
MusicXML: From DTD specification to Haskell

implementation

Samuel Silva [silva.samuel@alumni.uminho.pt]

January 9, 2009

Contents

1 Introdution 1

2 Implementation 2
2.1 Attributes . 2
2.2 Barline . 16
2.3 Common . 19
2.4 Container . 51
2.5 Direction . 53
2.6 Identity . 79
2.7 Layout . 83
2.8 Link . 90
2.9 MusicXML . 93
2.10 Note . 96
2.11 Opus . 137
2.12 Partwise . 139
2.13 Score . 141
2.14 Timewise . 154
2.15 Util . 156

3 Test 164

4 Conclusion 166

1 Introdution

This document contains Haskell[4, 3] code formatted with lhs2TeX tool. Type definition are
conforming specification built by Recordare at second version of MusicXML DTDs, presented
on figure 1. At moment of writing this library, Recordare was publishing unstable versions of
MusicXML schemas after discussion made by MusicXML comunity to improve its specification[2].

This library are architecture presented on figure 2. Type definition wasn’t use datatype,
using type definitions to improve performance. To improve maintainability was built Util module,
which contains elementary functions to reading and writing. To minimize code, at reading from
MusicXML format is used State Monad. However writing to MusicXML format it is used functional
way.

This approach help us maintainability by close to MusicXML DTDs specification. Next sec-
tion presents implementation using Haskell language of MusicXML DTD specification. Following
section presents some use cases of this library into real examples of musicxml documents.

1

Figure 1: MusicXML architecture

Figure 2: MusicXML modules

2 Implementation

This implementation shows comments from MusicXML specification[5, 1] like this style.

2.1 Attributes

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Attributes where
import Text .XML.MusicXML.Common hiding (Directive, read Directive, show Directive)
import Text .XML.HaXml .Types (Content)
import Control .Monad (MonadPlus (. .))
import Prelude (Maybe (. .),Show ,Eq ,Monad (. .), (·),String , (++))

The attributes DTD module contains the attributes element and its children, such as key and time
signatures.

The attributes element contains musical information that typically changes on measure boundaries.
This includes key and time signatures, clefs, transpositions, and staving.

-- * Attributes
-- |

type Attributes = (Editorial ,Maybe Divisions, [Key], [Time],
Maybe Staves,Maybe Part Symbol ,Maybe Instruments, [Clef], [Staff Details],
Maybe Transpose, [Directive], [Measure Style])
-- |

2

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Attributes where
import Text.XML.MusicXML.Common hiding (Directive, read_Directive, show_Directive)
import Text.XML.HaXml.Types (Content)
import Control.Monad (MonadPlus(..))
import Prelude (Maybe(..), Show, Eq, Monad(..), (.), String, (++))
\end{code}

\begin{musicxml}
	The attributes DTD module contains the attributes element
	and its children, such as key and time signatures.

	The attributes element contains musical information that
	typically changes on measure boundaries. This includes
	key and time signatures, clefs, transpositions, and staving.
\end{musicxml}
\begin{code}
-- * Attributes
-- |
type Attributes = (Editorial, Maybe Divisions, [Key], [Time],
 Maybe Staves, Maybe Part_Symbol, Maybe Instruments, [Clef], [Staff_Details],
 Maybe Transpose, [Directive], [Measure_Style])
-- |
read_Attributes :: Eq i => STM Result [Content i] Attributes
read_Attributes = do
 y <- read_ELEMENT "attributes"
 read_12 read_Editorial (read_MAYBE read_Divisions)
 (read_LIST read_Key) (read_LIST read_Time)
 (read_MAYBE read_Staves) (read_MAYBE read_Part_Symbol)
 (read_MAYBE read_Instruments) (read_LIST read_Clef)
 (read_LIST read_Staff_Details) (read_MAYBE read_Transpose)
 (read_LIST read_Directive) (read_LIST read_Measure_Style)
 (childs y)
-- |
show_Attributes :: Attributes -> [Content ()]
show_Attributes (a,b,c,d,e,f,g,h,i,j,k,l) =
 show_ELEMENT "attributes" []
 (show_Editorial a ++ show_MAYBE show_Divisions b ++
 show_LIST show_Key c ++ show_LIST show_Time d ++
 show_MAYBE show_Staves e ++ show_MAYBE show_Part_Symbol f ++
 show_MAYBE show_Instruments g ++
 show_LIST show_Clef h ++ show_LIST show_Staff_Details i ++
 show_MAYBE show_Transpose j ++ show_LIST show_Directive k ++
 show_LIST show_Measure_Style l)
\end{code}

\begin{musicxml}
	Traditional key signatures are represented by the number
	of flats and sharps, plus an optional mode for major/
	minor/mode distinctions. Negative numbers are used for
	flats and positive numbers for sharps, reflecting the
	key's placement within the circle of fifths (hence the
	element name). A cancel element indicates that the old
	key signature should be cancelled before the new one
	appears. This will always happen when changing to C major
	or A minor and need not be specified then. The cancel
	value matches the fifths value of the cancelled key
	signature (e.g., a cancel of -2 will provide an explicit
	cancellation for changing from B flat major to F major).
	The optional location attribute indicates whether the
	cancellation appears to the left or the right of the new
	key signature. It is left by default.
	
	Non-traditional key signatures can be represented using
	the Humdrum/Scot concept of a list of altered tones.
	The key-step and key-alter elements are represented the
	same way as the step and alter elements are in the pitch
	element in the note.mod file. The different element names
	indicate the different meaning of altering notes in a scale
	versus altering a sounding pitch.
	
	Valid mode values include major, minor, dorian, phrygian,
	lydian, mixolydian, aeolian, ionian, and locrian.

	The optional number attribute refers to staff numbers,
	from top to bottom on the system. If absent, the key
	signature applies to all staves in the part.

