{-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} -- | Type classes mirroring standard typeclasses, but working with monomorphic containers. -- -- The motivation is that some commonly used data types (i.e., 'ByteString' and -- 'Text') do not allow for instances of typeclasses like 'Functor' and -- 'Foldable', since they are monomorphic structures. This module allows both -- monomorphic and polymorphic data types to be instances of the same -- typeclasses. -- -- All of the laws for the polymorphic typeclasses apply to their monomorphic -- cousins. Thus, even though a 'MonoFunctor' instance for 'Set' could -- theoretically be defined, it is omitted since it could violate the functor -- law of @'omap' f . 'omap' g = 'omap' (f . g)@. -- -- Note that all typeclasses have been prefixed with @Mono@, and functions have -- been prefixed with @o@. The mnemonic for @o@ is "only one", or alternatively -- \"it's mono, but m is overused in Haskell, so we'll use the second letter -- instead.\" (Agreed, it's not a great mangling scheme, input is welcome!) module Data.MonoTraversable where import Control.Applicative import Control.Category #if MIN_VERSION_base(4,8,0) import Control.Monad (Monad (..)) #else import Control.Monad (Monad (..), liftM) #endif import qualified Data.ByteString as S import qualified Data.ByteString.Lazy as L import qualified Data.Foldable as F import Data.Functor import Data.Maybe (fromMaybe) import Data.Monoid (Monoid (..), Any (..), All (..)) import Data.Proxy import qualified Data.Text as T import qualified Data.Text.Lazy as TL import Data.Traversable import Data.Word (Word8) import Data.Int (Int, Int64) import GHC.Exts (build) import GHC.Generics ((:.:), (:*:), (:+:)(..), K1(..), M1(..), Par1(..), Rec1(..), U1(..), V1(..)) import Prelude (Bool (..), const, Char, flip, IO, Maybe (..), Either (..), (+), Integral, Ordering (..), compare, fromIntegral, Num, (>=), (==), seq, otherwise, Eq, Ord, (-), (*)) import qualified Prelude import qualified Data.ByteString.Internal as Unsafe import qualified Foreign.ForeignPtr.Unsafe as Unsafe import Foreign.Ptr (plusPtr) import Foreign.ForeignPtr (touchForeignPtr) import Foreign.Storable (peek) import Control.Arrow (Arrow) import Data.Tree (Tree (..)) import Data.Sequence (Seq, ViewL (..), ViewR (..)) import qualified Data.Sequence as Seq import Data.IntMap (IntMap) import Data.IntSet (IntSet) import qualified Data.List as List import Data.List.NonEmpty (NonEmpty) import Data.Functor.Identity (Identity) import Data.Map (Map) import qualified Data.Map.Strict as Map import Data.HashMap.Strict (HashMap) import Data.Vector (Vector) import Control.Monad.Trans.Maybe (MaybeT (..)) import Control.Monad.Trans.List (ListT) import Control.Monad.Trans.Writer (WriterT) import qualified Control.Monad.Trans.Writer.Strict as Strict (WriterT) import Control.Monad.Trans.State (StateT(..)) import qualified Control.Monad.Trans.State.Strict as Strict (StateT(..)) import Control.Monad.Trans.RWS (RWST(..)) import qualified Control.Monad.Trans.RWS.Strict as Strict (RWST(..)) import Control.Monad.Trans.Reader (ReaderT) import Control.Monad.Trans.Cont (ContT) import Data.Functor.Compose (Compose) import Data.Functor.Product (Product) import Data.Set (Set) import qualified Data.Set as Set import Data.HashSet (HashSet) import qualified Data.HashSet as HashSet import Data.Hashable (Hashable) import qualified Data.Vector as V import qualified Data.Vector.Unboxed as U import qualified Data.Vector.Storable as VS import qualified Data.IntSet as IntSet import Data.Semigroup (Semigroup, Option (..), Arg) import qualified Data.ByteString.Unsafe as SU import Control.Monad.Trans.Identity (IdentityT) -- | Type family for getting the type of the elements -- of a monomorphic container. type family Element mono type instance Element S.ByteString = Word8 type instance Element L.ByteString = Word8 type instance Element T.Text = Char type instance Element TL.Text = Char type instance Element [a] = a type instance Element (IO a) = a type instance Element (ZipList a) = a type instance Element (Maybe a) = a type instance Element (Tree a) = a type instance Element (Seq a) = a type instance Element (ViewL a) = a type instance Element (ViewR a) = a type instance Element (IntMap a) = a type instance Element IntSet = Int type instance Element (Option a) = a type instance Element (NonEmpty a) = a type instance Element (Identity a) = a type instance Element (r -> a) = a type instance Element (Either a b) = b type instance Element (a, b) = b type instance Element (Const m a) = a type instance Element (WrappedMonad m a) = a type instance Element (Map k v) = v type instance Element (HashMap k v) = v type instance Element (Set e) = e type instance Element (HashSet e) = e type instance Element (Vector a) = a type instance Element (WrappedArrow a b c) = c type instance Element (MaybeT m a) = a type instance Element (ListT m a) = a type instance Element (IdentityT m a) = a type instance Element (WriterT w m a) = a type instance Element (Strict.WriterT w m a) = a type instance Element (StateT s m a) = a type instance Element (Strict.StateT s m a) = a type instance Element (RWST r w s m a) = a type instance Element (Strict.RWST r w s m a) = a type instance Element (ReaderT r m a) = a type instance Element (ContT r m a) = a type instance Element (Compose f g a) = a type instance Element (Product f g a) = a type instance Element (U.Vector a) = a type instance Element (VS.Vector a) = a type instance Element (Arg a b) = b type instance Element ((f :.: g) a) = a type instance Element ((f :*: g) a) = a type instance Element ((f :+: g) a) = a type instance Element (K1 i c a) = a type instance Element (M1 i c f a) = a type instance Element (Rec1 f a) = a type instance Element (Par1 a) = a type instance Element (U1 a) = a type instance Element (V1 a) = a type instance Element (Proxy a) = a -- | Monomorphic containers that can be mapped over. class MonoFunctor mono where -- | Map over a monomorphic container omap :: (Element mono -> Element mono) -> mono -> mono default omap :: (Functor f, Element (f a) ~ a, f a ~ mono) => (Element mono -> Element mono) -> mono -> mono omap = fmap {-# INLINE omap #-} instance MonoFunctor S.ByteString where omap = S.map {-# INLINE omap #-} instance MonoFunctor L.ByteString where omap = L.map {-# INLINE omap #-} instance MonoFunctor T.Text where omap = T.map {-# INLINE omap #-} instance MonoFunctor TL.Text where omap = TL.map {-# INLINE omap #-} instance MonoFunctor [a] instance MonoFunctor (IO a) instance MonoFunctor (ZipList a) instance MonoFunctor (Maybe a) instance MonoFunctor (Tree a) instance MonoFunctor (Seq a) instance MonoFunctor (ViewL a) instance MonoFunctor (ViewR a) instance MonoFunctor (IntMap a) instance MonoFunctor (Option a) instance MonoFunctor (NonEmpty a) instance MonoFunctor (Identity a) instance MonoFunctor (r -> a) instance MonoFunctor (Either a b) instance MonoFunctor (a, b) instance MonoFunctor (Const m a) instance Monad m => MonoFunctor (WrappedMonad m a) instance MonoFunctor (Map k v) instance MonoFunctor (HashMap k v) instance MonoFunctor (Vector a) instance MonoFunctor (Arg a b) instance Arrow a => MonoFunctor (WrappedArrow a b c) instance Functor m => MonoFunctor (MaybeT m a) instance Functor m => MonoFunctor (ListT m a) instance Functor m => MonoFunctor (IdentityT m a) instance Functor m => MonoFunctor (WriterT w m a) instance Functor m => MonoFunctor (Strict.WriterT w m a) instance Functor m => MonoFunctor (StateT s m a) instance Functor m => MonoFunctor (Strict.StateT s m a) instance Functor m => MonoFunctor (RWST r w s m a) instance Functor m => MonoFunctor (Strict.RWST r w s m a) instance Functor m => MonoFunctor (ReaderT r m a) instance Functor m => MonoFunctor (ContT r m a) instance (Functor f, Functor g) => MonoFunctor (Compose f g a) instance (Functor f, Functor g) => MonoFunctor (Product f g a) -- | @since 1.0.11.0 instance (Functor f, Functor g) => MonoFunctor ((f :.: g) a) -- | @since 1.0.11.0 instance (Functor f, Functor g) => MonoFunctor ((f :*: g) a) -- | @since 1.0.11.0 instance (Functor f, Functor g) => MonoFunctor ((f :+: g) a) -- | @since 1.0.11.0 instance MonoFunctor (K1 i c a) -- | @since 1.0.11.0 instance Functor f => MonoFunctor (M1 i c f a) -- | @since 1.0.11.0 instance Functor f => MonoFunctor (Rec1 f a) -- | @since 1.0.11.0 instance MonoFunctor (Par1 a) -- | @since 1.0.11.0 instance MonoFunctor (U1 a) -- | @since 1.0.11.0 instance MonoFunctor (V1 a) -- | @since 1.0.11.0 instance MonoFunctor (Proxy a) instance U.Unbox a => MonoFunctor (U.Vector a) where omap = U.map {-# INLINE omap #-} instance VS.Storable a => MonoFunctor (VS.Vector a) where omap = VS.map {-# INLINE omap #-} -- | @'replaceElem' old new@ replaces all @old@ elements with @new@. -- -- @since 1.0.1 replaceElem :: (MonoFunctor mono, Eq (Element mono)) => Element mono -> Element mono -> mono -> mono replaceElem old new = omap (\x -> if x == old then new else x) {-# INLINE [0] replaceElem #-} {-# RULES "strict Text replaceElem" replaceElem = replaceElemStrictText #-} replaceElemStrictText :: Char -> Char -> T.Text -> T.Text replaceElemStrictText old new = T.replace (T.singleton old) (T.singleton new) {-# RULES "lazy Text replaceElem" replaceElem = replaceElemLazyText #-} replaceElemLazyText :: Char -> Char -> TL.Text -> TL.Text replaceElemLazyText old new = TL.replace (TL.singleton old) (TL.singleton new) -- | Monomorphic containers that can be folded. class MonoFoldable mono where -- | Map each element of a monomorphic container to a 'Monoid' -- and combine the results. ofoldMap :: Monoid m => (Element mono -> m) -> mono -> m default ofoldMap :: (t a ~ mono, a ~ Element (t a), F.Foldable t, Monoid m) => (Element mono -> m) -> mono -> m ofoldMap = F.foldMap {-# INLINE ofoldMap #-} -- | Right-associative fold of a monomorphic container. ofoldr :: (Element mono -> b -> b) -> b -> mono -> b default ofoldr :: (t a ~ mono, a ~ Element (t a), F.Foldable t) => (Element mono -> b -> b) -> b -> mono -> b ofoldr = F.foldr {-# INLINE ofoldr #-} -- | Strict left-associative fold of a monomorphic container. ofoldl' :: (a -> Element mono -> a) -> a -> mono -> a default ofoldl' :: (t b ~ mono, b ~ Element (t b), F.Foldable t) => (a -> Element mono -> a) -> a -> mono -> a ofoldl' = F.foldl' {-# INLINE ofoldl' #-} -- | Convert a monomorphic container to a list. otoList :: mono -> [Element mono] otoList t = build (\ mono n -> ofoldr mono n t) {-# INLINE otoList #-} -- | Are __all__ of the elements in a monomorphic container -- converted to booleans 'True'? oall :: (Element mono -> Bool) -> mono -> Bool oall f = getAll . ofoldMap (All . f) {-# INLINE