{- Copyright 2013-2017 Mario Blazevic License: BSD3 (see BSD3-LICENSE.txt file) -} -- | This module defines the 'FactorialMonoid' class and some of its instances. -- {-# LANGUAGE Haskell2010, ConstraintKinds, FlexibleInstances, Trustworthy #-} module Data.Monoid.Factorial ( module Data.Semigroup.Factorial, FactorialMonoid(..), StableFactorialMonoid, ) where import Control.Arrow (first) import Data.Monoid -- (Monoid (..), Dual(..), Sum(..), Product(..), Endo(Endo, appEndo)) import qualified Data.Foldable as Foldable import qualified Data.List as List import qualified Data.ByteString as ByteString import qualified Data.ByteString.Lazy as LazyByteString import qualified Data.Text as Text import qualified Data.Text.Lazy as LazyText import qualified Data.IntMap as IntMap import qualified Data.IntSet as IntSet import qualified Data.Map as Map import qualified Data.Sequence as Sequence import qualified Data.Set as Set import qualified Data.Vector as Vector import Data.Int (Int64) import Data.Semigroup.Factorial import Data.Monoid.Null (MonoidNull(null), PositiveMonoid) import Prelude hiding (break, drop, dropWhile, foldl, foldr, last, length, map, max, min, null, reverse, span, splitAt, take, takeWhile) -- | Class of monoids that can be split into irreducible (/i.e./, atomic or prime) 'factors' in a unique way. Note that -- 'mempty' is not considered a factor. Factors of a 'Product' are literally its prime factors: -- -- prop> factors (Product 12) == [Product 2, Product 2, Product 3] -- -- Factors of a list are /not/ its elements but all its single-item sublists: -- -- prop> factors "abc" == ["a", "b", "c"] -- -- The methods of this class satisfy the following laws in addition to those of 'Factorial': -- -- > null == List.null . factors -- > factors == unfoldr splitPrimePrefix == List.reverse . unfoldr (fmap swap . splitPrimeSuffix) -- > reverse == mconcat . List.reverse . factors -- > primePrefix == maybe mempty fst . splitPrimePrefix -- > primeSuffix == maybe mempty snd . splitPrimeSuffix -- > inits == List.map mconcat . List.inits . factors -- > tails == List.map mconcat . List.tails . factors -- > span p m == (mconcat l, mconcat r) where (l, r) = List.span p (factors m) -- > List.all (List.all (not . pred) . factors) . split pred -- > mconcat . intersperse prime . split (== prime) == id -- > splitAt i m == (mconcat l, mconcat r) where (l, r) = List.splitAt i (factors m) -- > spanMaybe () (const $ bool Nothing (Maybe ()) . p) m == (takeWhile p m, dropWhile p m, ()) -- > spanMaybe s0 (\s m-> Just $ f s m) m0 == (m0, mempty, foldl f s0 m0) -- > let (prefix, suffix, s') = spanMaybe s f m -- > foldMaybe = foldl g (Just s) -- > g s m = s >>= flip f m -- > in all ((Nothing ==) . foldMaybe) (inits prefix) -- > && prefix == last (filter (isJust . foldMaybe) $ inits m) -- > && Just s' == foldMaybe prefix -- > && m == prefix <> suffix -- -- A minimal instance definition should implement 'splitPrimePrefix' for performance reasons, and other methods where -- beneficial. class (Factorial m, MonoidNull m) => FactorialMonoid m where -- | Splits the argument into its prime prefix and the remaining suffix. Returns 'Nothing' for 'mempty'. splitPrimePrefix :: m -> Maybe (m, m) -- | Splits the argument into its prime suffix and the remaining prefix. Returns 'Nothing' for 'mempty'. splitPrimeSuffix :: m -> Maybe (m, m) -- | Returns the list of all prefixes of the argument, 'mempty' first. inits :: m -> [m] -- | Returns the list of all suffixes of the argument, 'mempty' last. tails :: m -> [m] -- | Like 'List.span' from "Data.List" on the list of prime 'factors'. span :: (m -> Bool) -> m -> (m, m) -- | Equivalent to 'List.break' from "Data.List". break :: (m -> Bool) -> m -> (m, m) -- | Splits the monoid into components delimited by prime separators satisfying the given predicate. The primes -- satisfying the predicate are not a part of the result. split :: (m -> Bool) -> m -> [m] -- | Equivalent to 'List.takeWhile' from "Data.List". takeWhile :: (m -> Bool) -> m -> m -- | Equivalent to 'List.dropWhile' from "Data.List". dropWhile :: (m -> Bool) -> m -> m -- | A stateful variant of 'span', threading the result of the test function as long as it returns 'Just'. spanMaybe :: s -> (s -> m -> Maybe s) -> m -> (m, m, s) -- | Strict version of 'spanMaybe'. spanMaybe' :: s -> (s -> m -> Maybe s) -> m -> (m, m, s) -- | Like 'List.splitAt' from "Data.List" on the list of prime 'factors'. splitAt :: Int -> m -> (m, m) -- | Equivalent to 'List.drop' from "Data.List". drop :: Int -> m -> m -- | Equivalent to 'List.take' from "Data.List". take :: Int -> m -> m splitPrimePrefix x = case factors x of [] -> Nothing prefix : rest -> Just (prefix, mconcat rest) splitPrimeSuffix x = case factors x of [] -> Nothing fs -> Just (mconcat (List.init fs), List.last fs) inits = foldr (\m l-> mempty : List.map (mappend m) l) [mempty] tails m = m : maybe [] (tails . snd) (splitPrimePrefix m) span p m0 = spanAfter id m0 where spanAfter f m = case splitPrimePrefix m of Just (prime, rest) | p prime -> spanAfter (f . mappend prime) rest _ -> (f mempty, m) break = span . (not .) spanMaybe s0 f m0 = spanAfter id s0 m0 where spanAfter g s m = case splitPrimePrefix m of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, m, s) Nothing -> (m0, m, s) spanMaybe' s0 f m0 = spanAfter id s0 m0 where spanAfter g s m = seq s $ case splitPrimePrefix m of Just (prime, rest) | Just s' <- f s prime -> spanAfter (g . mappend prime) s' rest | otherwise -> (g mempty, m, s) Nothing -> (m0, m, s) split p m = prefix : splitRest where (prefix, rest) = break p m splitRest = case splitPrimePrefix rest of Nothing -> [] Just (_, tl) -> split p tl takeWhile p = fst . span p dropWhile p = snd . span p splitAt n0 m0 | n0 <= 0 = (mempty, m0) | otherwise = split' n0 id m0 where split' 0 f m = (f mempty, m) split' n f m = case splitPrimePrefix m of Nothing -> (f mempty, m) Just (prime, rest) -> split' (pred n) (f . mappend prime) rest drop n p = snd (splitAt n p) take n p = fst (splitAt n p) {-# MINIMAL #-} {-# DEPRECATED StableFactorialMonoid "Use Data.Semigroup.Factorial.StableFactorial instead." #-} type StableFactorialMonoid m = (StableFactorial m, FactorialMonoid m, PositiveMonoid m) instance FactorialMonoid () where splitPrimePrefix () = Nothing splitPrimeSuffix () = Nothing instance FactorialMonoid a => FactorialMonoid (Dual a) where splitPrimePrefix (Dual a) = case splitPrimeSuffix a of Nothing -> Nothing Just (p, s) -> Just (Dual s, Dual p) splitPrimeSuffix (Dual a) = case splitPrimePrefix a of Nothing -> Nothing Just (p, s) -> Just (Dual s, Dual p) inits (Dual a) = fmap Dual (reverse $ tails a) tails (Dual a) = fmap Dual (reverse $ inits a) instance (Integral a, Eq a) => FactorialMonoid (Sum a) where splitPrimePrefix (Sum 0) = Nothing splitPrimePrefix (Sum a) = Just (Sum (signum a), Sum (a - signum a)) splitPrimeSuffix (Sum 0) = Nothing splitPrimeSuffix (Sum a) = Just (Sum (a - signum a), Sum (signum a)) instance Integral a => FactorialMonoid (Product a) instance FactorialMonoid a => FactorialMonoid (Maybe a) where splitPrimePrefix Nothing = Nothing splitPrimePrefix (Just a) = case splitPrimePrefix a of Nothing -> Just (Just a, Nothing) Just (p, s) -> Just (Just p, if null s then Nothing else Just s) instance (FactorialMonoid a, FactorialMonoid b) => FactorialMonoid (a, b) where splitPrimePrefix (a, b) = case (splitPrimePrefix a, splitPrimePrefix b) of (Just (ap, as), _) -> Just ((ap, mempty), (as, b)) (Nothing, Just (bp, bs)) -> Just ((a, bp), (a, bs)) (Nothing, Nothing) -> Nothing splitPrimeSuffix (a, b) = case (splitPrimeSuffix a, splitPrimeSuffix b) of (_, Just (bp, bs)) -> Just ((a, bp), (mempty, bs)) (Just (ap, as), Nothing) -> Just ((ap, b), (as, b)) (Nothing, Nothing) -> Nothing inits (a, b) = List.map (flip (,) mempty) (inits a) ++ List.map ((,) a) (List.tail $ inits b) tails (a, b) = List.map (flip (,) b) (tails a) ++ List.map ((,) mempty) (List.tail $ tails b) span p (x, y) = ((xp, yp), (xs, ys)) where (xp, xs) = span (p . fromFst) x (yp, ys) | null xs = span (p . fromSnd) y | otherwise = (mempty, y) spanMaybe s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2) | otherwise = ((xp, mempty), (xs, y), s1) where (xp, xs, s1) = spanMaybe s0 (\s-> f s . fromFst) x (yp, ys, s2) = spanMaybe s1 (\s-> f s . fromSnd) y spanMaybe' s0 f (x, y) | null xs = ((xp, yp), (xs, ys), s2) | otherwise = ((xp, mempty), (xs, y), s1) where (xp, xs, s1) = spanMaybe' s0 (\s-> f s . fromFst) x (yp, ys, s2) = spanMaybe' s1 (\s-> f s . fromSnd) y split p (x0, y0) = fst $ List.foldr combine (ys, False) xs where xs = List.map fromFst $ split (p . fromFst) x0 ys = List.map fromSnd $ split (p . fromSnd) y0 combine x (~(y:rest), False) = (mappend x y : rest, True) combine x (rest, True) = (x:rest, True) splitAt n (x, y) = ((xp, yp), (xs, ys)) where (xp, xs) = splitAt n x (yp, ys) | null xs = splitAt (n - length x) y | otherwise = (mempty, y) {-# INLINE fromFst #-} fromFst :: Monoid b => a -> (a, b) fromFst a = (a, mempty) {-# INLINE fromSnd #-} fromSnd :: Monoid a => b -> (a, b) fromSnd b = (mempty, b) instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c) => FactorialMonoid (a, b, c) where splitPrimePrefix (a, b, c) = case (splitPrimePrefix a, splitPrimePrefix b, splitPrimePrefix c) of (Just (ap, as), _, _) -> Just ((ap, mempty, mempty), (as, b, c)) (Nothing, Just (bp, bs), _) -> Just ((a, bp, mempty), (a, bs, c)) (Nothing, Nothing, Just (cp, cs)) -> Just ((a, b, cp), (a, b, cs)) (Nothing, Nothing, Nothing) -> Nothing splitPrimeSuffix (a, b, c) = case (splitPrimeSuffix a, splitPrimeSuffix b, splitPrimeSuffix c) of (_, _, Just (cp, cs)) -> Just ((a, b, cp), (mempty, mempty, cs)) (_, Just (bp, bs), Nothing) -> Just ((a, bp, c), (mempty, bs, c)) (Just (ap, as), Nothing, Nothing) -> Just ((ap, b, c), (as, b, c)) (Nothing, Nothing, Nothing) -> Nothing inits (a, b, c) = List.map (\a1-> (a1, mempty, mempty)) (inits a) ++ List.map (\b1-> (a, b1, mempty)) (List.tail $ inits b) ++ List.map (\c1-> (a, b, c1)) (List.tail $ inits c) tails (a, b, c) = List.map (\a1-> (a1, b, c)) (tails a) ++ List.map (\b1-> (mempty, b1, c)) (List.tail $ tails b) ++ List.map (\c1-> (mempty, mempty, c1)) (List.tail $ tails c) span p (a, b, c) = ((ap, bp, cp), (as, bs, cs)) where (ap, as) = span (p . fromFstOf3) a (bp, bs) | null as = span (p . fromSndOf3) b | otherwise = (mempty, b) (cp, cs) | null as && null bs = span (p . fromThdOf3) c | otherwise = (mempty, c) spanMaybe s0 f (a, b, c) | not (null as) = ((ap, mempty, mempty), (as, b, c), s1) | not (null bs) = ((ap, bp, mempty), (as, bs, c), s2) | otherwise = ((ap, bp, cp), (as, bs, cs), s3) where (ap, as, s1) = spanMaybe s0 (\s-> f s . fromFstOf3) a (bp, bs, s2) = spanMaybe s1 (\s-> f s . fromSndOf3) b (cp, cs, s3) = spanMaybe s2 (\s-> f s . fromThdOf3) c spanMaybe' s0 f (a, b, c) | not (null as) = ((ap, mempty, mempty), (as, b, c), s1) | not (null bs) = ((ap, bp, mempty), (as, bs, c), s2) | otherwise = ((ap, bp, cp), (as, bs, cs), s3) where (ap, as, s1) = spanMaybe' s0 (\s-> f s . fromFstOf3) a (bp, bs, s2) = spanMaybe' s1 (\s-> f s . fromSndOf3) b (cp, cs, s3) = spanMaybe' s2 (\s-> f s . fromThdOf3) c splitAt n (a, b, c) = ((ap, bp, cp), (as, bs, cs)) where (ap, as) = splitAt n a (bp, bs) | null as = splitAt (n - length a) b | otherwise = (mempty, b) (cp, cs) | null as && null bs = splitAt (n - length a - length b) c | otherwise = (mempty, c) {-# INLINE fromFstOf3 #-} fromFstOf3 :: (Monoid b, Monoid c) => a -> (a, b, c) fromFstOf3 a = (a, mempty, mempty) {-# INLINE fromSndOf3 #-} fromSndOf3 :: (Monoid a, Monoid c) => b -> (a, b, c) fromSndOf3 b = (mempty, b, mempty) {-# INLINE fromThdOf3 #-} fromThdOf3 :: (Monoid a, Monoid b) => c -> (a, b, c) fromThdOf3 c = (mempty, mempty, c) instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c, FactorialMonoid d) => FactorialMonoid (a, b, c, d) where splitPrimePrefix (a, b, c, d) = case (splitPrimePrefix a, splitPrimePrefix b, splitPrimePrefix c, splitPrimePrefix d) of (Just (ap, as), _, _, _) -> Just ((ap, mempty, mempty, mempty), (as, b, c, d)) (Nothing, Just (bp, bs), _, _) -> Just ((a, bp, mempty, mempty), (a, bs, c, d)) (Nothing, Nothing, Just (cp, cs), _) -> Just ((a, b, cp, mempty), (a, b, cs, d)) (Nothing, Nothing, Nothing, Just (dp, ds)) -> Just ((a, b, c, dp), (a, b, c, ds)) (Nothing, Nothing, Nothing, Nothing) -> Nothing splitPrimeSuffix (a, b, c, d) = case (splitPrimeSuffix a, splitPrimeSuffix b, splitPrimeSuffix c, splitPrimeSuffix d) of (_, _, _, Just (dp, ds)) -> Just ((a, b, c, dp), (mempty, mempty, mempty, ds)) (_, _, Just (cp, cs), Nothing) -> Just ((a, b, cp, d), (mempty, mempty, cs, d)) (_, Just (bp, bs), Nothing, Nothing) -> Just ((a, bp, c, d), (mempty, bs, c, d)) (Just (ap, as), Nothing, Nothing, Nothing) -> Just ((ap, b, c, d), (as, b, c, d)) (Nothing, Nothing, Nothing, Nothing) -> Nothing inits (a, b, c, d) = List.map (\a1-> (a1, mempty, mempty, mempty)) (inits a) ++ List.map (\b1-> (a, b1, mempty, mempty)) (List.tail $ inits b) ++ List.map (\c1-> (a, b, c1, mempty)) (List.tail $ inits c) ++ List.map (\d1-> (a, b, c, d1)) (List.tail $ inits d) tails (a, b, c, d) = List.map (\a1-> (a1, b, c, d)) (tails a) ++ List.map (\b1-> (mempty, b1, c, d)) (List.tail $ tails b) ++ List.map (\c1-> (mempty, mempty, c1, d)) (List.tail $ tails c) ++ List.map (\d1-> (mempty, mempty, mempty, d1)) (List.tail $ tails d) span p (a, b, c, d) = ((ap, bp, cp, dp), (as, bs, cs, ds)) where (ap, as) = span (p . fromFstOf4) a (bp, bs) | null as = span (p . fromSndOf4) b | otherwise = (mempty, b) (cp, cs) | null as && null bs = span (p . fromThdOf4) c | otherwise = (mempty, c) (dp, ds) | null as && null bs && null cs = span (p . fromFthOf4) d | otherwise = (mempty, d) spanMaybe s0 f (a, b, c, d) | not (null as) = ((ap, mempty, mempty, mempty), (as, b, c, d), s1) | not (null bs) = ((ap, bp, mempty, mempty), (as, bs, c, d), s2) | not (null cs) = ((ap, bp, cp, mempty), (as, bs, cs, d), s3) | otherwise = ((ap, bp, cp, dp), (as, bs, cs, ds), s4) where (ap, as, s1) = spanMaybe s0 (\s-> f s . fromFstOf4) a (bp, bs, s2) = spanMaybe s1 (\s-> f s . fromSndOf4) b (cp, cs, s3) = spanMaybe