	The optional list of key-octave elements is used to specify
	in which octave each element of the key signature appears.
	The content specifies the octave value using the same
	values as the display-octave element. The number attribute
	is a positive integer that refers to the key signature
	element in left-to-right order. If the cancel attribute is
	set to yes, then this number refers to an element specified
	by the cancel element. It is no by default.
\end{musicxml}
\begin{code}
-- ** Key
-- |
type Key = ((Maybe CDATA, Print_Style, Print_Object),
 (Key_, [Key_Octave]))
-- |
read_Key :: Eq i => STM Result [Content i] Key
read_Key = do
 y <- read_ELEMENT "key"
 y1 <- read_3 (read_IMPLIED "number" read_CDATA)
 read_Print_Style read_Print_Object (attributes y)
 y2 <- read_2 read_Key_ (read_LIST read_Key_Octave) (childs y)
 return (y1,y2)
-- |
show_Key :: Key -> [Content ()]
show_Key ((a,b,c),(d,e)) =
 show_ELEMENT "key" (show_IMPLIED "number" show_CDATA a ++
 show_Print_Style b ++ show_Print_Object c)
 (show_Key_ d ++ show_LIST show_Key_Octave e)
-- |
data Key_ = Key_1 (Maybe Cancel, Fifths, Maybe Mode)
 | Key_2 [(Key_Step, Key_Alter)]
 deriving (Eq, Show)
-- |
read_Key_ :: Eq i => STM Result [Content i] Key_
read_Key_ =
 (read_Key_aux1 >>= return . Key_1) `mplus`
 (read_LIST read_Key_aux2 >>= return . Key_2)
-- |
show_Key_ :: Key_ -> [Content ()]
show_Key_ (Key_1 (a,b,c)) = show_MAYBE show_Cancel a ++ show_Fifths b ++
 show_MAYBE show_Mode c
show_Key_ (Key_2 a) = show_LIST show_Key_aux1 a
-- |
read_Key_aux1 :: Eq i => STM Result [Content i] (Maybe Cancel, Fifths, Maybe Mode)
read_Key_aux1 = do
 y1 <- read_MAYBE read_Cancel
 y2 <- read_Fifths
 y3 <- read_MAYBE read_Mode
 return (y1,y2,y3)
read_Key_aux2 :: Eq i => STM Result [Content i] (Key_Step, Key_Alter)
read_Key_aux2 = do
 y1 <- read_Key_Step
 y2 <- read_Key_Alter
 return (y1,y2)
-- |
show_Key_aux1 :: (Key_Step, Key_Alter) -> [Content ()]
show_Key_aux1 (a,b) = show_Key_Step a ++ show_Key_Alter b
-- |
type Cancel = (Maybe Left_Right, PCDATA)
-- |
read_Cancel :: STM Result [Content i] Cancel
read_Cancel = do
 y <- read_ELEMENT "cancel"
 y1 <- read_1 (read_IMPLIED "location" read_Left_Right) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Cancel :: Cancel -> [Content ()]
show_Cancel (a,b) =
 show_ELEMENT "cancel" (show_IMPLIED "location" show_Left_Right a)
 (show_PCDATA b)
-- |
type Fifths = PCDATA
-- |
read_Fifths :: STM Result [Content i] Fifths
read_Fifths = do
 y <- read_ELEMENT "fifths"
 read_1 read_PCDATA (childs y)
-- |
show_Fifths :: Fifths -> [Content ()]
show_Fifths a = show_ELEMENT "fifths" [] (show_PCDATA a)
-- |
type Mode = PCDATA
-- |
read_Mode :: STM Result [Content i] Mode
read_Mode = do
 y <- read_ELEMENT "mode"
 read_1 read_PCDATA (childs y)
-- |
show_Mode :: Mode -> [Content ()]
show_Mode a = show_ELEMENT "mode" [] (show_PCDATA a)
-- |
type Key_Step = PCDATA
-- |
read_Key_Step :: STM Result [Content i] Key_Step
read_Key_Step = do
 y <- read_ELEMENT "key-step"
 read_1 read_PCDATA (childs y)
-- |
show_Key_Step :: Key_Step -> [Content ()]
show_Key_Step a = show_ELEMENT "key-step" [] (show_PCDATA a)
-- |
type Key_Alter = PCDATA
-- |
read_Key_Alter :: STM Result [Content i] Key_Alter
read_Key_Alter = do
 y <- read_ELEMENT "key-alter"
 read_1 read_PCDATA (childs y)
-- |
show_Key_Alter :: Key_Alter -> [Content ()]
show_Key_Alter a = show_ELEMENT "key-alter" [] (show_PCDATA a)
-- |
type Key_Octave = ((CDATA, Maybe Yes_No), PCDATA)
-- |
read_Key_Octave :: STM Result [Content i] Key_Octave
read_Key_Octave = do
 y <- read_ELEMENT "key-octave"
 y1 <- read_2 (read_REQUIRED "number" read_CDATA)
 (read_IMPLIED "cancel" read_Yes_No) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Key_Octave :: Key_Octave -> [Content ()]
show_Key_Octave ((a,b),c) =
 show_ELEMENT "key-octave" (show_REQUIRED "number" show_CDATA a ++
 show_IMPLIED "cancel" show_Yes_No b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	Musical notation duration is commonly represented as
	fractions. The divisions element indicates how many
	divisions per quarter note are used to indicate a note's
	duration. For example, if duration = 1 and divisions = 2,
	this is an eighth note duration. Duration and divisions
	are used directly for generating sound output, so they
	must be chosen to take tuplets into account. Using a
	divisions element lets us use just one number to
	represent a duration for each note in the score, while
	retaining the full power of a fractional representation.
	For maximum compatibility with Standard MIDI Files, the
	divisions value should not exceed 16383.
\end{musicxml}
\begin{code}
-- ** Divisions
-- |
type Divisions = PCDATA
-- |
read_Divisions :: STM Result [Content i] Divisions
read_Divisions = do
 y <- read_ELEMENT "divisions"
 read_1 read_PCDATA (childs y)
-- |
show_Divisions :: Divisions -> [Content ()]
show_Divisions a = show_ELEMENT "divisions" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	Time signatures are represented by two elements. The
	beats element indicates the number of beats, as found in
	the numerator of a time signature. The beat-type element
	indicates the beat unit, as found in the denominator of
	a time signature. The symbol attribute is used to
	indicate another notation beyond a fraction: the common
	and cut time symbols, as well as a single number with an
	implied denominator. Normal (a fraction) is the implied
	symbol type if none is specified. Multiple pairs of
	beat and beat-type elements are used for composite
	time signatures with multiple denominators, such as
	2/4 + 3/8. A composite such as 3+2/8 requires only one
	beat/beat-type pair. A senza-misura element explicitly
	indicates that no time signature is present.

	The print-object attribute allows a time signature to be
	specified but not printed, as is the case for excerpts
	from the middle of a score. The value is "yes" if
	not present. The optional number attribute refers to staff
	numbers within the part, from top to bottom on the system.
	If absent, the time signature applies to all staves in the
	part.
\end{musicxml}
\begin{code}
-- ** Time
-- |
type Time = ((Maybe CDATA, Maybe Time_A, Print_Style, Print_Object), Time_B)
-- |
read_Time :: Eq i => STM Result [Content i] Time
read_Time = do
 y <- read_ELEMENT "time"
 y1 <- read_4 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "symbol" read_Time_A)
 read_Print_Style read_Print_Object (attributes y)
 y2 <- read_1 read_Time_B (childs y)
 return (y1,y2)
-- |
show_Time :: Time -> [Content ()]
show_Time ((a,b,c,d),e) =
 show_ELEMENT "time" (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "symbol" show_Time_A b ++
 show_Print_Style c ++ show_Print_Object d)
 (show_Time_B e)
-- |
data Time_A = Time_1 | Time_2 | Time_3 | Time_4
 deriving (Eq, Show)
-- |
read_Time_A :: Prelude.String -> Result Time_A
read_Time_A "common" = return Time_1
read_Time_A "cut" = return Time_2
read_Time_A "single-number" = return Time_3
read_Time_A "normal" = return Time_4
read_Time_A x = fail x
-- |
show_Time_A :: Time_A -> Prelude.String
show_Time_A Time_1 = "common"
show_Time_A Time_2 = "cut"
show_Time_A Time_3 = "single-number"
show_Time_A Time_4 = "normal"
-- |
data Time_B = Time_5 [(Beats, Beat_Type)]
 | Time_6 Senza_Misura
 deriving (Eq, Show)
-- |
read_Time_B :: Eq i => STM Result [Content i] Time_B
read_Time_B =
 (read_LIST1 read_Time_B_aux1 >>= return . Time_5) `mplus`
 (read_Senza_Misura >>= return . Time_6)
-- |
show_Time_B :: Time_B -> [Content ()]
show_Time_B (Time_5 a) = show_LIST show_Time_B_aux1 a
show_Time_B (Time_6 a) = show_Senza_Misura a
-- |
read_Time_B_aux1 :: STM Result [Content i] (Beats, Beat_Type)
read_Time_B_aux1 = do
 y1 <- read_Beats
 y2 <- read_Beat_Type
 return (y1,y2)
-- |
show_Time_B_aux1 :: (Beats, Beat_Type) -> [Content ()]
show_Time_B_aux1 (a,b) = show_Beats a ++ show_Beat_Type b
-- |
type Beats = PCDATA
-- |
read_Beats :: STM Result [Content i] Beats
read_Beats = do
 y <- read_ELEMENT "beats"
 read_1 read_PCDATA (childs y)
-- |
show_Beats :: Beats -> [Content ()]
show_Beats a = show_ELEMENT "beats" [] (show_PCDATA a)
-- |
type Beat_Type = PCDATA
-- |
read_Beat_Type :: STM Result [Content i] Beat_Type
read_Beat_Type = do
 y <- read_ELEMENT "beat-type"
 read_1 read_PCDATA (childs y)
-- |
show_Beat_Type :: Beat_Type -> [Content ()]
show_Beat_Type a = show_ELEMENT "beat-type" [] (show_PCDATA a)
-- |
type Senza_Misura = ()
-- |
read_Senza_Misura :: STM Result [Content i] Senza_Misura
read_Senza_Misura = do
 read_ELEMENT "senza-misura" >> return ()
-- |
show_Senza_Misura :: Senza_Misura -> [Content ()]
show_Senza_Misura _ = show_ELEMENT "senza-misura" [] []
\end{code}

