/** * @file SFMT.h * * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom * number generator * * @author Mutsuo Saito (Hiroshima University) * @author Makoto Matsumoto (Hiroshima University) * * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima * University. All rights reserved. * * The new BSD License is applied to this software. * see LICENSE.txt * * @note We assume that your system has inttypes.h. If your system * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t, * and you have to define PRIu64 and PRIx64 in this file as follows: * @verbatim typedef unsigned int uint32_t typedef unsigned long long uint64_t #define PRIu64 "llu" #define PRIx64 "llx" @endverbatim * uint32_t must be exactly 32-bit unsigned integer type (no more, no * less), and uint64_t must be exactly 64-bit unsigned integer type. * PRIu64 and PRIx64 are used for printf function to print 64-bit * unsigned int and 64-bit unsigned int in hexadecimal format. */ #ifndef SFMT_H #define SFMT_H #include #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) #include #elif defined(_MSC_VER) || defined(__BORLANDC__) typedef unsigned int uint32_t; typedef unsigned __int64 uint64_t; #define inline __inline #else #include #if defined(__GNUC__) #define inline __inline__ #endif #endif #ifndef PRIu64 #if defined(_MSC_VER) || defined(__BORLANDC__) #define PRIu64 "I64u" #define PRIx64 "I64x" #else #define PRIu64 "llu" #define PRIx64 "llx" #endif #endif #if defined(__GNUC__) #define ALWAYSINLINE __attribute__((always_inline)) #else #define ALWAYSINLINE #endif #if defined(_MSC_VER) #if _MSC_VER >= 1200 #define PRE_ALWAYS __forceinline #else #define PRE_ALWAYS inline #endif #else #define PRE_ALWAYS inline #endif uint32_t gen_rand32(void); uint64_t gen_rand64(void); void fill_array32(uint32_t *array, int size); void fill_array64(uint64_t *array, int size); void init_gen_rand(uint32_t seed); void init_by_array(uint32_t *init_key, int key_length); const char *get_idstring(void); int get_min_array_size32(void); int get_min_array_size64(void); int get_initialized(void); /* These real versions are due to Isaku Wada */ /** generates a random number on [0,1]-real-interval */ inline static double to_real1(uint32_t v) { return v * (1.0/4294967295.0); /* divided by 2^32-1 */ } /** generates a random number on [0,1]-real-interval */ inline static double genrand_real1(void) { return to_real1(gen_rand32()); } /** generates a random number on [0,1)-real-interval */ inline static double to_real2(uint32_t v) { return v * (1.0/4294967296.0); /* divided by 2^32 */ } /** generates a random number on [0,1)-real-interval */ inline static double genrand_real2(void) { return to_real2(gen_rand32()); } /** generates a random number on (0,1)-real-interval */ inline static double to_real3(uint32_t v) { return (((double)v) + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /** generates a random number on (0,1)-real-interval */ inline static double genrand_real3(void) { return to_real3(gen_rand32()); } /** These real versions are due to Isaku Wada */ /** generates a random number on [0,1) with 53-bit resolution*/ inline static double to_res53(uint64_t v) { return v * (1.0/18446744073709551616.0L); } /** generates a random number on [0,1) with 53-bit resolution from two * 32 bit integers */ inline static double to_res53_mix(uint32_t x, uint32_t y) { return to_res53(x | ((uint64_t)y << 32)); } /** generates a random number on [0,1) with 53-bit resolution */ inline static double genrand_res53(void) { return to_res53(gen_rand64()); } /** generates a random number on [0,1) with 53-bit resolution using 32bit integer. */ inline static double genrand_res53_mix(void) { uint32_t x, y; x = gen_rand32(); y = gen_rand32(); return to_res53_mix(x, y); } /* build a 64 bit integer from two 32 bit ones */ inline static uint64_t gen_rand64_mix(void) { uint32_t x, y; x = gen_rand32(); y = gen_rand32(); return (x | ((uint64_t)y << 32)); } #endif