Safe Haskell  SafeInferred 

Language  Haskell2010 
Synopsis
 data Polynomial a
 data Monomial a = Monomial {
 coefficient :: a
 powers :: Seq Int
 lone :: (C a, Eq a) => Int > Polynomial a
 constant :: (C a, Eq a) => a > Polynomial a
 terms :: (C a, Eq a) => Polynomial a > [Monomial a]
 (*^) :: (C a, Eq a) => a > Polynomial a > Polynomial a
 (^+^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a
 (^^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a
 (^*^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a
 (^**^) :: (C a, Eq a) => Polynomial a > Int > Polynomial a
 evalPoly :: (C a, Eq a) => Polynomial a > [a] > a
 prettyPol :: (C a, Eq a) => (a > String) > String > Polynomial a > String
Documentation
data Polynomial a Source #
Instances
(C a, Eq a) => C a (Polynomial a) Source #  
Defined in Math.Algebra.MultiPol (*>) :: a > Polynomial a > Polynomial a #  
Show a => Show (Polynomial a) Source #  
Defined in Math.Algebra.MultiPol showsPrec :: Int > Polynomial a > ShowS # show :: Polynomial a > String # showList :: [Polynomial a] > ShowS #  
(C a, Eq a) => Eq (Polynomial a) Source #  
Defined in Math.Algebra.MultiPol (==) :: Polynomial a > Polynomial a > Bool # (/=) :: Polynomial a > Polynomial a > Bool #  
(C a, Eq a) => C (Polynomial a) Source #  
Defined in Math.Algebra.MultiPol zero :: Polynomial a # (+) :: Polynomial a > Polynomial a > Polynomial a # () :: Polynomial a > Polynomial a > Polynomial a # negate :: Polynomial a > Polynomial a #  
(C a, Eq a) => C (Polynomial a) Source #  
Defined in Math.Algebra.MultiPol (*) :: Polynomial a > Polynomial a > Polynomial a # one :: Polynomial a # fromInteger :: Integer > Polynomial a # (^) :: Polynomial a > Integer > Polynomial a # 
Monomial  

(*^) :: (C a, Eq a) => a > Polynomial a > Polynomial a infixr 7 Source #
Scale polynomial by a scalar
(^+^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a infixl 6 Source #
Addition of two polynomials
(^^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a infixl 6 Source #
Substraction
(^*^) :: (C a, Eq a) => Polynomial a > Polynomial a > Polynomial a infixl 7 Source #
Multiply two polynomials
(^**^) :: (C a, Eq a) => Polynomial a > Int > Polynomial a infixr 8 Source #
Power of a polynomial