\begin{musicxml}
	Staves are used if there is more than one staff
	represented in the given part (e.g., 2 staves for
	typical piano parts). If absent, a value of 1 is assumed.
	Staves are ordered from top to bottom in a part in
	numerical order, with staff 1 above staff 2.
\end{musicxml}
\begin{code}
-- ** Staves
-- |
type Staves = PCDATA
-- |
read_Staves :: STM Result [Content i] Staves
read_Staves = do
 y <- read_ELEMENT "staves"
 read_1 read_PCDATA (childs y)
-- |
show_Staves :: Staves -> [Content ()]
show_Staves a = show_ELEMENT "staves" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	The part-symbol element indicates how a symbol for a
	multi-staff part is indicated in the score. Values include
	none, brace, line, and bracket; brace is the default. The
	top-staff and bottom-staff elements are used when the brace
	does not extend across the entire part. For example, in a
	3-staff organ part, the top-staff will typically be 1 for
	the right hand, while the bottom-staff will typically be 2
	for the left hand. Staff 3 for the pedals is usually outside
	the brace.
\end{musicxml}
\begin{code}
-- ** Part_Symbol
-- |
type Part_Symbol = ((Maybe CDATA, Maybe CDATA, Position, Color), PCDATA)
-- |
read_Part_Symbol :: STM Result [Content i] Part_Symbol
read_Part_Symbol = do
 y <- read_ELEMENT "part-symbol"
 y1 <- read_4 (read_IMPLIED "top-staff" read_CDATA)
 (read_IMPLIED "bottom-staff" read_CDATA)
 read_Position read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Part_Symbol :: Part_Symbol -> [Content ()]
show_Part_Symbol ((a,b,c,d),e) =
 show_ELEMENT "part-symbol" (show_IMPLIED "top-staff" show_CDATA a ++
 show_IMPLIED "bottom-staff" show_CDATA b ++
 show_Position c ++ show_Color d)
 (show_PCDATA e)
\end{code}

\begin{musicxml}
	Instruments are only used if more than one instrument is
	represented in the part (e.g., oboe I and II where they
	play together most of the time). If absent, a value of 1
	is assumed.
\end{musicxml}
\begin{code}
-- ** Instruments
-- |
type Instruments = PCDATA
-- |
read_Instruments :: STM Result [Content i] Instruments
read_Instruments = do
 y <- read_ELEMENT "instruments"
 read_1 read_PCDATA (childs y)
-- |
show_Instruments :: Instruments -> [Content ()]
show_Instruments a = show_ELEMENT "instruments" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	Clefs are represented by the sign, line, and
	clef-octave-change elements. Sign values include G, F, C,
	percussion, TAB, and none. Line numbers are counted from
	the bottom of the staff. Standard values are 2 for the
	G sign (treble clef), 4 for the F sign (bass clef), 3
	for the C sign (alto clef) and 5 for TAB (on a 6-line
	staff). The clef-octave-change element is used for
	transposing clefs (e.g., a treble clef for tenors would
	have a clef-octave-change value of -1). The optional
	number attribute refers to staff numbers within the part,
	from top to bottom on the system. A value of 1 is
	assumed if not present.

