- -- @since 0.3.0 unfoldrPrimM :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> m (e, a)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (a, Array r ix e) unfoldrPrimM sz gen acc0 = unsafeCreateArrayS sz $ \marr -> let sz' = msize marr in loopM 0 (< totalElem sz') (+ 1) acc0 $ \ !i !acc -> do (e, acc') <- gen acc unsafeLinearWrite marr i e pure acc' {-# INLINE unfoldrPrimM #-} -- | Sequentially unfold an array from the left. -- -- ====__Examples__ -- -- Create an array with Fibonacci numbers starting at the end while performing and `IO` action on -- the accumulator for each element of the array. -- -- >>> import Data.Massiv.Array -- >>> unfoldlPrimM_ (Sz1 10) (\a@(f0, f1) -> let fn = f0 + f1 in print a >> return ((f1, fn), f0)) (0, 1) :: IO (Array P Ix1 Int) -- (0,1) -- (1,1) -- (1,2) -- (2,3) -- (3,5) -- (5,8) -- (8,13) -- (13,21) -- (21,34) -- (34,55) -- Array P Seq (Sz1 10) -- [ 34, 21, 13, 8, 5, 3, 2, 1, 1, 0 ] -- -- @since 0.3.0 unfoldlPrimM_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> m (a, e)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (Array r ix e) unfoldlPrimM_ sz gen acc0 = snd <$> unfoldlPrimM sz gen acc0 {-# INLINE unfoldlPrimM_ #-} -- | Same as `unfoldlPrimM_` but do the unfolding with index aware function. -- -- @since 0.3.0 iunfoldlPrimM_ :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> ix -> m (a, e)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (Array r ix e) iunfoldlPrimM_ sz gen acc0 = snd <$> iunfoldlPrimM sz gen acc0 {-# INLINE iunfoldlPrimM_ #-} -- | Just like `iunfoldlPrimM_`, but also returns the final value of the accumulator. -- -- @since 0.3.0 iunfoldlPrimM :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> ix -> m (a, e)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (a, Array r ix e) iunfoldlPrimM sz gen acc0 = unsafeCreateArrayS sz $ \marr -> let sz' = msize marr in iterLinearM sz' (totalElem sz' - 1) 0 (negate 1) (>=) acc0 $ \ !i ix !acc -> do (acc', e) <- gen acc ix unsafeLinearWrite marr i e pure acc' {-# INLINE iunfoldlPrimM #-} -- | Just like `iunfoldlPrimM`, but do the unfolding with index aware function. -- -- @since 0.3.0 unfoldlPrimM :: forall r ix e a m. (Mutable r ix e, PrimMonad m) => Sz ix -- ^ Size of the desired array -> (a -> m (a, e)) -- ^ Unfolding action -> a -- ^ Initial accumulator -> m (a, Array r ix e) unfoldlPrimM sz gen acc0 = unsafeCreateArrayS sz $ \marr -> let sz' = msize marr in loopDeepM 0 (< totalElem sz') (+1) acc0 $ \ !i !acc -> do (acc', e) <- gen acc unsafeLinearWrite marr i e pure acc' {-# INLINE unfoldlPrimM #-} -- | Sequentially loop over a mutable array while reading each element and applying an -- action to it. There is no mutation to the array, unless the action itself modifies it. -- -- @since 0.4.0 forPrimM_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (e -> m ()) -> m () forPrimM_ marr f = loopM_ 0 (< totalElem (msize marr)) (+1) (unsafeLinearRead marr >=> f) {-# INLINE forPrimM_ #-} -- | Sequentially loop over a mutable array while modifying each element with an action. -- -- @since 0.4.0 forPrimM :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (e -> m e) -> m () forPrimM marr f = loopM_ 0 (< totalElem (msize marr)) (+1) (unsafeLinearModify marr f) {-# INLINE forPrimM #-} -- | Sequentially loop over a mutable array while reading each element and applying an -- index aware action to it. There is no mutation to the array, unless the -- action itself modifies it. -- -- @since 0.4.0 iforPrimM_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (ix -> e -> m ()) -> m () iforPrimM_ marr f = iforLinearPrimM_ marr (f . fromLinearIndex (msize marr)) {-# INLINE iforPrimM_ #-} -- | Sequentially loop over a mutable array while modifying each element with an index aware action. -- -- @since 0.4.0 