{- | We try to mix effects of two completely unrelated arrows @a@ and @b@, where @b@ is considered pure, and @a@ — impure. Probably the most common use case would be @a = Kleisli IO@. We perform all the pure calculations first, and do the impure ones later. Usage example: >newtype Test input output = Test {runTest :: (Kleisli IO :+ Kleisli (State String)) input output} > deriving (Category, Arrow, ArrowChoice, ArrowLoop) > >runStateMorphism :: s -> Kleisli (State s) :~> (->) >runStateMorphism s al input = evalState (runKleisli al input) s >execTest :: Test input output -> input -> IO output >execTest t = runKleisli $ unPlus $ alMap (runStateMorphism "") $ runTest t > >rd = Test {runTest = liftImpure $ Kleisli $ const getLine} >wr = Test {runTest = liftImpure $ Kleisli putStrLn} >gt = Test {runTest = liftPure $ Kleisli $ const get} >pt = Test {runTest = liftPure $ Kleisli put} > >test = > proc () -> > do line <- rd -< () -- effect from IO > pt -< line -- effect from State > line' <- gt -< () -- effect from State > wr -< line' -- effect from IO -} module Control.Arrow.Mix (module Control.Arrow.Mix.Category, (:+), liftImpure, liftPure, unPlus, unPlus', plusTwist, plusAssoc, plusCommute) where import Prelude hiding (id, (.)) import Control.Arrow import Control.Category import Control.Arrow.Mix.Category import Control.Arrow.Mix.Utilities data Mix a b input output where Mix :: (i -> o) -> (Along a i o :~> a) -> Along b input output i o -> Mix a b input output -- | @a :+ b@ is an arrow incapsulating both @a@ and @b@ effects. It's functorial (and even monadic) in @b@. newtype (a :+ b) input output = APlus ((Mix a :$~ b) input output) deriving (AlMonad, AlFunctor, Category, Arrow, ArrowLoop, ArrowChoice) infixl 6 :+ -- | We can lift impure arrows liftImpure :: (ArrowChoice a, ArrowLoop a, Arrow b) => a :~> a :+ b liftImpure a = APlus $ Apply $ Mix Right (\al -> loop $ al >>> second (a ||| id)) (arr (first Left . swap)) -- | Pure arrows can be lifted too liftPure :: (Arrow a, Arrow b) => b :~> a :+ b liftPure = alRet -- | We need some way to extract the real computation from this @:+@; fortunately, if we manage to reduce the pure arrow to a function (using @alMap@), we can reduce the type @a :+ (->)@ to @a@. unPlus :: Arrow a => a :+ (->) :~> a unPlus = unPlus' . alMap arr -- | If, for some reason, the \"pure\" arrow is, in fact, as impure as the \"impure\" one, we still can extract the real computation. unPlus' :: Arrow a => a :+ a :~> a unPlus' (APlus (Apply (Mix _ a1 a2))) = a1 $ arrSwap a2 instance Arrow a => AlMonad (Mix a) where alRet = Mix id arrCancelUnit . second alLift h (Mix r1 a1 b) = case h r1 b of Mix r2 a2 c -> Mix (r2 *** r1) (a2 . a1 . arrAssocRtoL) (arrAssocRtoL c) -- | (:+) is right commutative-associative: a :+ (b :+ c) and b :+ (a :+ c) can be reduced to one another with @plusTwist@ function plusTwist :: (Arrow a, AlFunctor f, Arrow c) => a :+ f c :~> f (a :+ c) plusTwist (APlus (Apply (Mix r a c))) = alMap (APlus . Apply . Mix r a . arrTwist) c -- | (:+) is also associative plusAssoc :: (Arrow a, Arrow b, Arrow c) => a :+ (b :+ c) :~> (a :+ b) :+ c plusAssoc (APlus (Apply (Mix r a (APlus (Apply (Mix s b c)))))) = APlus (Apply (Mix (s *** r) (ab r a b) (arrAssocRtoL c))) where f :: ((a, (b, c)), d) -> (b, (c, (d, a))) f ~((a1, (b1, c1)), d1) = (b1, (c1, (d1, a1))) g :: (b, (c, (d, a))) -> ((a, (b, c)), d) g ~(b1, (c1, (d1, a1))) = ((a1, (b1, c1)), d1) ab :: (Arrow a, Arrow b) => (i -> o) -> (Along a i o :~> a) -> (Along b i' o' :~> b) -> (Along (a :+ b) (i', i) (o', o) :~> a :+ b) ab r1 a1 b1 (APlus (Apply (Mix r' a' b'))) = APlus (Apply (Mix (r1 *** r') (a1 . a' . arrAssocRtoL) (arrAssocRtoL $ b1 $ f ^>> b' >>^ g))) -- | this function is experimental - no idea about how this would interact with other arrow combinators and functions defined in this module plusCommute :: (Arrow a, ArrowChoice b, ArrowLoop b) => a :+ b :~> b :+ a plusCommute = alMap unPlus . plusTwist . alMap liftImpure