	Sometimes clefs are added to the staff in non-standard
	line positions, either to indicate cue passages, or when
	there are multiple clefs present simultaneously on one
	staff. In this situation, the additional attribute is set to
	"yes" and the line value is ignored. The size attribute
	is used for clefs where the additional attribute is "yes".
	It is typically used to indicate cue clefs.
\end{musicxml}
\begin{code}
-- ** Clef
-- |
type Clef = ((Maybe CDATA, Maybe Yes_No, Maybe Symbol_Size,
 Print_Style, Print_Object),
 (Sign, Maybe Line, Maybe Clef_Octave_Change))
-- |
read_Clef :: Eq i => STM Result [Content i] Clef
read_Clef = do
 y <- read_ELEMENT "clef"
 y1 <- read_5 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "additional" read_Yes_No)
 (read_IMPLIED "size" read_Symbol_Size)
 read_Print_Style read_Print_Object (attributes y)
 y2 <- read_3 read_Sign (read_MAYBE read_Line)
 (read_MAYBE read_Clef_Octave_Change) (childs y)
 return (y1,y2)
-- |
show_Clef :: Clef -> [Content ()]
show_Clef ((a,b,c,d,e),(f,g,h)) =
 show_ELEMENT "clef" (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "additional" show_Yes_No b ++
 show_IMPLIED "size" show_Symbol_Size c ++
 show_Print_Style d ++ show_Print_Object e)
 (show_Sign f ++ show_MAYBE show_Line g ++
 show_MAYBE show_Clef_Octave_Change h)
-- |
type Sign = PCDATA
-- |
read_Sign :: STM Result [Content i] Sign
read_Sign = do
 y <- read_ELEMENT "sign"
 read_1 read_PCDATA (childs y)
-- |
show_Sign :: Sign -> [Content ()]
show_Sign a = show_ELEMENT "sign" [] (show_PCDATA a)
-- |
type Line = PCDATA
-- |
read_Line :: STM Result [Content i] Line
read_Line = do
 y <- read_ELEMENT "line"
 read_1 read_PCDATA (childs y)
-- |
show_Line :: Line -> [Content ()]
show_Line a = show_ELEMENT "line" [] (show_PCDATA a)
-- |
type Clef_Octave_Change = PCDATA
-- |
read_Clef_Octave_Change :: STM Result [Content i] Clef_Octave_Change
read_Clef_Octave_Change = do
 y <- read_ELEMENT "clef-octave-change"
 read_1 read_PCDATA (childs y)
-- |
show_Clef_Octave_Change :: Clef_Octave_Change -> [Content ()]
show_Clef_Octave_Change a =
 show_ELEMENT "clef-octave-change" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	The staff-details element is used to indicate different
	types of staves. The staff-type element can be ossia,
	cue, editorial, regular, or alternate. An alternate staff
	indicates one that shares the same musical data as the
	prior staff, but displayed differently (e.g., treble and
	bass clef, standard notation and tab). The staff-lines
	element specifies the number of lines for non 5-line
	staffs. The staff-tuning and capo elements are used to
	specify tuning when using tablature notation. The optional
	number attribute specifies the staff number from top to
	bottom on the system, as with clef. The optional show-frets
	attribute indicates whether to show tablature frets as
	numbers (0, 1, 2) or letters (a, b, c). The default choice
	is numbers. The print-object attribute is used to indicate
	when a staff is not printed in a part, usually in large
	scores where empty parts are omitted. It is yes by default.
	If print-spacing is yes while print-object is no, the score
	is printed in cutaway format where vertical space is left
	for the empty part.
\end{musicxml}
\begin{code}
-- ** Staff_Details
-- |
type Staff_Details = ((Maybe CDATA, Maybe Staff_Details_,
 Print_Object, Print_Spacing),
 (Maybe Staff_Type, Maybe Staff_Lines, [Staff_Tuning],
 Maybe Capo, Maybe Staff_Size))
-- |
read_Staff_Details :: Eq i => STM Result [Content i] Staff_Details
read_Staff_Details = do
 y <- read_ELEMENT "staff-details"
 y1 <- read_4 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "show-frets" read_Staff_Details_)
 read_Print_Object read_Print_Spacing (attributes y)
 y2 <- read_5 (read_MAYBE read_Staff_Type) (read_MAYBE read_Staff_Lines)
 (read_LIST read_Staff_Tuning) (read_MAYBE read_Capo)
 (read_MAYBE read_Staff_Size) (childs y)
 return (y1,y2)
-- |
show_Staff_Details :: Staff_Details -> [Content ()]
show_Staff_Details ((a,b,c,d),(e,f,g,h,i)) =
 show_ELEMENT "staff-details" (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "show-frets" show_Staff_Details_ b ++
 show_Print_Object c ++ show_Print_Spacing d)
 (show_MAYBE show_Staff_Type e ++
 show_MAYBE show_Staff_Lines f ++
 show_LIST show_Staff_Tuning g ++
 show_MAYBE show_Capo h ++
 show_MAYBE show_Staff_Size i)
-- |
data Staff_Details_ = Staff_Details_1 | Staff_Details_2
 deriving (Eq, Show)
-- |
read_Staff_Details_ :: Prelude.String -> Result Staff_Details_
read_Staff_Details_ "numbers" = return Staff_Details_1
read_Staff_Details_ "letters" = return Staff_Details_2
read_Staff_Details_ x = fail x
-- |
show_Staff_Details_ :: Staff_Details_ -> Prelude.String
show_Staff_Details_ Staff_Details_1 = "numbers"
show_Staff_Details_ Staff_Details_2 = "letters"
-- |
type Staff_Type = PCDATA
-- |
read_Staff_Type :: STM Result [Content i] Staff_Type
read_Staff_Type = do
 y <- read_ELEMENT "staff-type"
 read_1 read_PCDATA (childs y)
-- |
show_Staff_Type :: Staff_Type -> [Content ()]
show_Staff_Type a = show_ELEMENT "staff-type" [] (show_PCDATA a)
-- |
type Staff_Lines = PCDATA
-- |
read_Staff_Lines :: STM Result [Content i] Staff_Lines
read_Staff_Lines = do
 y <- read_ELEMENT "staff-lines"
 read_1 read_PCDATA (childs y)
-- |
show_Staff_Lines :: Staff_Lines -> [Content ()]
show_Staff_Lines a = show_ELEMENT "staff-lines" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	The tuning-step, tuning-alter, and tuning-octave
	elements are defined in the common.mod file. Staff
	lines are numbered from bottom to top.
\end{musicxml}
\begin{code}
-- |
type Staff_Tuning = (CDATA, (Tuning_Step, Maybe Tuning_Alter, Tuning_Octave))
-- |
read_Staff_Tuning :: Eq i => STM Result [Content i] Staff_Tuning
read_Staff_Tuning = do
 y <- read_ELEMENT "staff-tuning"
 y1 <- read_1 (read_REQUIRED "line" read_CDATA) (attributes y)
 y2 <- read_3 read_Tuning_Step (read_MAYBE read_Tuning_Alter)
 read_Tuning_Octave (childs y)
 return (y1,y2)
-- |
show_Staff_Tuning :: Staff_Tuning -> [Content ()]
show_Staff_Tuning (a,(b,c,d)) =
 show_ELEMENT "staff-tuning" (show_REQUIRED "line" show_CDATA a)
 (show_Tuning_Step b ++
 show_MAYBE show_Tuning_Alter c ++
 show_Tuning_Octave d)
\end{code}

\begin{musicxml}
	The capo element indicates at which fret a capo should
	be placed on a fretted instrument. This changes the
	open tuning of the strings specified by staff-tuning
	by the specified number of half-steps.
\end{musicxml}
\begin{code}
-- |
type Capo = PCDATA
-- |
read_Capo :: STM Result [Content i] Capo
read_Capo = do
 y <- read_ELEMENT "capo"
 read_1 read_PCDATA (childs y)
-- |
show_Capo :: Capo -> [Content ()]
show_Capo a = show_ELEMENT "capo" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	The staff-size element indicates how large a staff
	space is on this staff, expressed as a percentage of
	the work's default scaling. Values less than 100 make
	the staff space smaller while values over 100 make the
	staff space larger. A staff-type of cue, ossia, or
	editorial implies a staff-size of less than 100, but
	the exact value is implementation-dependent unless
	specified here. Staff size affects staff height only,
	not the relationship of the staff to the left and
	right margins.
\end{musicxml}
\begin{code}
-- |
type Staff_Size = PCDATA
-- |
read_Staff_Size :: STM Result [Content i] Staff_Size
read_Staff_Size = do
 y <- read_ELEMENT "staff-size"
 read_1 read_PCDATA (childs y)
-- |
show_Staff_Size :: Staff_Size -> [Content ()]
show_Staff_Size a = show_ELEMENT "staff-size" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	If the part is being encoded for a transposing instrument
	in written vs. concert pitch, the transposition must be
	encoded in the transpose element. The transpose element
	represents what must be added to the written pitch to get
	the correct sounding pitch.

	The transposition is represented by chromatic steps
	(required) and three optional elements: diatonic pitch
	steps, octave changes, and doubling an octave down. The
	chromatic and octave-change elements are numeric values
	added to the encoded pitch data to create the sounding
	pitch. The diatonic element is also numeric and allows
	for correct spelling of enharmonic transpositions.
\end{musicxml}
\begin{code}
-- ** Transpose
-- |
type Transpose = (Maybe Diatonic, Chromatic, Maybe Octave_Change,
 Maybe Double)
-- |
read_Transpose :: Eq i => STM Result [Content i] Transpose
read_Transpose = do
 y <- read_ELEMENT "transpose"
 read_4 (read_MAYBE read_Diatonic) read_Chromatic
 (read_MAYBE read_Octave_Change)
 (read_MAYBE read_Double) (childs y)
-- |
show_Transpose :: Transpose -> [Content ()]
show_Transpose (a,b,c,d) =
 show_ELEMENT "transpose" [] (show_MAYBE show_Diatonic a ++
 show_Chromatic b ++
 show_MAYBE show_Octave_Change c ++
 show_MAYBE show_Double d)
-- |
type Diatonic = PCDATA
-- |
read_Diatonic :: STM Result [Content i] Diatonic
read_Diatonic = do
 y <- read_ELEMENT "diatonic"
 read_1 read_PCDATA (childs y)
-- |
show_Diatonic :: Diatonic -> [Content ()]
show_Diatonic a = show_ELEMENT "diatonic" [] (show_PCDATA a)
-- |
type Chromatic = PCDATA
-- |
read_Chromatic :: STM Result [Content i] Chromatic
read_Chromatic = do
 y <- read_ELEMENT "chromatic"
 read_1 read_PCDATA (childs y)
-- |
show_Chromatic :: Chromatic -> [Content ()]
show_Chromatic a = show_ELEMENT "chromatic" [] (show_PCDATA a)
-- |
type Octave_Change = PCDATA
-- |
read_Octave_Change :: STM Result [Content i] Octave_Change
read_Octave_Change = do
 y <- read_ELEMENT "octave-change"
 read_1 read_PCDATA (childs y)
-- |
show_Octave_Change :: Octave_Change -> [Content ()]
show_Octave_Change a = show_ELEMENT "octave-change" [] (show_PCDATA a)
-- |
type Double = ()
-- |
read_Double :: STM Result [Content i] Double
read_Double = read_ELEMENT "double" >> return ()
-- |
show_Double :: Double -> [Content ()]
show_Double _ = show_ELEMENT "double" [] []
\end{code}

