----------------------------------------------------------------------------- -- | -- Module : Data.IntMultiSet -- Copyright : (c) Twan van Laarhoven 2008 -- License : BSD-style -- Maintainer : libraries@haskell.org -- Stability : provisional -- Portability : portable -- -- An efficient implementation of multisets of integers, also somtimes called bags. -- -- A multiset is like a set, but it can contain multiple copies of the same element. -- -- Since many function names (but not the type name) clash with -- "Prelude" names, this module is usually imported @qualified@, e.g. -- -- > import Data.MultiSet (MultiSet) -- > import qualified Data.MultiSet as MultiSet -- -- The implementation of 'MultiSet' is based on the "Data.IntMap" module. -- -- Many operations have a worst-case complexity of /O(min(n,W))/. -- This means that the operation can become linear in the number of -- elements with a maximum of /W/ -- the number of bits in an 'Int' -- (32 or 64). Here /n/ refers to the number of distinct elements, -- /t/ is the total number of elements. ----------------------------------------------------------------------------- module Data.IntMultiSet ( -- * MultiSet type IntMultiSet, Key, Occur -- * Operators , (\\) -- * Query , null , size , distinctSize , member , notMember , occur , isSubsetOf , isProperSubsetOf -- * Construction , empty , singleton , insert , insertMany , delete , deleteMany , deleteAll -- * Combine , union, unions , maxUnion , difference , intersection -- * Filter , filter , partition , split , splitOccur -- * Map , map , mapMonotonic , mapMaybe , mapEither , concatMap , unionsMap -- * Monadic , bind , join -- * Fold , fold , foldOccur -- * Min\/Max , findMin , findMax , deleteMin , deleteMax , deleteMinAll , deleteMaxAll , deleteFindMin , deleteFindMax , maxView , minView -- * Conversion -- ** List , elems , distinctElems , toList , fromList -- ** Ordered list , toAscList , fromAscList , fromDistinctAscList -- ** Occurrence lists , toOccurList , toAscOccurList , fromOccurList , fromAscOccurList , fromDistinctAscOccurList -- ** Map , toMap , fromMap , fromOccurMap -- ** Set , toSet , fromSet -- * Debugging , showTree , showTreeWith ) where import Prelude hiding (filter,foldr,null,map,concatMap) import Data.Monoid (Monoid(..)) import Data.Typeable () import Data.IntMap (IntMap) import Data.IntSet (IntSet) import Data.MultiSet (MultiSet) import qualified Data.IntMap as Map import qualified Data.IntSet as Set import qualified Data.List as List import qualified Data.MultiSet as MultiSet {- -- just for testing import QuickCheck import List (nub,sort) import qualified List -} import Data.Typeable #if __GLASGOW_HASKELL__ import Text.Read import Data.Data (Data(..), mkNorepType) #endif {-------------------------------------------------------------------- Operators --------------------------------------------------------------------} infixl 9 \\ -- -- | /O(n+m)/. See 'difference'. (\\) :: IntMultiSet -> IntMultiSet -> IntMultiSet m1 \\ m2 = difference m1 m2 {-------------------------------------------------------------------- The data type --------------------------------------------------------------------} -- | A multiset of integers. -- The same value can occur multiple times. newtype IntMultiSet = MS { unMS :: IntMap Occur } -- invariant: all values in the map are >= 1 type Key = Int -- | The number of occurences of an element type Occur = Int instance Monoid IntMultiSet where mempty = empty mappend = union mconcat = unions #if __GLASGOW_HASKELL__ {-------------------------------------------------------------------- A Data instance --------------------------------------------------------------------} -- This instance preserves data abstraction at the cost of inefficiency. -- We omit reflection services for the sake of data abstraction. instance Data IntMultiSet