{- Math.Sparse.Modularity.Eigen.FeatureMatrix Gregory W. Schwartz Collects the functions pertaining to finding the Newman-Girvan modularity of a sparse adjacency matrix. -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE TupleSections #-} module Math.Modularity.Eigen.Sparse ( getModularity , getBModularity , Q (..) , testModularity ) where -- Remote import Data.Bool (bool) import Math.Clustering.Spectral.Eigen.FeatureMatrix (B (..), getB) import qualified Data.Eigen.SparseMatrix as S import qualified Data.Vector.Storable as VS -- Local import Math.Modularity.Types type LabelVector = S.SparseMatrixXd type AdjacencyMatrix = S.SparseMatrixXd -- | Find modularity from a vector of community labels (0 or 1) corresponding to -- rows in the adjacency matrix. Needs 0s on the diagonal for the adjacency -- matrix. getModularity :: LabelVector -> AdjacencyMatrix -> Q getModularity moduleVec mat = Q $ (1 / (2 * m)) * sumQ mat where sumQ :: S.SparseMatrixXd -> Double sumQ = S.getSum . S._imap (\ i j v -> inner i j v * delta i j) inner v w x = x - ((k v * k w) / (2 * m)) delta v w = ((s v * s w) + 1) / 2 m = (/ 2) . S.getSum $ mat -- Symmetric matrix so divide by 2. d = S.getColSums mat s = bool (-1) 1 . (== 0) . (S.!) moduleVec . (,0) k = (S.!) d . (0,) -- | Find modularity from a vector of community labels (0 or 1) corresponding to -- rows in the normalized matrix B. See Shu et al., "Efficient Spectral -- Neighborhood Blocking for Entity Resolution", 2011. -- L = sum_i^n sum_j^n A(i,j) - n = 1^TA1 - n = (B^T1)^T(B^T1) - n. getBModularity :: LabelVector -> B -> Q getBModularity moduleVec (B b) = Q . sum . fmap inner $ [first, second] where inner v = (a v v / l) - ((a v (S.ones n) / l) ** 2) first = moduleVec second = S.fromDenseList . (fmap . fmap) (bool 1 0 . (== 1)) . S.toDenseList $ moduleVec l = a (S.ones n) (S.ones n) a :: S.SparseMatrixXd -> S.SparseMatrixXd -> Double a oneL oneR = ( flip (S.!) (0, 0) $ (S.transpose (partA oneL)) * (partA oneR) ) - (S.getSum oneL) partA one = (S.transpose b) * one n = S.rows b -- | Set the diagonal of a sparse matrix to 0. setDiag0 :: S.SparseMatrixXd -> S.SparseMatrixXd setDiag0 = S._imap (\x y z -> if x == y then 0 else z) -- | Test whether getModularity BB^T is the same as getBModularity B. testModularity :: (Bool, Q, Q) testModularity = (modA == modB, modA, modB) where items = S.fromDenseList (fmap (:[]) [1,1,0,0] :: [[Double]]) b = getB True $ S.fromDenseList ([[1,1],[0,0],[0,0],[1,1]] :: [[Double]]) a = setDiag0 $ (unB b) * S.transpose (unB b) modA = getModularity items a modB = getBModularity items b