\begin{musicxml}
	Directives are like directions, but can be grouped together
	with attributes for convenience. This is typically used for
	tempo markings at the beginning of a piece of music. This
	element has been deprecated in Version 2.0 in favor of
	the directive attribute for direction elements. Language
	names come from ISO 639, with optional country subcodes
	from ISO 3166.
\end{musicxml}
\begin{code}
-- ** Directive
-- |
type Directive = ((Print_Style, Maybe CDATA), CDATA)
-- |
read_Directive :: STM Result [Content i] Directive
read_Directive = do
 y <- read_ELEMENT "directive"
 y1 <- read_2 read_Print_Style
 (read_IMPLIED "xml:lang" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Directive :: Directive -> [Content ()]
show_Directive ((a,b),c) =
 show_ELEMENT "directive" (show_Print_Style a ++
 show_IMPLIED "xml:lang" show_CDATA b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	A measure-style indicates a special way to print partial
	to multiple measures within a part. This includes multiple
	rests over several measures, repeats of beats, single, or
	multiple measures, and use of slash notation.
	
	The multiple-rest and measure-repeat symbols indicate the
	number of measures covered in the element content. The
	beat-repeat and slash elements can cover partial measures.
	All but the multiple-rest element use a type attribute to
	indicate starting and stopping the use of the style. The
	optional number attribute specifies the staff number from
	top to bottom on the system, as with clef.
\end{musicxml}
\begin{code}
-- ** Measure_Style
-- |
type Measure_Style = ((Maybe CDATA, Font, Color), Measure_Style_)
-- |
read_Measure_Style :: Eq i => STM Result [Content i] Measure_Style
read_Measure_Style = do
 y <- read_ELEMENT "measure-style"
 y1 <- read_3 (read_IMPLIED "number" read_CDATA)
 read_Font read_Color (attributes y)
 y2 <- read_1 read_Measure_Style_ (childs y)
 return (y1,y2)
-- |
show_Measure_Style :: Measure_Style -> [Content ()]
show_Measure_Style ((a,b,c),d) =
 show_ELEMENT "measure-style" (show_IMPLIED "number" show_CDATA a ++
 show_Font b ++ show_Color c)
 (show_Measure_Style_ d)
-- |
data Measure_Style_ = Measure_Style_1 Multiple_Rest
 | Measure_Style_2 Measure_Repeat
 | Measure_Style_3 Beat_Repeat
 | Measure_Style_4 Slash
 deriving (Eq, Show)
-- |
read_Measure_Style_ :: Eq i => STM Result [Content i] Measure_Style_
read_Measure_Style_ =
 (read_Multiple_Rest >>= return . Measure_Style_1) `mplus`
 (read_Measure_Repeat >>= return . Measure_Style_2) `mplus`
 (read_Beat_Repeat >>= return . Measure_Style_3) `mplus`
 (read_Slash >>= return . Measure_Style_4)
-- |
show_Measure_Style_ :: Measure_Style_ -> [Content ()]
show_Measure_Style_ (Measure_Style_1 a) = show_Multiple_Rest a
show_Measure_Style_ (Measure_Style_2 a) = show_Measure_Repeat a
show_Measure_Style_ (Measure_Style_3 a) = show_Beat_Repeat a
show_Measure_Style_ (Measure_Style_4 a) = show_Slash a
\end{code}

\begin{musicxml}
	The slash-type and slash-dot elements are optional children
	of the beat-repeat and slash elements. They have the same
	values as the type and dot elements, and define what the
	beat is for the display of repetition marks. If not present,
	the beat is based on the current time signature.
\end{musicxml}
\begin{code}
-- |
type Slash_Type = PCDATA
-- |
read_Slash_Type :: STM Result [Content i] Slash_Type
read_Slash_Type = do
 y <- read_ELEMENT "slash-type"
 read_1 read_PCDATA (childs y)
-- |
show_Slash_Type :: Slash_Type -> [Content ()]
show_Slash_Type a = show_ELEMENT "slash-type" [] (show_PCDATA a)
-- |
type Slash_Dot = ()
-- |
read_Slash_Dot :: STM Result [Content i] Slash_Dot
read_Slash_Dot = read_ELEMENT "slash-dot" >> return ()
-- |
show_Slash_Dot :: Slash_Dot -> [Content ()]
show_Slash_Dot _ = show_ELEMENT "slash-dot" [] []
\end{code}

\begin{musicxml}
	The text of the multiple-rest element indicates the number
	of measures in the multiple rest. Multiple rests may use
	the 1-bar / 2-bar / 4-bar rest symbols, or a single shape.
	The use-symbols attribute indicates which to use; it is no
	if not specified.
\end{musicxml}
\begin{code}
-- |
type Multiple_Rest = (Maybe Yes_No, PCDATA)
-- |
read_Multiple_Rest :: STM Result [Content i] Multiple_Rest
read_Multiple_Rest = do
 y <- read_ELEMENT "multiple-rest"
 y1 <- read_1 (read_IMPLIED "use-symbols" read_Yes_No) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Multiple_Rest :: Multiple_Rest -> [Content ()]
show_Multiple_Rest (a,b) =
 show_ELEMENT "multiple-rest" (show_IMPLIED "use-symbols" show_Yes_No a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The measure-repeat and beat-repeat element specify a
	notation style for repetitions. The actual music being
	repeated needs to be repeated within the MusicXML file.
	These elements specify the notation that indicates the
	repeat.