where gfoldl f z set = z fromList `f` (toList set) toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNorepType "Data.IntMultiSet.IntMultiSet" #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(1)/. Is this the empty multiset? null :: IntMultiSet -> Bool null = Map.null . unMS -- | /O(n)/. The number of elements in the multiset. size :: IntMultiSet -> Int size = sum . Map.elems . unMS -- | /O(1)/. The number of distinct elements in the multiset. distinctSize :: IntMultiSet -> Int distinctSize = Map.size . unMS -- | /O(min(n,W))/. Is the element in the multiset? member :: Key -> IntMultiSet -> Bool member x = Map.member x . unMS -- | /O(min(n,W))/. Is the element not in the multiset? notMember :: Key -> IntMultiSet -> Bool notMember x = not . member x -- | /O(min(n,W))/. The number of occurences of an element in a multiset. occur :: Key -> IntMultiSet -> Int occur x = Map.findWithDefault 0 x . unMS {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. The empty mutli set. empty :: IntMultiSet empty = MS Map.empty -- | /O(1)/. Create a singleton mutli set. singleton :: Key -> IntMultiSet singleton x = MS (Map.singleton x 1) {-------------------------------------------------------------------- Insertion, Deletion --------------------------------------------------------------------} -- | /O(min(n,W))/. Insert an element in a multiset. insert :: Key -> IntMultiSet -> IntMultiSet insert x = MS . Map.insertWith (+) x 1 . unMS -- | /O(min(n,W))/. Insert an element in a multiset a given number of times. -- -- Negative numbers remove occurences of the given element. insertMany :: Key -> Occur -> IntMultiSet -> IntMultiSet insertMany x n | n < 0 = MS . Map.update (deleteN (negate n)) x . unMS | n == 0 = id | otherwise = MS . Map.insertWith (+) x n . unMS -- | /O(min(n,W))/. Delete a single element from a multiset. delete :: Key -> IntMultiSet -> IntMultiSet delete x = MS . Map.update (deleteN 1) x . unMS -- | /O(min(n,W))/. Delete an element from a multiset a given number of times. -- -- Negative numbers add occurences of the given element. deleteMany :: Key -> Occur -> IntMultiSet -> IntMultiSet deleteMany x n = insertMany x (negate n) -- | /O(min(n,W))/. Delete all occurences of an element from a multiset. deleteAll :: Key -> IntMultiSet -> IntMultiSet deleteAll x = MS . Map.delete x . unMS deleteN :: Int -> Int -> Maybe Int deleteN n m | m <= n = Nothing | otherwise = Just (m - n) {-------------------------------------------------------------------- Subset --------------------------------------------------------------------} -- | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal). isProperSubsetOf :: IntMultiSet -> IntMultiSet -> Bool isProperSubsetOf (MS m1) (MS m2) = Map.isProperSubmapOfBy (<=) m1 m2 -- | /O(n+m)/. Is this a subset? -- @(s1 \`isSubsetOf\` s2)@ tells whether @s1@ is a subset of @s2@. isSubsetOf :: IntMultiSet -> IntMultiSet -> Bool isSubsetOf (MS m1) (MS m2) = Map.isSubmapOfBy (<=) m1 m2 {-------------------------------------------------------------------- Minimal, Maximal --------------------------------------------------------------------} -- | /O(log n)/. The minimal element of a multiset. findMin :: IntMultiSet -> Key -- TODO: IntMap has a different findMin than Map --findMin = fst . Map.findMin . unMS --findMin = Map.findMin . unMS -- | /O(log n)/. The maximal element of a multiset. findMax :: IntMultiSet -> Key -- TODO: IntMap has a different findMin than Map --findMax = fst . Map.findMax . unMS --findMax = Map.findMax . unMS -- Note: the documentation for IntMap.findMin/Max is incorrect -- they return the VALUE at the minimal/maximal key -- Here is a workarounds of IntMap's deficiencies/inconsistencies. -- | /O(log n)/. The minimal key of an IntMap. minKey :: IntMap a -> Int minKey = maybe (error "IntMultiSet.findMin: empty multiset") (fst . fst) . Map.minViewWithKey -- | /O(log n)/. The maximal key of an IntMap. maxKey :: IntMap a -> Int maxKey = maybe (error "IntMultiSet.findMax: empty multiset") (fst . fst) . Map.maxViewWithKey findMin = minKey . unMS findMax = maxKey . unMS -- | /O(log n)/. Delete the minimal element. deleteMin :: IntMultiSet -> IntMultiSet -- TODO: IntMap has a different updateMin --deleteMin = MS . Map.updateMin (deleteN 1) . unMS deleteMin (MS m) = case Map.minView m of Nothing -> empty Just (1,m') -> MS m' Just (_,m') -> MS $ Map.updateMin pred m' -- | /O(log n)/. Delete the maximal element. deleteMax :: IntMultiSet -> IntMultiSet --deleteMax = MS . Map.updateMax (deleteN 1) . unMS deleteMax (MS m) = case Map.maxView m of Nothing -> empty Just (1,m') -> MS m' Just (_,m') -> MS $ Map.updateMax pred m' -- | /O(log n)/. Delete all occurences of the minimal element. deleteMinAll :: IntMultiSet -> IntMultiSet -- TODO IntMap's deleteMin will error on empty maps! deleteMinAll m | null m = m deleteMinAll m = MS . Map.deleteMin . unMS $ m -- | /O(log n)/. Delete all occurences of the maximal element. deleteMaxAll :: IntMultiSet -> IntMultiSet -- TODO IntMap's deleteMax will error on empty maps! deleteMaxAll m | null m = m deleteMaxAll m = MS . Map.deleteMax . unMS $ m -- | /O(log n)/. Delete and find the minimal element. -- -- > deleteFindMin set = (findMin set, deleteMin set) deleteFindMin :: IntMultiSet -> (Key, IntMultiSet) -- TODO: get updateFindMin added to Data.IntMap --deleteFindMin = (\((v,_),m) -> (v, MS m)) . Map.updateFindMin (deleteN 1) . unMS deleteFindMin set = (findMin set, deleteMin set) -- | /O(log n)/. Delete and find the maximal element. -- -- > deleteFindMax set = (findMax set, deleteMax set) deleteFindMax :: IntMultiSet -> (Key,IntMultiSet) -- TODO: get updateFindMax added to Data.IntMap --deleteFindMax = (\((v,_),m) -> (v, MS m)) . Map.updateFindMax (deleteN 1) . unMS deleteFindMax set = (findMax set, deleteMax set) -- | /O(log n)/. Retrieves the minimal element of the multiset, and the set stripped from that element -- @fail@s (in the monad) when passed an empty multiset. minView :: Monad m => IntMultiSet -> m (Key, IntMultiSet) minView x | null x = fail "IntMultiSet.minView: empty multiset" | otherwise = return (deleteFindMin x) -- | /O(log n)/. Retrieves the maximal element of the multiset, and the set stripped from that element -- @fail@s (in the monad) when passed an empty multiset. maxView :: Monad m => IntMultiSet -> m (Key, IntMultiSet) maxView x | null x = fail "IntMultiSet.maxView: empty multiset" | otherwise = return (deleteFindMin x) {-------------------------------------------------------------------- Union, Difference, Intersection --------------------------------------------------------------------} -- | The union of a list of multisets: (@'unions' == 'foldl' 'union' 'empty'@). unions :: [IntMultiSet] -> IntMultiSet unions ts = foldlStrict union empty ts -- | /O(n+m)/. The union of two multisets. The union adds the occurences together. -- -- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset `union` smallset). union :: IntMultiSet -> IntMultiSet -> IntMultiSet union (MS m1) (MS m2) = MS $ Map.unionWith (+) m1 m2 -- | /O(n+m)/. The union of two multisets. -- The number of occurences of each element in the union is -- the maximum of the number of occurences in the arguments (instead of the sum). -- -- The implementation uses the efficient /hedge-union/ algorithm. -- Hedge-union is more efficient on (bigset `union` smallset). maxUnion :: IntMultiSet -> IntMultiSet -> IntMultiSet maxUnion (MS m1) (MS m2) = MS $ Map.unionWith max m1 m2 -- | /O(n+m)/. Difference of two multisets. -- The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. difference :: IntMultiSet -> IntMultiSet -> IntMultiSet difference (MS m1) (MS m2) = MS $ Map.differenceWith (flip