oall #-} -- | Are __any__ of the elements in a monomorphic container -- converted to booleans 'True'? oany :: (Element mono -> Bool) -> mono -> Bool oany f = getAny . ofoldMap (Any . f) {-# INLINE oany #-} -- | Is the monomorphic container empty? onull :: mono -> Bool onull = oall (const False) {-# INLINE onull #-} -- | Length of a monomorphic container, returns a 'Int'. olength :: mono -> Int olength = ofoldl' (\i _ -> i + 1) 0 {-# INLINE olength #-} -- | Length of a monomorphic container, returns a 'Int64'. olength64 :: mono -> Int64 olength64 = ofoldl' (\i _ -> i + 1) 0 {-# INLINE olength64 #-} -- | Compare the length of a monomorphic container and a given number. ocompareLength :: Integral i => mono -> i -> Ordering -- Basic implementation using length for most instance. See the list -- instance below for support for infinite structures. Arguably, that -- should be the default instead of this. ocompareLength c0 i0 = olength c0 `compare` fromIntegral i0 {-# INLINE ocompareLength #-} -- | Map each element of a monomorphic container to an action, -- evaluate these actions from left to right, and ignore the results. otraverse_ :: Applicative f => (Element mono -> f b) -> mono -> f () otraverse_ f = ofoldr ((*>) . f) (pure ()) {-# INLINE otraverse_ #-} -- | 'ofor_' is 'otraverse_' with its arguments flipped. ofor_ :: Applicative f => mono -> (Element mono -> f b) -> f () ofor_ = flip otraverse_ {-# INLINE ofor_ #-} -- | Map each element of a monomorphic container to a monadic action, -- evaluate these actions from left to right, and ignore the results. #if MIN_VERSION_base(4,8,0) omapM_ :: Applicative m => (Element mono -> m ()) -> mono -> m () omapM_ = otraverse_ #else omapM_ :: Monad m => (Element mono -> m ()) -> mono -> m () omapM_ f = ofoldr ((>>) . f) (return ()) #endif {-# INLINE omapM_ #-} -- | 'oforM_' is 'omapM_' with its arguments flipped. #if MIN_VERSION_base(4,8,0) oforM_ :: Applicative m => mono -> (Element mono -> m ()) -> m () oforM_ = flip omapM_ #else oforM_ :: Monad m => mono -> (Element mono -> m ()) -> m () oforM_ = flip omapM_ #endif {-# INLINE oforM_ #-} -- | Monadic fold over the elements of a monomorphic container, associating to the left. ofoldlM :: Monad m => (a -> Element mono -> m a) -> a -> mono -> m a ofoldlM f z0 xs = ofoldr f' return xs z0 where f' x k z = f z x >>= k {-# INLINE ofoldlM #-} -- | Map each element of a monomorphic container to a semigroup, -- and combine the results. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.ofoldMap1' from "Data.NonNull" for a total version of this function./ ofoldMap1Ex :: Semigroup m => (Element mono -> m) -> mono -> m ofoldMap1Ex f = fromMaybe (Prelude.error "Data.MonoTraversable.ofoldMap1Ex") . getOption . ofoldMap (Option . Just . f) -- | Right-associative fold of a monomorphic container with no base element. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.ofoldr1' from "Data.NonNull" for a total version of this function./ ofoldr1Ex :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono default ofoldr1Ex :: (t a ~ mono, a ~ Element (t a), F.Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono ofoldr1Ex = F.foldr1 {-# INLINE ofoldr1Ex #-} -- | Strict left-associative fold of a monomorphic container with no base -- element. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.ofoldl1'' from "Data.NonNull" for a total version of this function./ ofoldl1Ex' :: (Element mono -> Element mono -> Element mono) -> mono -> Element mono default ofoldl1Ex' :: (t a ~ mono, a ~ Element (t a), F.Foldable t) => (Element mono -> Element mono -> Element mono) -> mono -> Element mono ofoldl1Ex' = F.foldl1 {-# INLINE ofoldl1Ex' #-} -- | Get the first element of a monomorphic container. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.head' from "Data.NonNull" for a total version of this function./ headEx :: mono -> Element mono headEx = ofoldr const (Prelude.error "Data.MonoTraversable.headEx: empty") {-# INLINE headEx #-} -- | Get the last element of a monomorphic container. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.last' from "Data.NonNull" for a total version of this function./ lastEx :: mono -> Element mono lastEx = ofoldl1Ex' (flip const) {-# INLINE lastEx #-} -- | Equivalent to 'headEx'. unsafeHead :: mono -> Element mono unsafeHead = headEx {-# INLINE unsafeHead #-} -- | Equivalent to 'lastEx'. unsafeLast :: mono -> Element mono unsafeLast = lastEx {-# INLINE unsafeLast #-} -- | Get the maximum element of a monomorphic container, -- using a supplied element ordering function. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.maximiumBy' from "Data.NonNull" for a total version of this function./ maximumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono maximumByEx f = ofoldl1Ex' go where go x y = case f x y of LT -> y _ -> x {-# INLINE maximumByEx #-} -- | Get the minimum element of a monomorphic container, -- using a supplied element ordering function. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.minimumBy' from "Data.NonNull" for a total version of this function./ minimumByEx :: (Element mono -> Element mono -> Ordering) -> mono -> Element mono minimumByEx f = ofoldl1Ex' go where go x y = case f x y of GT -> y _ -> x {-# INLINE minimumByEx #-} -- | Checks if the monomorphic container includes the supplied element. oelem :: Eq (Element mono) => Element mono -> mono -> Bool oelem e = List.elem e . otoList {-# INLINE [0] oelem #-} -- | Checks if the monomorphic container does not include the supplied element. onotElem :: Eq (Element mono) => Element mono -> mono -> Bool onotElem e = List.notElem e . otoList {-# INLINE [0] onotElem #-} instance MonoFoldable S.ByteString where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = S.foldr ofoldl' = S.foldl' otoList = S.unpack oall = S.all oany = S.any onull = S.null olength = S.length oelem = S.elem onotElem = S.notElem omapM_ f (Unsafe.PS fptr offset len) = do let start = Unsafe.unsafeForeignPtrToPtr fptr `plusPtr` offset end = start `plusPtr` len loop ptr | ptr >= end = evil (touchForeignPtr fptr) `seq` #if MIN_VERSION_base(4,8,0) pure () #else return () #endif | otherwise = #if MIN_VERSION_base(4,8,0) f (evil (peek ptr)) *> loop (ptr `plusPtr` 1) #else f (evil (peek ptr)) >> loop (ptr `plusPtr` 1) #endif loop start where #if MIN_VERSION_bytestring(0,10,6) evil = Unsafe.accursedUnutterablePerformIO #else evil = Unsafe.inlinePerformIO #endif {-# INLINE evil #-} ofoldr1Ex = S.foldr1 ofoldl1Ex' = S.foldl1' headEx = S.head lastEx = S.last unsafeHead = SU.unsafeHead {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE omapM_ #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# INLINE unsafeHead #-} {-# INLINE oelem #-} {-# INLINE onotElem #-} {-# RULES "strict ByteString: ofoldMap = concatMap" ofoldMap = S.concatMap #-} instance MonoFoldable L.ByteString where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = L.foldr ofoldl' = L.foldl' otoList = L.unpack oall = L.all oany = L.any onull = L.null olength64 = L.length omapM_ f = omapM_ (omapM_ f) . L.toChunks ofoldr1Ex = L.foldr1 ofoldl1Ex' = L.foldl1' headEx = L.head lastEx = L.last oelem = L.elem onotElem = L.notElem {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength64 #-} {-# INLINE omapM_ #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# INLINE oelem #-} {-# INLINE onotElem #-} {-# RULES "lazy ByteString: ofoldMap = concatMap" ofoldMap = L.concatMap #-} instance MonoFoldable T.Text where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = T.foldr ofoldl' = T.foldl' otoList = T.unpack oall = T.all oany = T.any onull = T.null olength = T.length ofoldr1Ex = T.foldr1 ofoldl1Ex' = T.foldl1' headEx = T.head lastEx = T.last {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# RULES "strict Text: ofoldMap = concatMap" ofoldMap = T.concatMap #-} instance MonoFoldable TL.Text where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = TL.foldr ofoldl' = TL.foldl' otoList = TL.unpack oall = TL.all oany = TL.any onull = TL.null olength64 = TL.length ofoldr1Ex = TL.foldr1 ofoldl1Ex' = TL.foldl1' headEx = TL.head lastEx = TL.last {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# RULES "lazy Text: ofoldMap = concatMap" ofoldMap = TL.concatMap #-} instance MonoFoldable IntSet where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = IntSet.foldr ofoldl' = IntSet.foldl' otoList = IntSet.toList onull = IntSet.null olength = IntSet.size ofoldr1Ex f = ofoldr1Ex f . IntSet.toList ofoldl1Ex' f = ofoldl1Ex' f . IntSet.toList {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} instance MonoFoldable [a] where otoList = id {-# INLINE otoList #-} ocompareLength [] i = 0 `compare` i ocompareLength (_:xs) i | i Prelude.<= 0 = GT | otherwise = ocompareLength xs (i - 1) instance MonoFoldable (Maybe a) where #if MIN_VERSION_base(4,8,0) omapM_ _ Nothing = pure () #else omapM_ _ Nothing = return () #endif omapM_ f (Just x) = f x {-# INLINE omapM_ #-} instance MonoFoldable (Tree a) instance MonoFoldable (Seq a) where headEx = flip Seq.index 0 lastEx xs = Seq.index xs (Seq.length xs - 1) {-# INLINE headEx #-} {-# INLINE lastEx #-} instance MonoFoldable (ViewL a) instance MonoFoldable (ViewR a) instance MonoFoldable (IntMap a) instance MonoFoldable (Option a) instance MonoFoldable (NonEmpty a) instance MonoFoldable (Identity a) instance MonoFoldable (Map k v) where olength = Map.size {-# INLINE olength #-} instance MonoFoldable (HashMap k v) instance MonoFoldable (Vector a) where ofoldr = V.foldr ofoldl' = V.foldl' otoList = V.toList oall = V.all oany = V.any onull = V.null olength = V.length ofoldr1Ex = V.foldr1 ofoldl1Ex' = V.foldl1' headEx = V.head lastEx = V.last unsafeHead = V.unsafeHead unsafeLast = V.unsafeLast maximumByEx = V.maximumBy minimumByEx = V.minimumBy {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# INLINE unsafeHead #-} {-# INLINE maximumByEx #-} {-# INLINE minimumByEx #-} instance Ord e => MonoFoldable (Set e) where olength = Set.size oelem = Set.member onotElem = Set.notMember {-# INLINE olength #-} {-# INLINE oelem #-} {-# INLINE onotElem #-} instance MonoFoldable (HashSet e) instance U.Unbox a => MonoFoldable (U.Vector a) where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = U.foldr ofoldl' = U.foldl' otoList = U.toList oall = U.all oany = U.any onull = U.null olength = U.length ofoldr1Ex = U.foldr1 ofoldl1Ex' = U.foldl1' headEx = U.head lastEx = U.last unsafeHead = U.unsafeHead unsafeLast = U.unsafeLast maximumByEx = U.maximumBy minimumByEx = U.minimumBy {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# INLINE unsafeHead #-} {-# INLINE maximumByEx #-} {-# INLINE minimumByEx #-} instance VS.Storable a => MonoFoldable (VS.Vector a) where ofoldMap f = ofoldr (mappend . f) mempty ofoldr = VS.foldr ofoldl' = VS.foldl' otoList = VS.toList oall = VS.all oany = VS.any onull = VS.null olength = VS.length ofoldr1Ex = VS.foldr1 ofoldl1Ex' = VS.foldl1' headEx = VS.head lastEx = VS.last unsafeHead = VS.unsafeHead unsafeLast = VS.unsafeLast maximumByEx = VS.maximumBy minimumByEx = VS.minimumBy {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} {-# INLINE headEx #-} {-# INLINE lastEx #-} {-# INLINE unsafeHead #-} {-# INLINE maximumByEx #-} {-# INLINE minimumByEx #-} instance MonoFoldable (Either a b) where ofoldMap f = ofoldr (mappend . f) mempty ofoldr f b (Right a) = f a b ofoldr _ b (Left _) = b ofoldl' f a (Right b) = f a b ofoldl' _ a (Left _) = a otoList (Left _) = [] otoList (Right b) = [b] oall _ (Left _) = True oall f (Right b) = f b oany _ (Left _) = False oany f (Right b) = f b onull (Left _) = True onull (Right _) = False olength (Left _) = 0 olength (Right _) = 1 ofoldr1Ex _ (Left _) = Prelude.error "ofoldr1Ex on Either" ofoldr1Ex _ (Right x) = x ofoldl1Ex' _ (Left _) = Prelude.error "ofoldl1Ex' on Either" ofoldl1Ex' _ (Right x) = x #if MIN_VERSION_base(4,8,0) omapM_ _ (Left _) = pure () #else omapM_ _ (Left _) = return () #endif omapM_ f (Right x) = f x {-# INLINE ofoldMap #-} {-# INLINE ofoldr #-} {-# INLINE ofoldl' #-} {-# INLINE otoList #-} {-# INLINE oall #-} {-# INLINE oany #-} {-# INLINE onull #-} {-# INLINE olength #-} {-# INLINE omapM_ #-} {-# INLINE ofoldr1Ex #-} {-# INLINE ofoldl1Ex' #-} instance MonoFoldable (a, b) instance MonoFoldable (Const m a) instance F.Foldable f => MonoFoldable (MaybeT f a) instance F.Foldable f => MonoFoldable (ListT f a) instance F.Foldable f => MonoFoldable (IdentityT f a) instance F.Foldable f => MonoFoldable (WriterT w f a) instance F.Foldable f => MonoFoldable (Strict.WriterT w f a) instance (F.Foldable f, F.Foldable g) => MonoFoldable (Compose f g a) instance (F.Foldable f, F.Foldable g) => MonoFoldable (Product f g a) -- | @since 1.0.11.0 instance (F.Foldable f, F.Foldable g) => MonoFoldable ((f :.: g) a) -- | @since 1.0.11.0 instance (F.Foldable f, F.Foldable g) => MonoFoldable ((f :*: g) a) -- | @since 1.0.11.0 instance (F.Foldable f, F.Foldable g) => MonoFoldable ((f :+: g) a) -- | @since 1.0.11.0 instance MonoFoldable (K1 i c a) -- | @since 1.0.11.0 instance F.Foldable f => MonoFoldable (M1 i c f a) -- | @since 1.0.11.0 instance F.Foldable f => MonoFoldable (Rec1 f a) -- | @since 1.0.11.0 instance MonoFoldable (Par1 a) -- | @since 1.0.11.0 instance MonoFoldable (U1 a) -- | @since 1.0.11.0 instance MonoFoldable (V1 a) -- | @since 1.0.11.0 instance MonoFoldable (Proxy a) -- | Safe version of 'headEx'. -- -- Returns 'Nothing' instead of throwing an exception when encountering -- an empty monomorphic container. headMay :: MonoFoldable mono => mono -> Maybe (Element mono) headMay mono | onull mono = Nothing | otherwise = Just (headEx mono) {-# INLINE headMay #-} -- | Safe version of 'lastEx'. -- -- Returns 'Nothing' instead of throwing an exception when encountering -- an empty monomorphic container. lastMay :: MonoFoldable mono => mono -> Maybe (Element mono) lastMay mono | onull mono = Nothing | otherwise = Just (lastEx mono) {-# INLINE lastMay #-} -- | 'osum' computes the sum of the numbers of a monomorphic container. osum :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono osum = ofoldl' (+) 0 {-# INLINE osum #-} -- | 'oproduct' computes the product of the numbers of a monomorphic container. oproduct :: (MonoFoldable mono, Num (Element mono)) => mono -> Element mono oproduct = ofoldl' (*) 1 {-# INLINE oproduct #-} -- | Are __all__ of the elements 'True'? -- -- @since 0.6.0 oand :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool oand = oall id {-# INLINE oand #-} -- | Are __any__ of the elements 'True'? -- -- @since 0.6.0 oor :: (Element mono ~ Bool, MonoFoldable mono) => mono -> Bool oor = oany id {-# INLINE oor #-} -- | Synonym for 'ofoldMap' -- -- @since 1.0.0 oconcatMap :: (MonoFoldable mono, Monoid m) => (Element mono -> m) -> mono -> m oconcatMap = ofoldMap -- | Monoidally combine all values in the container -- -- @since 1.0.0 ofold :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono ofold = ofoldMap id {-# INLINE ofold #-} -- | Synonym for 'ofold' -- -- @since 1.0.0 oconcat :: (MonoFoldable mono, Monoid (Element mono)) => mono -> Element mono oconcat = ofold {-# INLINE oconcat #-} -- | Synonym for 'ofoldlM' -- -- @since 1.0.0 ofoldM :: (MonoFoldable mono, Monad m) => (a -> Element mono -> m a) -> a -> mono -> m a ofoldM = ofoldlM {-# INLINE ofoldM #-} -- | Perform all actions in the given container -- -- @since 1.0.0 #if MIN_VERSION_base(4,8,0) osequence_ :: (Applicative m, MonoFoldable mono, Element mono ~ (m ())) => mono -> m () #else osequence_ :: (Monad m, MonoFoldable mono, Element mono ~ (m ())) => mono -> m () #endif osequence_ = omapM_ id {-# INLINE osequence_ #-} -- | Get the minimum element of a monomorphic container. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.maximum' from "Data.NonNull" for a total version of this function./ maximumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono maximumEx = maximumByEx compare {-# INLINE [0] maximumEx #-} -- | Get the maximum element of a monomorphic container. -- -- Note: this is a partial function. On an empty 'MonoFoldable', it will -- throw an exception. -- -- /See 'Data.NonNull.minimum' from "Data.NonNull" for a total version of this function./ minimumEx :: (MonoFoldable mono, Ord (Element mono)) => mono -> Element mono minimumEx = minimumByEx compare {-# INLINE [0] minimumEx #-} {-# RULES "strict ByteString maximumEx" maximumEx = S.maximum #-} {-# RULES "strict ByteString minimumEx" minimumEx = S.minimum #-} {-# RULES "lazy ByteString maximumEx" maximumEx = L.maximum #-} {-# RULES "lazy ByteString minimumEx" minimumEx = L.minimum #-} {-# RULES "strict Text maximumEx" maximumEx = T.maximum #-} {-# RULES "strict Text minimumEx" minimumEx = T.minimum #-} {-# RULES "lazy Text maximumEx" maximumEx = TL.maximum #-} {-# RULES "lazy Text minimumEx" minimumEx = TL.minimum #-} {-# RULES "boxed Vector maximumEx" maximumEx = V.maximum #-} {-# RULES "boxed Vector minimumEx" minimumEx = V.minimum #-} {-# RULES "unboxed Vector maximumEx" forall (u :: U.Unbox a => U.Vector a). maximumEx u = U.maximum u #-} {-# RULES "unboxed Vector minimumEx" forall (u :: U.Unbox a => U.Vector a). minimumEx u = U.minimum u #-} {-# RULES "storable Vector maximumEx" forall (v :: VS.Storable a => VS.Vector a). maximumEx v = VS.maximum v #-} {-# RULES "storable Vector minimumEx" forall (v :: VS.Storable a => VS.Vector a). minimumEx v = VS.minimum v #-} -- | Safe version of 'maximumEx'. -- -- Returns 'Nothing' instead of throwing an exception when -- encountering an empty monomorphic container. maximumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono) maximumMay mono | onull mono = Nothing | otherwise = Just (maximumEx mono) {-# INLINE maximumMay #-} -- | Safe version of 'maximumByEx'. -- -- Returns 'Nothing' instead of throwing an exception when -- encountering an empty monomorphic container. maximumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono) maximumByMay f mono | onull mono = Nothing | otherwise = Just (maximumByEx f mono) {-# INLINE maximumByMay #-} -- | Safe version of 'minimumEx'. -- -- Returns 'Nothing' instead of throwing an exception when -- encountering an empty monomorphic container. minimumMay :: (MonoFoldable mono, Ord (Element mono)) => mono -> Maybe (Element mono) minimumMay mono | onull mono = Nothing | otherwise = Just (minimumEx mono) {-# INLINE minimumMay #-} -- | Safe version of 'minimumByEx'. -- -- Returns 'Nothing' instead of throwing an exception when -- encountering an empty monomorphic container. minimumByMay :: MonoFoldable mono => (Element mono -> Element mono -> Ordering) -> mono -> Maybe (Element mono) minimumByMay f mono | onull mono = Nothing | otherwise = Just (minimumByEx f mono) {-# INLINE minimumByMay #-} -- | Monomorphic containers that can be traversed from left to right. -- -- NOTE: Due to limitations with the role system, GHC is yet unable to provide newtype-derivation of -- 'MonoTraversable'. See . class (MonoFunctor mono, MonoFoldable mono) => MonoTraversable mono where -- | Map each element of a monomorphic container to an action, -- evaluate these actions from left to right, and -- collect the results. otraverse :: Applicative f => (Element mono -> f (Element mono)) -> mono -> f mono default otraverse :: (Traversable t, mono ~ t a, a ~ Element mono, Applicative f) => (Element mono -> f (Element mono)) -> mono -> f mono otraverse = traverse -- | Map each element of a monomorphic container to a monadic action, -- evaluate these actions from left to right, and -- collect the results. #if MIN_VERSION_base(4,8,0) omapM :: Applicative m => (Element mono -> m (Element mono)) -> mono -> m mono omapM = otraverse #else omapM :: Monad m => (Element mono -> m (Element mono)) -> mono -> m mono default omapM :: (Traversable t, mono ~ t a, a ~ Element mono, Monad m) => (Element mono -> m (Element mono)) -> mono -> m mono omapM = mapM #endif {-# INLINE otraverse #-} {-# INLINE omapM #-} instance MonoTraversable S.ByteString where otraverse f = fmap S.pack . traverse f . S.unpack {-# INLINE otraverse #-} #if !MIN_VERSION_base(4,8,0) omapM f = liftM S.pack . mapM f . S.unpack {-# INLINE omapM #-} #endif instance MonoTraversable L.ByteString where otraverse f = fmap L.pack . traverse f . L.unpack {-# INLINE otraverse #-} #if !MIN_VERSION_base(4,8,0) omapM f = liftM L.pack . mapM f . L.unpack {-# INLINE omapM #-} #endif instance MonoTraversable T.Text where otraverse f = fmap T.pack . traverse f . T.unpack {-# INLINE otraverse #-} #if !MIN_VERSION_base(4,8,0) omapM f = liftM T.pack . mapM f . T.unpack {-# INLINE omapM #-} #endif instance MonoTraversable TL.Text where otraverse f = fmap TL.pack . traverse f . TL.unpack {-# INLINE otraverse #-} #if !MIN_VERSION_base(4,8,0) omapM f = liftM TL.pack . mapM f . TL.unpack {-# INLINE omapM #-} #endif instance MonoTraversable [a] instance MonoTraversable (Maybe a) instance MonoTraversable (Tree a) instance MonoTraversable (Seq a) instance MonoTraversable (ViewL a) instance MonoTraversable (ViewR a) instance MonoTraversable (IntMap a) instance MonoTraversable (Option a) instance MonoTraversable (NonEmpty a) instance MonoTraversable (Identity a) instance MonoTraversable (Map k v) instance MonoTraversable (HashMap k v) instance MonoTraversable (Vector a) instance U.Unbox a => MonoTraversable (U.Vector a) where -- FIXME do something more efficient otraverse f = fmap U.fromList . traverse f . U.toList #if MIN_VERSION_base(4,8,0) omapM = otraverse #else omapM = U.mapM #endif {-# INLINE otraverse #-} {-# INLINE omapM #-} instance VS.Storable a => MonoTraversable (VS.Vector a) where -- FIXME do something more efficient otraverse f = fmap VS.fromList . traverse f . VS.toList #if MIN_VERSION_base(4,8,0) omapM = otraverse #else omapM = VS.mapM #endif {-# INLINE otraverse #-} {-# INLINE omapM #-} instance MonoTraversable (Either a b) where otraverse _ (Left a) = pure (Left a) otraverse f (Right b) = fmap Right (f b) #if MIN_VERSION_base(4,8,0) omapM _ (Left a) = pure (Left a) omapM f (Right b) = fmap Right (f b) #else omapM _ (Left a) = return (Left a) omapM f (Right b) = liftM Right (f b) #endif {-# INLINE otraverse #-} {-# INLINE omapM #-} instance MonoTraversable (a, b) instance MonoTraversable (Const m a) instance Traversable f => MonoTraversable (MaybeT f a) instance Traversable f => MonoTraversable (ListT f a) instance Traversable f => MonoTraversable (IdentityT f a) instance Traversable f => MonoTraversable (WriterT w f a) instance Traversable f => MonoTraversable (Strict.WriterT w f a) instance (Traversable f, Traversable g) => MonoTraversable (Compose f g a) instance (Traversable f, Traversable g) => MonoTraversable (Product f g a) -- | @since 1.0.11.0 instance (Traversable f, Traversable g) => MonoTraversable ((f :.: g) a) -- | @since 1.0.11.0 instance (Traversable f, Traversable g) => MonoTraversable ((f :*: g) a) -- | @since 1.0.11.0 instance (Traversable f, Traversable g) => MonoTraversable ((f :+: g) a) -- | @since 1.0.11.0 instance MonoTraversable (K1 i c a) -- | @since 1.0.11.0 instance Traversable f => MonoTraversable (M1 i c f a) -- | @since 1.0.11.0 instance Traversable f => MonoTraversable (Rec1 f a) -- | @since 1.0.11.0 instance MonoTraversable (Par1 a) -- | @since 1.0.11.0 instance MonoTraversable (U1 a) -- | @since 1.0.11.0 instance MonoTraversable (V1 a) -- | @since 1.0.11.0 instance MonoTraversable (Proxy a) -- | 'ofor' is 'otraverse' with its arguments flipped. ofor :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono ofor = flip otraverse {-# INLINE ofor #-} -- | 'oforM' is 'omapM' with its arguments flipped. #if MIN_VERSION_base(4,8,0) oforM :: (MonoTraversable mono, Applicative f) => mono -> (Element mono -> f (Element mono)) -> f mono #else oforM :: (MonoTraversable mono, Monad f) => mono -> (Element mono -> f (Element mono)) -> f mono #endif oforM = flip omapM {-# INLINE oforM #-} -- | A strict left fold, together with an unwrap function. -- -- This is convenient when the accumulator value is not the same as the final -- expected type. It is provided mainly for integration with the @foldl@ -- package, to be used in conjunction with @purely@. -- -- @since 0.3.1 ofoldlUnwrap :: MonoFoldable mono => (x -> Element mono -> x) -> x -> (x -> b) -> mono -> b ofoldlUnwrap f x unwrap mono = unwrap (ofoldl' f x mono) -- | A monadic strict left fold, together with an unwrap function. -- -- Similar to 'foldlUnwrap', but allows monadic actions. To be used with -- @impurely@ from @foldl@. -- -- @since 0.3.1 ofoldMUnwrap :: (Monad m, MonoFoldable mono) => (x -> Element mono -> m x) -> m x -> (x -> m b) -> mono -> m b ofoldMUnwrap f mx unwrap mono = do x <- mx x' <- ofoldlM f x mono unwrap x' -- | Typeclass for monomorphic containers that an element can be -- lifted into. -- -- For any 'MonoFunctor', the following law holds: -- -- @ -- 'omap' f . 'opoint' = 'opoint' . f -- @ class MonoPointed mono where -- | Lift an element into a monomorphic container. -- -- 'opoint' is the same as 'Control.Applicative.pure' for an 'Applicative' opoint :: Element mono -> mono default opoint :: (Applicative f, (f a) ~ mono, Element (f a) ~ a) => Element mono -> mono opoint = pure {-# INLINE opoint #-} -- monomorphic instance MonoPointed S.ByteString where opoint = S.singleton {-# INLINE opoint #-} instance MonoPointed L.ByteString where opoint = L.singleton {-# INLINE opoint #-} instance MonoPointed T.Text where opoint = T.singleton {-# INLINE opoint #-} instance MonoPointed TL.Text where opoint = TL.singleton {-# INLINE opoint #-} -- Applicative instance MonoPointed [a] instance MonoPointed (Maybe a) instance MonoPointed (Option a) instance MonoPointed (NonEmpty a) instance MonoPointed (Identity a) instance MonoPointed (Vector a) instance MonoPointed (IO a) instance MonoPointed (ZipList a) instance MonoPointed (r -> a) instance Monoid a => MonoPointed (a, b) instance Monoid m => MonoPointed (Const m a) instance Monad m => MonoPointed (WrappedMonad m a) instance Applicative m => MonoPointed (ListT m a) instance Applicative m => MonoPointed (IdentityT m a) instance Arrow a => MonoPointed (WrappedArrow a b c) instance (Monoid w, Applicative m) => MonoPointed (WriterT w m a) instance (Monoid w, Applicative m) => MonoPointed (Strict.WriterT w m a) instance Applicative m => MonoPointed (ReaderT r m a) instance MonoPointed (ContT r m a) instance (Applicative f, Applicative g) => MonoPointed (Compose f g a) instance (Applicative f, Applicative g) => MonoPointed (Product f g a) -- | @since 1.0.11.0 instance (Applicative f, Applicative g) => MonoPointed ((f :.: g) a) -- | @since 1.0.11.0 instance (Applicative f, Applicative g) => MonoPointed ((f :*: g) a) -- | @since 1.0.11.0 instance Applicative f => MonoPointed (M1 