	The measure-repeat element is used for both single and
	multiple measure repeats. The text of the element indicates
	the number of measures to be repeated in a single pattern.
	The slashes attribute specifies the number of slashes to
	use in the repeat sign. It is 1 if not specified. Both the
	start and the stop of the measure-repeat must be specified.
\end{musicxml}
\begin{code}
-- |
type Measure_Repeat = ((Start_Stop, Maybe CDATA), PCDATA)
-- |
read_Measure_Repeat :: STM Result [Content i] Measure_Repeat
read_Measure_Repeat = do
 y <- read_ELEMENT "measure-repeat"
 y1 <- read_2 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "slashes" read_CDATA)
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Measure_Repeat :: Measure_Repeat -> [Content ()]
show_Measure_Repeat ((a,b),c) =
 show_ELEMENT "measure-repeat"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "slashes" show_CDATA b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The beat-repeat element is used to indicate that a single
	beat (but possibly many notes) is repeated. Both the start
	and stop of the beat being repeated should be specified.
	The slashes attribute specifies the number of slashes to
	use in the symbol. The use-dots attribute indicates whether
	or not to use dots as well (for instance, with mixed rhythm
	patterns). By default, the value for slashes is 1 and the
	value for use-dots is no.
\end{musicxml}
\begin{code}
-- |
type Beat_Repeat = ((Start_Stop, Maybe CDATA, Maybe Yes_No),
 Maybe (Slash_Type, [Slash_Dot]))
-- |
read_Beat_Repeat :: Eq i => STM Result [Content i] Beat_Repeat
read_Beat_Repeat = do
 y <- read_ELEMENT "beat-repeat"
 y1 <- read_3 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "slashes" read_CDATA)
 (read_IMPLIED "use-dots" read_Yes_No)
 (attributes y)
 y2 <- read_1 (read_MAYBE read_Beat_Repeat_aux1) (childs y)
 return (y1,y2)
-- |
show_Beat_Repeat :: Beat_Repeat -> [Content ()]
show_Beat_Repeat ((a,b,c),d) =
 show_ELEMENT "beat-repeat" (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "slashes" show_CDATA b ++
 show_IMPLIED "use-dots" show_Yes_No c)
 (show_MAYBE show_Beat_Repeat_aux1 d)
-- |
read_Beat_Repeat_aux1 :: Eq i => STM Result [Content i] (Slash_Type, [Slash_Dot])
read_Beat_Repeat_aux1 = do
 y1 <- read_Slash_Type
 y2 <- read_LIST read_Slash_Dot
 return (y1,y2)
-- |
show_Beat_Repeat_aux1 :: (Slash_Type, [Slash_Dot]) -> [Content ()]
show_Beat_Repeat_aux1 (a,b) =
 show_Slash_Type a ++ show_LIST show_Slash_Dot b
\end{code}

\begin{musicxml}
	The slash element is used to indicate that slash notation
	is to be used. If the slash is on every beat, use-stems is
	no (the default). To indicate rhythms but not pitches,
	use-stems is set to yes. The type attribute indicates
	whether this is the start or stop of a slash notation
	style. The use-dots attribute works as for the beat-repeat
	element, and only has effect if use-stems is no.
\end{musicxml}
\begin{code}
-- |
type Slash = ((Start_Stop, Maybe Yes_No, Maybe Yes_No),
 Maybe (Slash_Type, [Slash_Dot]))
-- |
read_Slash :: Eq i => STM Result [Content i] Slash
read_Slash = do
 y <- read_ELEMENT "slash"
 y1 <- read_3 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "use-dots" read_Yes_No)
 (read_IMPLIED "use-stems" read_Yes_No)
 (attributes y)
 y2 <- read_1 (read_MAYBE read_Slash_aux1) (childs y)
 return (y1,y2)
-- |
show_Slash :: Slash -> [Content ()]
show_Slash ((a,b,c),d) =
 show_ELEMENT "slash" (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "use-dots" show_Yes_No b ++
 show_IMPLIED "use-stems" show_Yes_No c)
 (show_MAYBE show_Slash_aux1 d)
-- |
read_Slash_aux1 :: Eq i => STM Result [Content i] (Slash_Type, [Slash_Dot])
read_Slash_aux1 = do
 y1 <- read_Slash_Type
 y2 <- read_LIST read_Slash_Dot
 return (y1,y2)
-- |
show_Slash_aux1 :: (Slash_Type, [Slash_Dot]) -> [Content ()]
show_Slash_aux1 (a,b) = show_Slash_Type a ++ show_LIST show_Slash_Dot b
\end{code}

read Attributes :: Eq i ⇒ STM Result [Content i] Attributes
read Attributes = do

y ← read ELEMENT "attributes"

read 12 read Editorial (read MAYBE read Divisions)
(read LIST read Key) (read LIST read Time)
(read MAYBE read Staves) (read MAYBE read Part Symbol)
(read MAYBE read Instruments) (read LIST read Clef)
(read LIST read Staff Details) (read MAYBE read Transpose)
(read LIST read Directive) (read LIST read Measure Style)
(childs y)

-- |
show Attributes :: Attributes → [Content ()]
show Attributes (a, b, c, d , e, f , g , h, i , j , k , l) =

show ELEMENT "attributes" []
(show Editorial a ++ show MAYBE show Divisions b ++

show LIST show Key c ++ show LIST show Time d ++
show MAYBE show Staves e ++ show MAYBE show Part Symbol f ++
show MAYBE show Instruments g ++
show LIST show Clef h ++ show LIST show Staff Details i ++
show MAYBE show Transpose j ++ show LIST show Directive k ++
show LIST show Measure Style l)

Traditional key signatures are represented by the number of flats and sharps, plus an optional mode
for major/ minor/mode distinctions. Negative numbers are used for flats and positive numbers for sharps,
reflecting the key’s placement within the circle of fifths (hence the element name). A cancel element
indicates that the old key signature should be cancelled before the new one appears. This will always
happen when changing to C major or A minor and need not be specified then. The cancel value matches
the fifths value of the cancelled key signature (e.g., a cancel of -2 will provide an explicit cancellation for
changing from B flat major to F major). The optional location attribute indicates whether the cancellation
appears to the left or the right of the new key signature. It is left by default.

Non-traditional key signatures can be represented using the Humdrum/Scot concept of a list of altered
tones. The key-step and key-alter elements are represented the same way as the step and alter elements
are in the pitch element in the note.mod file. The different element names indicate the different meaning
of altering notes in a scale versus altering a sounding pitch.

Valid mode values include major, minor, dorian, phrygian, lydian, mixolydian, aeolian, ionian, and
locrian.

The optional number attribute refers to staff numbers, from top to bottom on the system. If absent,
the key signature applies to all staves in the part.

The optional list of key-octave elements is used to specify in which octave each element of the key
signature appears. The content specifies the octave value using the same values as the display-octave
element. The number attribute is a positive integer that refers to the key signature element in left-to-right
order. If the cancel attribute is set to yes, then this number refers to an element specified by the cancel
element. It is no by default.

-- ** Key
-- |

type Key = ((Maybe CDATA,Print Style,Print Object),
(Key , [Key Octave]))
-- |

read Key :: Eq i ⇒ STM Result [Content i] Key
read Key = do

y ← read ELEMENT "key"

y1 ← read 3 (read IMPLIED "number" read CDATA)
read Print Style read Print Object (attributes y)

y2 ← read 2 read Key (read LIST read Key Octave) (childs y)
return (y1 , y2)
-- |

show Key :: Key → [Content ()]
show Key ((a, b, c), (d , e)) =

3

show ELEMENT "key" (show IMPLIED "number" show CDATA a ++
show Print Style b ++ show Print Object c)
(show Key d ++ show LIST show Key Octave e)

-- |
data Key = Key 1 (Maybe Cancel ,Fifths,Maybe Mode)
| Key 2 [(Key Step,Key Alter)]
deriving (Eq ,Show)

-- |
read Key :: Eq i ⇒ STM Result [Content i] Key
read Key =

(read Key aux1 >>= return ·Key 1) ‘mplus‘
(read LIST read Key aux2 >>= return ·Key 2)
-- |

show Key :: Key → [Content ()]
show Key (Key 1 (a, b, c)) = show MAYBE show Cancel a ++ show Fifths b ++

show MAYBE show Mode c
show Key (Key 2 a) = show LIST show Key aux1 a

-- |
read Key aux1 :: Eq i ⇒ STM Result [Content i] (Maybe Cancel ,Fifths,Maybe Mode)
read Key aux1 = do

y1 ← read MAYBE read Cancel
y2 ← read Fifths
y3 ← read MAYBE read Mode
return (y1 , y2 , y3)

read Key aux2 :: Eq i ⇒ STM Result [Content i] (Key Step,Key Alter)
read Key aux2 = do

y1 ← read Key Step
y2 ← read Key Alter
return (y1 , y2)
-- |

show Key aux1 :: (Key Step,Key Alter)→ [Content ()]
show Key aux1 (a, b) = show Key Step a ++ show Key Alter b