deleteN) m1 m2 -- | /O(n+m)/. The intersection of two multisets. -- -- prints @(fromList [A],fromList [B])@. intersection :: IntMultiSet -> IntMultiSet -> IntMultiSet intersection (MS m1) (MS m2) = MS $ Map.intersectionWith min m1 m2 {-------------------------------------------------------------------- Filter and partition --------------------------------------------------------------------} -- | /O(n)/. Filter all elements that satisfy the predicate. filter :: (Key -> Bool) -> IntMultiSet -> IntMultiSet filter p = MS . Map.filterWithKey (\k _ -> p k) . unMS -- | /O(n)/. Partition the multiset into two multisets, one with all elements that satisfy -- the predicate and one with all elements that don't satisfy the predicate. -- See also 'split'. partition :: (Key -> Bool) -> IntMultiSet -> (IntMultiSet,IntMultiSet) partition p = (\(x,y) -> (MS x, MS y)) . Map.partitionWithKey (\k _ -> p k) . unMS {---------------------------------------------------------------------- Map ----------------------------------------------------------------------} -- | /O(n*log n)/. -- @'map' f s@ is the multiset obtained by applying @f@ to each element of @s@. map :: (Key->Key) -> IntMultiSet -> IntMultiSet -- TODO: IntMap doesn't have a mapKeys function map f = fromOccurList . List.map (\(x,o) -> (f x, o)) . toOccurList -- | /O(n)/. The -- -- @'mapMonotonic' f s == 'map' f s@, but works only when @f@ is strictly monotonic. -- /The precondition is not checked./ -- Semi-formally, we have: -- -- > and [x < y ==> f x < f y | x <- ls, y <- ls] -- > ==> mapMonotonic f s == map f s -- > where ls = toList s mapMonotonic :: (Key->Key) -> IntMultiSet -> IntMultiSet mapMonotonic f = fromAscOccurList . List.map (\(x,o) -> (f x, o)) . toAscOccurList -- | /O(n)/. Map and collect the 'Just' results. mapMaybe :: (Key -> Maybe Key) -> IntMultiSet -> IntMultiSet mapMaybe f = fromOccurList . mapMaybe' . toOccurList where mapMaybe' [] = [] mapMaybe' ((x,n):xs) = case f x of Just x' -> (x',n) : mapMaybe' xs Nothing -> mapMaybe' xs -- | /O(n)/. Map and separate the 'Left' and 'Right' results. mapEither :: (Key -> Either Key Key) -> IntMultiSet -> (IntMultiSet, IntMultiSet) mapEither f = (\(ls,rs) -> (fromOccurList ls, fromOccurList rs)) . mapEither' . toOccurList where mapEither' [] = ([],[]) mapEither' ((x,n):xs) = case f x of Left l -> let (ls,rs) = mapEither' xs in ((l,n):ls, rs) Right r -> let (ls,rs) = mapEither' xs in (ls, (r,n):rs) -- | /O(n)/. Apply a function to each element, and take the union of the results concatMap :: (Key -> [Key]) -> IntMultiSet -> IntMultiSet concatMap f = fromOccurList . Map.foldWithKey mapF [] . unMS where mapF x occ rest = List.map (\y -> (y,occ)) (f x) ++ rest -- | /O(n)/. Apply a function to each element, and take the union of the results unionsMap :: (Key -> IntMultiSet) -> IntMultiSet -> IntMultiSet unionsMap f = unions . List.map timesF . toOccurList where timesF (ms,1) = f ms timesF (ms,n) = MS . Map.map (*n) . unMS $ f ms -- | /O(n)/. The monad join operation for multisets. join :: MultiSet IntMultiSet -> IntMultiSet join = unions . List.map times . MultiSet.toOccurList where times (ms,1) = ms times (ms,n) = MS . Map.map (*n) . unMS $ ms -- | /O(n)/. The monad bind operation, (>>=), for multisets. bind :: IntMultiSet -> (Key -> IntMultiSet) -> IntMultiSet bind = flip unionsMap {-------------------------------------------------------------------- Fold --------------------------------------------------------------------} -- | /O(t)/. Fold over the elements of a multiset in an unspecified order. fold :: (Key -> b -> b) -> b -> IntMultiSet -> b fold f z s = foldr f z s -- | /O(t)/. Post-order fold. foldr :: (Key -> b -> b) -> b -> IntMultiSet -> b foldr f z = Map.foldWithKey repF z . unMS where repF a 1 b = f a b repF a n b = repF a (n - 1) (f a b) -- | /O(n)/. Fold over the