i c f a) -- | @since 1.0.11.0 instance Applicative f => MonoPointed (Rec1 f a) -- | @since 1.0.11.0 instance MonoPointed (Par1 a) -- | @since 1.0.11.0 instance MonoPointed (U1 a) -- | @since 1.0.11.0 instance MonoPointed (Proxy a) -- Not Applicative instance MonoPointed (Seq a) where opoint = Seq.singleton {-# INLINE opoint #-} instance U.Unbox a => MonoPointed (U.Vector a) where opoint = U.singleton {-# INLINE opoint #-} instance VS.Storable a => MonoPointed (VS.Vector a) where opoint = VS.singleton {-# INLINE opoint #-} instance MonoPointed (Either a b) where opoint = Right {-# INLINE opoint #-} instance MonoPointed IntSet.IntSet where opoint = IntSet.singleton {-# INLINE opoint #-} instance MonoPointed (Set a) where opoint = Set.singleton {-# INLINE opoint #-} instance Hashable a => MonoPointed (HashSet a) where opoint = HashSet.singleton {-# INLINE opoint #-} instance Applicative f => MonoPointed (MaybeT f a) where opoint = MaybeT . fmap Just . pure {-# INLINE opoint #-} instance (Monoid w, Applicative m) => MonoPointed (RWST r w s m a) where opoint a = RWST (\_ s -> pure (a, s, mempty)) {-# INLINE opoint #-} instance (Monoid w, Applicative m) => MonoPointed (Strict.RWST r w s m a) where opoint a = Strict.RWST (\_ s -> pure (a, s, mempty)) {-# INLINE opoint #-} instance Applicative m => MonoPointed (StateT s m a) where opoint a = StateT (\s -> pure (a, s)) {-# INLINE opoint #-} instance Applicative m => MonoPointed (Strict.StateT s m a) where opoint a = Strict.StateT (\s -> pure (a, s)) {-# INLINE opoint #-} instance MonoPointed (ViewL a) where opoint a = a :< Seq.empty {-# INLINE opoint #-} instance MonoPointed (ViewR a) where opoint a = Seq.empty :> a {-# INLINE opoint #-} instance MonoPointed (Tree a) where opoint a = Node a [] {-# INLINE opoint #-} -- | @since 1.0.11.0 instance (Applicative f, Applicative g) => MonoPointed ((f :+: g) a) where opoint = R1 . pure {-# INLINE opoint #-} -- | Typeclass for monomorphic containers where it is always okay to -- "extract" a value from with 'oextract', and where you can extrapolate -- any "extracting" function to be a function on the whole part with -- 'oextend'. -- -- 'oextend' and 'oextract' should work together following the laws: -- -- @ -- 'oextend' 'oextract' = 'id' -- 'oextract' . 'oextend' f = f -- 'oextend' f . 'oextend' g = 'oextend' (f . 'oextend' g) -- @ -- -- As an intuition, @'oextend' f@ uses @f@ to "build up" a new @mono@ with -- pieces from the old one received by @f@. -- class MonoFunctor mono => MonoComonad mono where -- | Extract an element from @mono@. Can be thought of as a dual -- concept to @opoint@. oextract :: mono -> Element mono -- | "Extend" a @mono -> 'Element' mono@ function to be a @mono -> -- mono@; that is, builds a new @mono@ from the old one by using pieces -- glimpsed from the given function. oextend :: (mono -> Element mono) -> mono -> mono -- Not Comonad instance MonoComonad (ViewL a) where oextract ~(x :< _) = x {-# INLINE oextract #-} oextend f w@ ~(_ :< xxs) = f w :< case Seq.viewl xxs of EmptyL -> Seq.empty xs -> case oextend f xs of EmptyL -> Seq.empty y :< ys -> y Seq.<| ys instance MonoComonad (ViewR a) where oextract ~(_ :> x) = x {-# INLINE oextract #-} oextend f w@ ~(xxs :> _) = (case Seq.viewr xxs of EmptyR -> Seq.empty xs -> case oextend f xs of EmptyR -> Seq.empty ys :> y -> ys Seq.|> y ) :> f w -- | Containers which, when two values are combined, the combined length is no -- less than the larger of the two inputs. In code: -- -- @ -- olength (x <> y) >= max (olength x) (olength y) -- @ -- -- This class has no methods, and is simply used to assert that this law holds, -- in order to provide guarantees of correctness (see, for instance, -- "Data.NonNull"). -- -- This should have a @Semigroup@ superclass constraint, however, due to -- @Semigroup@ only recently moving to base, some packages do not provide -- instances. class MonoFoldable mono => GrowingAppend mono instance GrowingAppend (Seq.Seq a) instance GrowingAppend [a] instance GrowingAppend (V.Vector a) instance U.Unbox a => GrowingAppend (U.Vector a) instance VS.Storable a => GrowingAppend (VS.Vector a) instance GrowingAppend S.ByteString instance GrowingAppend L.ByteString instance GrowingAppend T.Text instance GrowingAppend TL.Text instance GrowingAppend (NonEmpty a) instance Ord k => GrowingAppend (Map k v) instance (Eq k, Hashable k) => GrowingAppend (HashMap k v) instance Ord v => GrowingAppend (Set.Set v) instance (Eq v, Hashable v) => GrowingAppend (HashSet.HashSet v) instance GrowingAppend IntSet.IntSet instance GrowingAppend (IntMap v) -- | 'intercalate' @seq seqs@ inserts @seq@ in between @seqs@ and -- concatenates the result. -- -- @since 1.0.0 ointercalate :: (MonoFoldable mono, Monoid (Element mono)) => Element mono -> mono -> Element mono ointercalate x = mconcat . List.intersperse x . otoList {-# INLINE [0] ointercalate #-} {-# RULES "ointercalate list" forall x. ointercalate x = List.intercalate x . otoList #-} {-# RULES "intercalate ByteString" forall x. ointercalate x = S.intercalate x . otoList #-} {-# RULES "intercalate LByteString" forall x. ointercalate x = L.intercalate x . otoList #-} {-# RULES "intercalate Text" forall x. ointercalate x = T.intercalate x . otoList #-} {-# RULES "intercalate LText" forall x. ointercalate x = TL.intercalate x . otoList #-}