iforPrimM :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (ix -> e -> m e) -> m () iforPrimM marr f = iforLinearPrimM marr (f . fromLinearIndex (msize marr)) {-# INLINE iforPrimM #-} -- | Sequentially loop over a mutable array while reading each element and applying a -- linear index aware action to it. There is no mutation to the array, unless the action -- itself modifies it. -- -- @since 0.4.0 iforLinearPrimM_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (Int -> e -> m ()) -> m () iforLinearPrimM_ marr f = loopM_ 0 (< totalElem (msize marr)) (+ 1) (\i -> unsafeLinearRead marr i >>= f i) {-# INLINE iforLinearPrimM_ #-} -- | Sequentially loop over a mutable array while modifying each element with an index aware action. -- -- @since 0.4.0 iforLinearPrimM :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (Int -> e -> m e) -> m () iforLinearPrimM marr f = loopM_ 0 (< totalElem (msize marr)) (+ 1) (\i -> unsafeLinearModify marr (f i) i) {-# INLINE iforLinearPrimM #-} -- | Same as `withMArray_`, but allows to keep artifacts of scheduled tasks. -- -- @since 0.5.0 withMArray :: (Mutable r ix e, MonadUnliftIO m) => Array r ix e -> (Scheduler m a -> MArray RealWorld r ix e -> m b) -> m ([a], Array r ix e) withMArray arr action = do marr <- thaw arr xs <- withScheduler (getComp arr) (`action` marr) liftIO ((,) xs <$> unsafeFreeze (getComp arr) marr) {-# INLINE withMArray #-} -- | Create a copy of a pure array, mutate it in place and return its frozen version. The big -- difference between `withMArrayS` is that it's not only gonna respect the computation strategy -- supplied to it while making a copy, but it will also pass extra argumens to the action that -- suppose to modify the mutable copy of the source array. These two extra arguments are: -- -- * Number of capabilities derived from the `Comp`utation strategy of the array. -- -- * An action that can be used to schedule arbitrary number of jobs that will be executed in -- parallel. -- -- * And, of course, the mutable array itself. -- -- @since 0.5.0 withMArray_ :: (Mutable r ix e, MonadUnliftIO m) => Array r ix e -> (Scheduler m () -> MArray RealWorld r ix e -> m a) -> m (Array r ix e) withMArray_ arr action = do marr <- thaw arr withScheduler_ (getComp arr) (`action` marr) liftIO $ unsafeFreeze (getComp arr) marr {-# INLINE withMArray_ #-} -- | Create a copy of a pure array, mutate it in place and return its frozen version. The important -- benefit over doing a manual `thawS` followed by a `freezeS` is that an array will only be copied -- once. -- -- @since 0.5.0 withMArrayS :: (Mutable r ix e, PrimMonad m) => Array r ix e -> (MArray (PrimState m) r ix e -> m a) -> m (a, Array r ix e) withMArrayS arr action = do marr <- thawS arr a <- action marr (,) a <$> unsafeFreeze (getComp arr) marr {-# INLINE withMArrayS #-} -- | Same as `withMArrayS`, but discards rhe element produced by the supplied action -- -- @since 0.5.0 withMArrayS_ :: (Mutable r ix e, PrimMonad m) => Array r ix e -> (MArray (PrimState m) r ix e -> m a) -> m (Array r ix e) withMArrayS_ arr action = snd <$> withMArrayS arr action {-# INLINE withMArrayS_ #-} -- | Same as `withMArrayS` but in `ST`. This is not only pure, but also the safest way to do -- mutation to the array. -- -- @since 0.5.0 withMArrayST :: Mutable r ix e => Array r ix e -> (forall s . MArray s r ix e -> ST s a) -> (a, Array r ix e) withMArrayST arr f = runST $ withMArrayS arr f {-# INLINE withMArrayST #-} -- | Same as `withMArrayS` but in `ST`. This is not only pure, but also the safest way to do -- mutation to the array. -- -- @since 0.5.0 withMArrayST_ :: Mutable r ix e => Array r ix e -> (forall s. MArray s r ix e -> ST s a) -> Array r ix e withMArrayST_ arr f = runST $ withMArrayS_ arr f {-# INLINE withMArrayST_ #-} -- | /O(1)/ - Lookup an element in the mutable array. Returns `Nothing` when index is out of bounds. -- -- @since 0.1.0 read :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> m (Maybe e) read marr ix = if isSafeIndex (msize marr) ix then Just <$> unsafeRead marr ix else return Nothing {-# INLINE read #-} -- | /O(1)/ - Same as `read`, but throws `IndexOutOfBoundsException` on an invalid index. -- -- @since 0.4.0 readM :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -> ix -> m e readM marr ix = read marr ix >>= \case Just e -> pure e Nothing -> throwM $ IndexOutOfBoundsException (msize marr) ix {-# INLINE readM #-} -- | /O(1)/ - Same as `read`, but throws `IndexOutOfBoundsException` on an invalid index. -- -- @since 0.1.0 read' :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> m e read' marr ix = read marr ix >>= \case Just e -> pure e Nothing -> throw $ IndexOutOfBoundsException (msize marr) ix {-# INLINE read' #-} {-# DEPRECATED read' "In favor of more general `readM`" #-} -- | /O(1)/ - Write an element into the cell of a mutable array. Returns `False` when index is out -- of bounds. -- -- @since 0.1.0 write :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> e -> m Bool write marr ix e = if isSafeIndex (msize marr) ix then unsafeWrite marr ix e >> pure True else pure False {-# INLINE write #-} -- | /O(1)/ - Write an element into the cell of a mutable array. Same as `write` function -- in case of an out of bounds index it is noop, but unlike `write`, there is no -- information is returned about was the writing of element successful or not. In other -- words, just like `writeM`, but doesn't throw an exception. -- -- @since 0.4.4 write_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> e -> m () write_ marr ix = when (isSafeIndex (msize marr) ix) . unsafeWrite marr ix {-# INLINE write_ #-} -- | /O(1)/ - Same as `write`, but throws `IndexOutOfBoundsException` on an invalid index. -- -- @since 0.4.0 writeM :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -> ix -> e -> m () writeM marr ix e = write marr ix e >>= (`unless` throwM (IndexOutOfBoundsException (msize marr) ix)) {-# INLINE writeM #-} -- | /O(1)/ - Same as `write`, but lives in IO and throws `IndexOutOfBoundsException` on invalid -- index. -- -- @since 0.1.0 write' :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> e -> m () write' marr ix e = write marr ix e >>= (`unless` throw (IndexOutOfBoundsException (msize marr) ix)) {-# INLINE write' #-} {-# DEPRECATED write' "In favor of more general `writeM`" #-} -- | /O(1)/ - Modify an element in the cell of a mutable array with a supplied -- action. Returns the previous value, if index was not out of bounds. -- -- @since 0.1.0 modify :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -- ^ Array to mutate. -> (e -> m e) -- ^ Monadic action that modifies the element -> ix -- ^ Index at which to perform modification. -> m (Maybe e) modify marr f ix = if isSafeIndex (msize marr) ix then Just <$> unsafeModify marr f ix else return Nothing {-# INLINE modify #-} -- | /O(1)/ - Same as `modify`, except that neither the previous value, nor any -- information on whether the modification was successful are returned. In other words, -- just like `modifyM_`, but doesn't throw an exception. -- -- @since 0.4.4 modify_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -- ^ Array to mutate. -> (e -> m e) -- ^ Monadic action that modifies the element -> ix -- ^ Index at which to perform modification. -> m () modify_ marr f ix = when (isSafeIndex (msize marr) ix) $ void $ unsafeModify marr f ix {-# INLINE modify_ #-} -- | /O(1)/ - Modify an element in the cell of a mutable array with a supplied -- action. Throws an `IndexOutOfBoundsException` exception for invalid index and returns -- the previous value otherwise. -- -- @since 