elements of a multiset with their occurences. foldOccur :: (Key -> Occur -> b -> b) -> b -> IntMultiSet -> b foldOccur f z = Map.foldWithKey f z . unMS {-------------------------------------------------------------------- List variations --------------------------------------------------------------------} -- | /O(t)/. The elements of a multiset. elems :: IntMultiSet -> [Key] elems = toList -- | /O(n)/. The distinct elements of a multiset, each element occurs only once in the list. -- -- > distinctElems = map fst . toOccurList distinctElems :: IntMultiSet -> [Key] distinctElems = Map.keys . unMS {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} -- | /O(t)/. Convert the multiset to a list of elements. toList :: IntMultiSet -> [Key] toList = toAscList -- | /O(t)/. Convert the multiset to an ascending list of elements. toAscList :: IntMultiSet -> [Key] toAscList = foldr (:) [] -- | /O(t*min(n,W))/. Create a multiset from a list of elements. fromList :: [Int] -> IntMultiSet fromList xs = fromOccurList $ zip xs (repeat 1) -- | /O(t)/. Build a multiset from an ascending list in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscList :: [Int] -> IntMultiSet fromAscList xs = fromAscOccurList $ zip xs (repeat 1) -- | /O(n)/. Build a multiset from an ascending list of distinct elements in linear time. -- /The precondition (input list is strictly ascending) is not checked./ fromDistinctAscList :: [Int] -> IntMultiSet fromDistinctAscList xs = fromDistinctAscOccurList $ zip xs (repeat 1) {-------------------------------------------------------------------- Occurence lists --------------------------------------------------------------------} -- | /O(n)/. Convert the multiset to a list of element\/occurence pairs. toOccurList :: IntMultiSet -> [(Int,Int)] toOccurList = toAscOccurList -- | /O(n)/. Convert the multiset to an ascending list of element\/occurence pairs. toAscOccurList :: IntMultiSet -> [(Int,Int)] toAscOccurList = Map.toAscList . unMS -- | /O(n*min(n,W))/. Create a multiset from a list of element\/occurence pairs. fromOccurList :: [(Int,Int)] -> IntMultiSet fromOccurList = MS . Map.fromListWith (+) -- | /O(n)/. Build a multiset from an ascending list of element\/occurence pairs in linear time. -- /The precondition (input list is ascending) is not checked./ fromAscOccurList :: [(Int,Int)] -> IntMultiSet fromAscOccurList = MS . Map.fromAscListWith (+) -- | /O(n)/. Build a multiset from an ascending list of elements\/occurence pairs where each elements appears only once. -- /The precondition (input list is strictly ascending) is not checked./ fromDistinctAscOccurList :: [(Int,Int)] -> IntMultiSet fromDistinctAscOccurList = MS . Map.fromDistinctAscList {-------------------------------------------------------------------- Map --------------------------------------------------------------------} -- | /O(1)/. Convert a multiset to an 'IntMap' from elements to number of occurrences. toMap :: IntMultiSet -> IntMap Int toMap = unMS -- | /O(n)/. Convert an 'IntMap' from elements to occurrences to a multiset. fromMap :: IntMap Int -> IntMultiSet fromMap = MS . Map.filter (>0) -- | /O(1)/. Convert an 'IntMap' from elements to occurrences to a multiset. -- Assumes that the 'IntMap' contains only values larger than one. -- /The precondition (all elements > 1) is not checked./ fromOccurMap :: IntMap Int -> IntMultiSet fromOccurMap = MS {-------------------------------------------------------------------- Set --------------------------------------------------------------------} -- | /O(n)/. Convert a multiset to an 'IntMap', removing duplicates. toSet :: IntMultiSet -> IntSet toSet = Map.keysSet . unMS -- | /O(n)/. Convert an 'IntMap' to a multiset. fromSet :: IntSet -> IntMultiSet fromSet = fromDistinctAscList . Set.toAscList {-------------------------------------------------------------------- Instances --------------------------------------------------------------------} instance Eq IntMultiSet where m1 == m2 = unMS m1 == unMS m2 instance Ord IntMultiSet where compare s1 s2 = compare (unMS s1) (unMS s2) {- -- compare s1 s2 = compare (toAscList s1) (toAscList s2) -- We want {x,x,y} < {x,y} -- i.e. if the number of occurences differ, more occurences come first. -- But also, {x,x} > {x} -- so this does not hold at the end of the list. -- -- To summarize: -- * [(x,2),(y,1)] < [(x,1),(y,1)] -- * [(x,2) ] < [(x,1),(y,1)] -- * [(x,2),(y,1)] > [(x,1) ] -- * [(x,2) ] > [(x,1) ] compare s1 s2 = comp (toAscOccurList s1) (toAscOccurList s2) where comp [] [] = EQ comp [] (_:_) = LT comp (_:_) [] = GT comp ((x,n):xs) ((y,m):ys) = case compare x y of EQ -> case compare n m of EQ -> comp xs ys LT -> case xs of [] -> LT _ -> GT GT -> case ys of [] -> GT _ -> LT other -> other -} instance Show IntMultiSet where showsPrec p xs = showParen (p > 10) $ showString "fromOccurList " . shows (toOccurList xs) {-------------------------------------------------------------------- Read --------------------------------------------------------------------} instance Read IntMultiSet where #ifdef __GLASGOW_HASKELL__ readPrec = parens $ prec 10 $ do Ident "fromOccurList" <- lexP xs <- readPrec return (fromOccurList xs) readListPrec = readListPrecDefault #else readsPrec p = readParen (p > 10) $ \ r -> do ("fromOccurList",s) <- lex r (xs,t) <- reads s return (fromOccurList xs,t) #endif {-------------------------------------------------------------------- Typeable/Data --------------------------------------------------------------------} #include "Typeable.h" INSTANCE_TYPEABLE0(IntMultiSet,intMultiSetTc,"IntMultiSet") {-------------------------------------------------------------------- Split --------------------------------------------------------------------} -- | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ -- where all elements in @set1@ are lower than @x@ and all elements in -- @set2@ larger than @x@. @x@ is not found in neither @set1@ nor @set2@. split :: Int -> IntMultiSet -> (IntMultiSet,IntMultiSet) split a = (\(x,y) -> (MS x, MS y)) . Map.split a . unMS -- | /O(log n)/. Performs a 'split' but also returns the number of -- occurences of the pivot element in the original set. splitOccur :: Int -> IntMultiSet -> (IntMultiSet,Int,IntMultiSet) splitOccur a (MS t) = let (l,m,r) = Map.splitLookup a t in (MS l, maybe 0 id m, MS r) {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- TODO : Use foldl' from base? foldlStrict :: (a -> t -> a) -> a -> [t] -> a foldlStrict f z xs = case xs of [] -> z (x:xx) -> let z' = f z x in seq z' (foldlStrict f z' xx) {-------------------------------------------------------------------- Debugging --------------------------------------------------------------------} -- | /O(n)/. Show the tree that implements the set. The tree is shown -- in a compressed, hanging format. showTree :: IntMultiSet -> String showTree s = showTreeWith True False s {- | /O(n)/. The expression (@showTreeWith hang wide map@) shows the tree that implements the set. If @hang@ is @True@, a /hanging/ tree is shown otherwise a rotated tree is shown. If @wide@ is 'True', an extra wide version is shown. > Set> putStrLn $ showTreeWith True False $ fromDistinctAscList [1,1,2,3,4,5] > (1*) 4 > +--(1*) 2 > | +--(2*) 1 > | +--(1*) 3 > +--(1*) 5 > > Set> putStrLn $ showTreeWith True True $ fromDistinctAscList [1,1,2,3,4,5] > (1*) 4 > | > +--(1*) 2 > | | > | +--(2*) 1 > | | > | +--(1*) 3 > | > +--(1*) 5 > > Set> putStrLn $ showTreeWith False True $ fromDistinctAscList [1,1,2,3,4,5] > +--(1*) 5 > | > (1*) 4 > | > | +--(1*) 3 > | | > +--(1*) 2 > | > +--(2*) 1 -} showTreeWith :: Bool -> Bool -> IntMultiSet -> String showTreeWith hang wide = Map.showTreeWith hang wide . unMS