s2 (\s-> f s . fromThdOf4) c (dp, ds, s4) = spanMaybe s3 (\s-> f s . fromFthOf4) d spanMaybe' s0 f (a, b, c, d) | not (null as) = ((ap, mempty, mempty, mempty), (as, b, c, d), s1) | not (null bs) = ((ap, bp, mempty, mempty), (as, bs, c, d), s2) | not (null cs) = ((ap, bp, cp, mempty), (as, bs, cs, d), s3) | otherwise = ((ap, bp, cp, dp), (as, bs, cs, ds), s4) where (ap, as, s1) = spanMaybe' s0 (\s-> f s . fromFstOf4) a (bp, bs, s2) = spanMaybe' s1 (\s-> f s . fromSndOf4) b (cp, cs, s3) = spanMaybe' s2 (\s-> f s . fromThdOf4) c (dp, ds, s4) = spanMaybe' s3 (\s-> f s . fromFthOf4) d splitAt n (a, b, c, d) = ((ap, bp, cp, dp), (as, bs, cs, ds)) where (ap, as) = splitAt n a (bp, bs) | null as = splitAt (n - length a) b | otherwise = (mempty, b) (cp, cs) | null as && null bs = splitAt (n - length a - length b) c | otherwise = (mempty, c) (dp, ds) | null as && null bs && null cs = splitAt (n - length a - length b - length c) d | otherwise = (mempty, d) {-# INLINE fromFstOf4 #-} fromFstOf4 :: (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d) fromFstOf4 a = (a, mempty, mempty, mempty) {-# INLINE fromSndOf4 #-} fromSndOf4 :: (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d) fromSndOf4 b = (mempty, b, mempty, mempty) {-# INLINE fromThdOf4 #-} fromThdOf4 :: (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d) fromThdOf4 c = (mempty, mempty, c, mempty) {-# INLINE fromFthOf4 #-} fromFthOf4 :: (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d) fromFthOf4 d = (mempty, mempty, mempty, d) instance FactorialMonoid [x] where splitPrimePrefix [] = Nothing splitPrimePrefix (x:xs) = Just ([x], xs) splitPrimeSuffix [] = Nothing splitPrimeSuffix xs = Just (splitLast id xs) where splitLast f last@[_] = (f [], last) splitLast f ~(x:rest) = splitLast (f . (x:)) rest inits = List.inits tails = List.tails break f = List.break (f . (:[])) span f = List.span (f . (:[])) dropWhile f = List.dropWhile (f . (:[])) takeWhile f = List.takeWhile (f . (:[])) spanMaybe s0 f l = (prefix' [], suffix' [], s') where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = (prefix . (x:), id, s2, True) | otherwise = (prefix, suffix . (x:), s1, False) spanMaybe' s0 f l = (prefix' [], suffix' [], s') where (prefix', suffix', s', _) = List.foldl' g (id, id, s0, True) l g (prefix, suffix, s1, live) x | live, Just s2 <- f s1 [x] = seq s2 $ (prefix . (x:), id, s2, True) | otherwise = (prefix, suffix . (x:), s1, False) splitAt = List.splitAt drop = List.drop take = List.take instance FactorialMonoid ByteString.ByteString where splitPrimePrefix x = if ByteString.null x then Nothing else Just (ByteString.splitAt 1 x) splitPrimeSuffix x = if ByteString.null x then Nothing else Just (ByteString.splitAt (ByteString.length x - 1) x) inits = ByteString.inits tails = ByteString.tails break f = ByteString.break (f . ByteString.singleton) span f = ByteString.span (f . ByteString.singleton) spanMaybe s0 f b = case ByteString.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s') where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ cont (i', s') | otherwise = (i, s) spanMaybe' s0 f b = case ByteString.