monoids-0.1.33: Monoids, specialized containers and a general map/reduce frameworkSource codeContentsIndex
Data.Ring.Semi.Natural
Portabilitynon-portable (type families, MPTCs)
Stabilityexperimental
Maintainerekmett@gmail.com
Description

Monoids for non-negative integers (Natural) and ints (Nat)

The naturals form a module over any of our monoids.

Documentation
module Data.Ring.Semi
data Natural Source
show/hide Instances
Enum Natural
Eq Natural
Integral Natural
Num Natural
Ord Natural
Read Natural
Real Natural
Show Natural
Monoid Natural
Multiplicative Natural
RightSemiNearRing Natural
LeftSemiNearRing Natural
Ringoid Natural
SemiRing Natural
Module Natural Ordering
Module Natural ()
Module Natural All
Module Natural Any
RightModule Natural Ordering
RightModule Natural ()
RightModule Natural All
RightModule Natural Any
LeftModule Natural Ordering
LeftModule Natural ()
LeftModule Natural All
LeftModule Natural Any
Module Natural ([] a)
Monoid m => Module Natural (Dual m)
Module Natural (Endo a)
Num a => Module Natural (Sum a)
Num a => Module Natural (Product a)
Module Natural (First a)
Module Natural (Last a)
CharReducer m => Module Natural (UTF8 m)
Module Natural (SourcePosition f)
Monoid m => Module Natural (Self m)
Monoid m => Module Natural (FromString m)
Multiplicative m => Module Natural (Log m)
Applicative f => Module Natural (Traversal f)
Monad f => Module Natural (Action f)
Module Natural (Free a)
Enum a => Module Natural (BitSet a)
RightModule Natural ([] a)
Monoid m => RightModule Natural (Dual m)
RightModule Natural (Endo a)
Num a => RightModule Natural (Sum a)
Num a => RightModule Natural (Product a)
RightModule Natural (First a)
RightModule Natural (Last a)
CharReducer m => RightModule Natural (UTF8 m)
RightModule Natural (SourcePosition f)
Monoid m => RightModule Natural (Self m)
Monoid m => RightModule Natural (FromString m)
Multiplicative m => RightModule Natural (Log m)
Applicative f => RightModule Natural (Traversal f)
Monad f => RightModule Natural (Action f)
RightModule Natural (Free a)
Enum a => RightModule Natural (BitSet a)
LeftModule Natural ([] a)
Monoid m => LeftModule Natural (Dual m)
LeftModule Natural (Endo a)
Num a => LeftModule Natural (Sum a)
Num a => LeftModule Natural (Product a)
LeftModule Natural (First a)
LeftModule Natural (Last a)
CharReducer m => LeftModule Natural (UTF8 m)
LeftModule Natural (SourcePosition f)
Monoid m => LeftModule Natural (Self m)
Monoid m => LeftModule Natural (FromString m)
Multiplicative m => LeftModule Natural (Log m)
Applicative f => LeftModule Natural (Traversal f)
Monad f => LeftModule Natural (Action f)
LeftModule Natural (Free a)
Enum a => LeftModule Natural (BitSet a)
(Bounded a, Enum a) => RAlgebra Natural (BitSet a)
Monoid m => Module Natural (a -> m)
Eq a => Module Natural (RLE Seq a)
Category k => Module Natural (GEndo k a)
Alternative f => Module Natural (Alt f a)
MonadPlus f => Module Natural (MonadSum f a)
Monoid m => RightModule Natural (a -> m)
Eq a => RightModule Natural (RLE Seq a)
Category k => RightModule Natural (GEndo k a)
Alternative f => RightModule Natural (Alt f a)
MonadPlus f => RightModule Natural (MonadSum f a)
Monoid m => LeftModule Natural (a -> m)
Eq a => LeftModule Natural (RLE Seq a)
Category k => LeftModule Natural (GEndo k a)
Alternative f => LeftModule Natural (Alt f a)
MonadPlus f => LeftModule Natural (MonadSum f a)
Monoid m => Module Natural (CMonoid m m m)
Monoid m => RightModule Natural (CMonoid m m m)
Monoid m => LeftModule Natural (CMonoid m m m)
natural :: Integer -> NaturalSource
Produced by Haddock version 2.4.2