0.4.0 modifyM :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -- ^ Array to mutate. -> (e -> m e) -- ^ Monadic action that modifies the element -> ix -- ^ Index at which to perform modification. -> m e modifyM marr f ix | isSafeIndex (msize marr) ix = unsafeModify marr f ix | otherwise = throwM (IndexOutOfBoundsException (msize marr) ix) {-# INLINE modifyM #-} -- | /O(1)/ - Same as `modifyM`, but discard the returned element -- -- ====__Examples__ -- -- >>> :set -XTypeApplications -- >>> import Control.Monad.ST -- >>> import Data.Massiv.Array -- >>> runST $ new @P @Ix1 @Int (Sz1 3) >>= (\ma -> modifyM_ ma (pure . (+10)) 1 >> freezeS ma) -- Array P Seq (Sz1 3) -- [ 0, 10, 0 ] -- -- @since 0.4.0 modifyM_ :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -- ^ Array to mutate. -> (e -> m e) -- ^ Monadic action that modifies the element -> ix -- ^ Index at which to perform modification. -> m () modifyM_ marr f ix = void $ modifyM marr f ix {-# INLINE modifyM_ #-} -- | /O(1)/ - Same as `modify`, but throws an error if index is out of bounds. -- -- @since 0.1.0 modify' :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> (e -> e) -> ix -> m () modify' marr f ix = modify marr (pure . f) ix >>= \case Just _ -> pure () Nothing -> throw (IndexOutOfBoundsException (msize marr) ix) {-# INLINE modify' #-} {-# DEPRECATED modify' "In favor of more general `modifyM`" #-} -- | /O(1)/ - Same as `swapM`, but instead of throwing an exception returns `Nothing` when -- either one of the indices is out of bounds and `Just` elements under those indices -- otherwise. -- -- @since 0.1.0 swap :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> ix -> m (Maybe (e, e)) swap marr ix1 ix2 = let !sz = msize marr in if isSafeIndex sz ix1 && isSafeIndex sz ix2 then Just <$> unsafeSwap marr ix1 ix2 else pure Nothing {-# INLINE swap #-} -- | /O(1)/ - Same as `swap`, but instead of returning `Nothing` it does nothing. In other -- words, it is similar to `swapM_`, but does not throw any exceptions. -- -- @since 0.4.4 swap_ :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> ix -> m () swap_ marr ix1 ix2 = let !sz = msize marr in when (isSafeIndex sz ix1 && isSafeIndex sz ix2) $ void $ unsafeSwap marr ix1 ix2 {-# INLINE swap_ #-} -- | /O(1)/ - Swap two elements in a mutable array under the supplied indices. Throws an -- `IndexOutOfBoundsException` when either one of the indices is out of bounds and -- elements under those indices otherwise. -- -- @since 0.4.0 swapM :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -> ix -- ^ Index for the first element, which will be returned as the first element in the -- tuple. -> ix -- ^ Index for the second element, which will be returned as the second element in -- the tuple. -> m (e, e) swapM marr ix1 ix2 | not (isSafeIndex sz ix1) = throwM $ IndexOutOfBoundsException (msize marr) ix1 | not (isSafeIndex sz ix2) = throwM $ IndexOutOfBoundsException (msize marr) ix2 | otherwise = unsafeSwap marr ix1 ix2 where !sz = msize marr {-# INLINE swapM #-} -- | /O(1)/ - Same as `swapM`, but discard the returned elements -- -- @since 0.4.0 swapM_ :: (Mutable r ix e, PrimMonad m, MonadThrow m) => MArray (PrimState m) r ix e -> ix -> ix -> m () swapM_ marr ix1 ix2 = void $ swapM marr ix1 ix2 {-# INLINE swapM_ #-} -- | /O(1)/ - Same as `swap`, but throws an `IndexOutOfBoundsException` on invalid indices. -- -- @since 0.1.0 swap' :: (Mutable r ix e, PrimMonad m) => MArray (PrimState m) r ix e -> ix -> ix -> m () swap' marr ix1 ix2 = swap marr ix1 ix2 >>= \case Just _ -> pure () Nothing -> if isSafeIndex (msize marr) ix1 then throw $ IndexOutOfBoundsException (msize marr) ix2 else throw $ IndexOutOfBoundsException (msize marr) ix1 {-# INLINE swap' #-} {-# DEPRECATED swap' "In favor of more general `swapM`" #-}