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- ByteString.splitAt i b -> (prefix, suffix, s') where g w cont (i, s) | Just s' <- f s (ByteString.singleton w) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s') | otherwise = (i, s) dropWhile f = ByteString.dropWhile (f . ByteString.singleton) takeWhile f = ByteString.takeWhile (f . ByteString.singleton) split f = ByteString.splitWith f' where f' = f . ByteString.singleton splitAt = ByteString.splitAt drop = ByteString.drop take = ByteString.take instance FactorialMonoid LazyByteString.ByteString where splitPrimePrefix x = if LazyByteString.null x then Nothing else Just (LazyByteString.splitAt 1 x) splitPrimeSuffix x = if LazyByteString.null x then Nothing else Just (LazyByteString.splitAt (LazyByteString.length x - 1) x) inits = LazyByteString.inits tails = LazyByteString.tails break f = LazyByteString.break (f . LazyByteString.singleton) span f = LazyByteString.span (f . LazyByteString.singleton) spanMaybe s0 f b = case LazyByteString.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s') where g w cont (i, s) | Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ cont (i', s') | otherwise = (i, s) spanMaybe' s0 f b = case LazyByteString.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- LazyByteString.splitAt i b -> (prefix, suffix, s') where g w cont (i, s) | Just s' <- f s (LazyByteString.singleton w) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s') | otherwise = (i, s) dropWhile f = LazyByteString.dropWhile (f . LazyByteString.singleton) takeWhile f = LazyByteString.takeWhile (f . LazyByteString.singleton) split f = LazyByteString.splitWith f' where f' = f . LazyByteString.singleton splitAt = LazyByteString.splitAt . fromIntegral drop n = LazyByteString.drop (fromIntegral n) take n = LazyByteString.take (fromIntegral n) instance FactorialMonoid Text.Text where splitPrimePrefix = fmap (first Text.singleton) . Text.uncons splitPrimeSuffix x = if Text.null x then Nothing else Just (Text.init x, Text.singleton (Text.last x)) inits = Text.inits tails = Text.tails span f = Text.span (f . Text.singleton) break f = Text.break (f . Text.singleton) dropWhile f = Text.dropWhile (f . Text.singleton) takeWhile f = Text.takeWhile (f . Text.singleton) spanMaybe s0 f t = case Text.foldr g id t (0, s0) of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s') where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ cont (i', s') | otherwise = (i, s) spanMaybe' s0 f t = case Text.foldr g id t (0, s0) of (i, s') | (prefix, suffix) <- Text.splitAt i t -> (prefix, suffix, s') where g c cont (i, s) | Just s' <- f s (Text.singleton c) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s') | otherwise = (i, s) split f = Text.split f' where f' = f . Text.singleton splitAt = Text.splitAt drop = Text.drop take = Text.take instance FactorialMonoid LazyText.Text where splitPrimePrefix = fmap (first LazyText.singleton) . LazyText.uncons splitPrimeSuffix x = if LazyText.null x then Nothing else Just (LazyText.init x, LazyText.singleton (LazyText.last x)) inits = LazyText.inits tails = LazyText.tails span f = LazyText.span (f . LazyText.singleton) break f = LazyText.break (f . LazyText.singleton) dropWhile f = LazyText.dropWhile (f . LazyText.singleton) takeWhile f = LazyText.takeWhile (f . LazyText.singleton) spanMaybe s0 f t = case LazyText.foldr g id t (0, s0) of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s') where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ cont (i', s') | otherwise = (i, s) spanMaybe' s0 f t = case LazyText.foldr g id t (0, s0) of (i, s') | (prefix, suffix) <- LazyText.splitAt i t -> (prefix, suffix, s') where g c cont (i, s) | Just s' <- f s (LazyText.singleton c) = let i' = succ i :: Int64 in seq i' $ seq s' $ cont (i', s') | otherwise = (i, s) split f = LazyText.split f' where f' = f . LazyText.singleton splitAt = LazyText.splitAt . fromIntegral drop n = LazyText.drop (fromIntegral n) take n = LazyText.take (fromIntegral n) instance Ord k => FactorialMonoid (Map.Map k v) where splitPrimePrefix = fmap singularize . Map.minViewWithKey where singularize ((k, v), rest) = (Map.singleton k v, rest) splitPrimeSuffix = fmap singularize . Map.maxViewWithKey where singularize ((k, v), rest) = (rest, Map.singleton k v) instance FactorialMonoid (IntMap.IntMap a) where splitPrimePrefix = fmap singularize . IntMap.minViewWithKey where singularize ((k, v), rest) = (IntMap.singleton k v, rest) splitPrimeSuffix = fmap singularize . IntMap.maxViewWithKey where singularize ((k, v), rest) = (rest, IntMap.singleton k v) instance FactorialMonoid IntSet.IntSet where splitPrimePrefix = fmap singularize . IntSet.minView where singularize (min, rest) = (IntSet.singleton min, rest) splitPrimeSuffix = fmap singularize . IntSet.maxView where singularize (max, rest) = (rest, IntSet.singleton max) instance FactorialMonoid (Sequence.Seq a) where splitPrimePrefix q = case Sequence.viewl q of Sequence.EmptyL -> Nothing hd Sequence.:< rest -> Just (Sequence.singleton hd, rest) splitPrimeSuffix q = case Sequence.viewr q of Sequence.EmptyR -> Nothing rest Sequence.:> last -> Just (rest, Sequence.singleton last) inits = Foldable.toList . Sequence.inits tails = Foldable.toList . Sequence.tails span f = Sequence.spanl (f . Sequence.singleton) break f = Sequence.breakl (f . Sequence.singleton) dropWhile f = Sequence.dropWhileL (f . Sequence.singleton) takeWhile f = Sequence.takeWhileL (f . Sequence.singleton) spanMaybe s0 f b = case Foldable.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s') where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ cont (i', s') | otherwise = (i, s) spanMaybe' s0 f b = case Foldable.foldr g id b (0, s0) of (i, s') | (prefix, suffix) <- Sequence.splitAt i b -> (prefix, suffix, s') where g x cont (i, s) | Just s' <- f s (Sequence.singleton x) = let i' = succ i :: Int in seq i' $ seq s' $ cont (i', s') | otherwise = (i, s) splitAt = Sequence.splitAt drop = Sequence.drop take = Sequence.take instance Ord a => FactorialMonoid (Set.Set a) where splitPrimePrefix = fmap singularize . Set.minView where singularize (min, rest) = (Set.singleton min, rest) splitPrimeSuffix = fmap singularize . Set.maxView where singularize (max, rest) = (rest, Set.singleton max) instance FactorialMonoid (Vector.Vector a) where splitPrimePrefix x = if Vector.null x then Nothing else Just (Vector.splitAt 1 x) splitPrimeSuffix x = if Vector.null x then Nothing else Just (Vector.splitAt (Vector.length x - 1) x) inits x0 = initsWith x0 [] where initsWith x rest | Vector.null x = x:rest | otherwise = initsWith (Vector.unsafeInit x) (x:rest) tails x = x : if Vector.null x then [] else tails (Vector.unsafeTail x) break f = Vector.break (f . Vector.singleton) span f = Vector.span (f . Vector.singleton) dropWhile f = Vector.dropWhile (f . Vector.singleton) takeWhile f = Vector.takeWhile (f . Vector.singleton) spanMaybe s0 f v = case Vector.ifoldr g Left v s0 of Left s' -> (v, Vector.empty, s') Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s') where g i x cont s | Just s' <- f s (Vector.singleton x) = cont s' | otherwise = Right (i, s) spanMaybe' s0 f v = case Vector.ifoldr' g Left v s0 of Left s' -> (v, Vector.empty, s') Right (i, s') | (prefix, suffix) <- Vector.splitAt i v -> (prefix, suffix, s') where g i x cont s | Just s' <- f s (Vector.singleton x) = seq s' (cont s') | otherwise = Right (i, s) splitAt = Vector.splitAt drop = Vector.drop take = Vector.take