-- |
type Cancel = (Maybe Left Right ,PCDATA)

-- |
read Cancel :: STM Result [Content i] Cancel
read Cancel = do

y ← read ELEMENT "cancel"

y1 ← read 1 (read IMPLIED "location" read Left Right) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Cancel :: Cancel → [Content ()]
show Cancel (a, b) =

show ELEMENT "cancel" (show IMPLIED "location" show Left Right a)
(show PCDATA b)

-- |
type Fifths = PCDATA

-- |
read Fifths :: STM Result [Content i] Fifths
read Fifths = do

y ← read ELEMENT "fifths"

read 1 read PCDATA (childs y)
-- |

show Fifths :: Fifths → [Content ()]
show Fifths a = show ELEMENT "fifths" [] (show PCDATA a)

-- |
type Mode = PCDATA

4

-- |
read Mode :: STM Result [Content i] Mode
read Mode = do

y ← read ELEMENT "mode"

read 1 read PCDATA (childs y)
-- |

show Mode :: Mode → [Content ()]
show Mode a = show ELEMENT "mode" [] (show PCDATA a)

-- |
type Key Step = PCDATA

-- |
read Key Step :: STM Result [Content i] Key Step
read Key Step = do

y ← read ELEMENT "key-step"

read 1 read PCDATA (childs y)
-- |

show Key Step :: Key Step → [Content ()]
show Key Step a = show ELEMENT "key-step" [] (show PCDATA a)

-- |
type Key Alter = PCDATA

-- |
read Key Alter :: STM Result [Content i] Key Alter
read Key Alter = do

y ← read ELEMENT "key-alter"

read 1 read PCDATA (childs y)
-- |

show Key Alter :: Key Alter → [Content ()]
show Key Alter a = show ELEMENT "key-alter" [] (show PCDATA a)

-- |
type Key Octave = ((CDATA,Maybe Yes No),PCDATA)

-- |
read Key Octave :: STM Result [Content i] Key Octave
read Key Octave = do

y ← read ELEMENT "key-octave"

y1 ← read 2 (read REQUIRED "number" read CDATA)
(read IMPLIED "cancel" read Yes No) (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Key Octave :: Key Octave → [Content ()]
show Key Octave ((a, b), c) =

show ELEMENT "key-octave" (show REQUIRED "number" show CDATA a ++
show IMPLIED "cancel" show Yes No b)
(show PCDATA c)

Musical notation duration is commonly represented as fractions. The divisions element indicates how
many divisions per quarter note are used to indicate a note’s duration. For example, if duration = 1 and
divisions = 2, this is an eighth note duration. Duration and divisions are used directly for generating
sound output, so they must be chosen to take tuplets into account. Using a divisions element lets us
use just one number to represent a duration for each note in the score, while retaining the full power of
a fractional representation. For maximum compatibility with Standard MIDI Files, the divisions value
should not exceed 16383.

-- ** Divisions
-- |

type Divisions = PCDATA
-- |

read Divisions :: STM Result [Content i] Divisions
read Divisions = do

5

y ← read ELEMENT "divisions"

read 1 read PCDATA (childs y)
-- |

show Divisions :: Divisions → [Content ()]
show Divisions a = show ELEMENT "divisions" [] (show PCDATA a)

Time signatures are represented by two elements. The beats element indicates the number of beats,
as found in the numerator of a time signature. The beat-type element indicates the beat unit, as found in
the denominator of a time signature. The symbol attribute is used to indicate another notation beyond
a fraction: the common and cut time symbols, as well as a single number with an implied denominator.
Normal (a fraction) is the implied symbol type if none is specified. Multiple pairs of beat and beat-
type elements are used for composite time signatures with multiple denominators, such as 2/4 + 3/8.
A composite such as 3+2/8 requires only one beat/beat-type pair. A senza-misura element explicitly
indicates that no time signature is present.

The print-object attribute allows a time signature to be specified but not printed, as is the case for
excerpts from the middle of a score. The value is ”yes” if not present. The optional number attribute
refers to staff numbers within the part, from top to bottom on the system. If absent, the time signature
applies to all staves in the part.

-- ** Time
-- |

type Time = ((Maybe CDATA,Maybe Time A,Print Style,Print Object),Time B)
-- |

read Time :: Eq i ⇒ STM Result [Content i] Time
read Time = do

y ← read ELEMENT "time"

y1 ← read 4 (read IMPLIED "number" read CDATA)
(read IMPLIED "symbol" read Time A)
read Print Style read Print Object (attributes y)

y2 ← read 1 read Time B (childs y)
return (y1 , y2)
-- |

show Time :: Time → [Content ()]
show Time ((a, b, c, d), e) =

show ELEMENT "time" (show IMPLIED "number" show CDATA a ++
show IMPLIED "symbol" show Time A b ++
show Print Style c ++ show Print Object d)
(show Time B e)

-- |
data Time A = Time 1 | Time 2 | Time 3 | Time 4

deriving (Eq ,Show)
-- |

read Time A :: Prelude.String → Result Time A
read Time A "common" = return Time 1
read Time A "cut" = return Time 2
read Time A "single-number" = return Time 3
read Time A "normal" = return Time 4
read Time A x = fail x

-- |
show Time A :: Time A→ Prelude.String
show Time A Time 1 = "common"

show Time A Time 2 = "cut"

show Time A Time 3 = "single-number"

show Time A Time 4 = "normal"

-- |
data Time B = Time 5 [(Beats,Beat Type)]
| Time 6 Senza Misura
deriving (Eq ,Show)

-- |

6

read Time B :: Eq i ⇒ STM Result [Content i] Time B
read Time B =

(read LIST1 read Time B aux1 >>= return · Time 5) ‘mplus‘
(read Senza Misura >>= return · Time 6)
-- |

show Time B :: Time B → [Content ()]
show Time B (Time 5 a) = show LIST show Time B aux1 a
show Time B (Time 6 a) = show Senza Misura a

-- |
read Time B aux1 :: STM Result [Content i] (Beats,Beat Type)
read Time B aux1 = do

y1 ← read Beats
y2 ← read Beat Type
return (y1 , y2)
-- |

show Time B aux1 :: (Beats,Beat Type)→ [Content ()]
show Time B aux1 (a, b) = show Beats a ++ show Beat Type b

-- |
type Beats = PCDATA

-- |
read Beats :: STM Result [Content i] Beats
read Beats = do

y ← read ELEMENT "beats"

read 1 read PCDATA (childs y)
-- |

show Beats :: Beats → [Content ()]
show Beats a = show ELEMENT "beats" [] (show PCDATA a)

-- |
type Beat Type = PCDATA

-- |
read Beat Type :: STM Result [Content i] Beat Type
read Beat Type = do

y ← read ELEMENT "beat-type"

read 1 read PCDATA (childs y)
-- |

show Beat Type :: Beat Type → [Content ()]
show Beat Type a = show ELEMENT "beat-type" [] (show PCDATA a)

-- |
type Senza Misura = ()

-- |
read Senza Misura :: STM Result [Content i] Senza Misura
read Senza Misura = do

read ELEMENT "senza-misura">> return ()
-- |

show Senza Misura :: Senza Misura → [Content ()]
show Senza Misura = show ELEMENT "senza-misura" [] []

Staves are used if there is more than one staff represented in the given part (e.g., 2 staves for typical
piano parts). If absent, a value of 1 is assumed. Staves are ordered from top to bottom in a part in
numerical order, with staff 1 above staff 2.

-- ** Staves
-- |

type Staves = PCDATA
-- |

read Staves :: STM Result [Content i] Staves
read Staves = do

y ← read ELEMENT "staves"

read 1 read PCDATA (childs y)

7

-- |
show Staves :: Staves → [Content ()]
show Staves a = show ELEMENT "staves" [] (show PCDATA a)

The part-symbol element indicates how a symbol for a multi-staff part is indicated in the score. Values
include none, brace, line, and bracket; brace is the default. The top-staff and bottom-staff elements are
used when the brace does not extend across the entire part. For example, in a 3-staff organ part, the
top-staff will typically be 1 for the right hand, while the bottom-staff will typically be 2 for the left hand.
Staff 3 for the pedals is usually outside the brace.

-- ** Part Symbol
-- |

type Part Symbol = ((Maybe CDATA,Maybe CDATA,Position,Color),PCDATA)
-- |

read Part Symbol :: STM Result [Content i] Part Symbol
read Part Symbol = do

y ← read ELEMENT "part-symbol"

y1 ← read 4 (read IMPLIED "top-staff" read CDATA)
(read IMPLIED "bottom-staff" read CDATA)
read Position read Color (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Part Symbol :: Part Symbol → [Content ()]
show Part Symbol ((a, b, c, d), e) =

show ELEMENT "part-symbol" (show IMPLIED "top-staff" show CDATA a ++
show IMPLIED "bottom-staff" show CDATA b ++
show Position c ++ show Color d)
(show PCDATA e)

Instruments are only used if more than one instrument is represented in the part (e.g., oboe I and II
where they play together most of the time). If absent, a value of 1 is assumed.

-- ** Instruments
-- |

type Instruments = PCDATA
-- |

read Instruments :: STM Result [Content i] Instruments
read Instruments = do

y ← read ELEMENT "instruments"

read 1 read PCDATA (childs y)
-- |

show Instruments :: Instruments → [Content ()]
show Instruments a = show ELEMENT "instruments" [] (show PCDATA a)

Clefs are represented by the sign, line, and clef-octave-change elements. Sign values include G, F, C,
percussion, TAB, and none. Line numbers are counted from the bottom of the staff. Standard values are
2 for the G sign (treble clef), 4 for the F sign (bass clef), 3 for the C sign (alto clef) and 5 for TAB (on
a 6-line staff). The clef-octave-change element is used for transposing clefs (e.g., a treble clef for tenors
would have a clef-octave-change value of -1). The optional number attribute refers to staff numbers within
the part, from top to bottom on the system. A value of 1 is assumed if not present.

Sometimes clefs are added to the staff in non-standard line positions, either to indicate cue passages,
or when there are multiple clefs present simultaneously on one staff. In this situation, the additional
attribute is set to ”yes” and the line value is ignored. The size attribute is used for clefs where the
additional attribute is ”yes”. It is typically used to indicate cue clefs.

-- ** Clef
-- |

type Clef = ((Maybe CDATA,Maybe Yes No,Maybe Symbol Size,
Print Style,Print Object),

8

(Sign,Maybe Line,Maybe Clef Octave Change))
-- |

read Clef :: Eq i ⇒ STM Result [Content i] Clef
read Clef = do

y ← read ELEMENT "clef"

y1 ← read 5 (read IMPLIED "number" read CDATA)
(read IMPLIED "additional" read Yes No)
(read IMPLIED "size" read Symbol Size)
read Print Style read Print Object (attributes y)

y2 ← read 3 read Sign (read MAYBE read Line)
(read MAYBE read Clef Octave Change) (childs y)

return (y1 , y2)
-- |

show Clef :: Clef → [Content ()]
show Clef ((a, b, c, d , e), (f , g , h)) =

show ELEMENT "clef" (show IMPLIED "number" show CDATA a ++
show IMPLIED "additional" show Yes No b ++
show IMPLIED "size" show Symbol Size c ++
show Print Style d ++ show Print Object e)

(show Sign f ++ show MAYBE show Line g ++
show MAYBE show Clef Octave Change h)

-- |
type Sign = PCDATA

-- |
read Sign :: STM Result [Content i] Sign
read Sign = do

y ← read ELEMENT "sign"

read 1 read PCDATA (childs y)
-- |

show Sign :: Sign → [Content ()]
show Sign a = show ELEMENT "sign" [] (show PCDATA a)

-- |
type Line = PCDATA

-- |
read Line :: STM Result [Content i] Line
read Line = do

y ← read ELEMENT "line"

read 1 read PCDATA (childs y)
-- |

show Line :: Line → [Content ()]
show Line a = show ELEMENT "line" [] (show PCDATA a)

-- |
type Clef Octave Change = PCDATA

-- |
read Clef Octave Change :: STM Result [Content i] Clef Octave Change
read Clef Octave Change = do

y ← read ELEMENT "clef-octave-change"

read 1 read PCDATA (childs y)
-- |

show Clef Octave Change :: Clef Octave Change → [Content ()]
show Clef Octave Change a =

show ELEMENT "clef-octave-change" [] (show PCDATA a)

The staff-details element is used to indicate different types of staves. The staff-type element can be
ossia, cue, editorial, regular, or alternate. An alternate staff indicates one that shares the same musical
data as the prior staff, but displayed differently (e.g., treble and bass clef, standard notation and tab). The
staff-lines element specifies the number of lines for non 5-line staffs. The staff-tuning and capo elements
are used to specify tuning when using tablature notation. The optional number attribute specifies the
staff number from top to bottom on the system, as with clef. The optional show-frets attribute indicates

9

whether to show tablature frets as numbers (0, 1, 2) or letters (a, b, c). The default choice is numbers.
The print-object attribute is used to indicate when a staff is not printed in a part, usually in large scores
where empty parts are omitted. It is yes by default. If print-spacing is yes while print-object is no, the
score is printed in cutaway format where vertical space is left for the empty part.

-- ** Staff Details
-- |

type Staff Details = ((Maybe CDATA,Maybe Staff Details ,
Print Object ,Print Spacing),
(Maybe Staff Type,Maybe Staff Lines, [Staff Tuning],

Maybe Capo,Maybe Staff Size))
-- |

read Staff Details :: Eq i ⇒ STM Result [Content i] Staff Details
read Staff Details = do

y ← read ELEMENT "staff-details"

y1 ← read 4 (read IMPLIED "number" read CDATA)
(read IMPLIED "show-frets" read Staff Details)
read Print Object read Print Spacing (attributes y)

y2 ← read 5 (read MAYBE read Staff Type) (read MAYBE read Staff Lines)
(read LIST read Staff Tuning) (read MAYBE read Capo)
(read MAYBE read Staff Size) (childs y)

return (y1 , y2)
-- |

show Staff Details :: Staff Details → [Content ()]
show Staff Details ((a, b, c, d), (e, f , g , h, i)) =

show ELEMENT "staff-details" (show IMPLIED "number" show CDATA a ++
show IMPLIED "show-frets" show Staff Details b ++
show Print Object c ++ show Print Spacing d)

(show MAYBE show Staff Type e ++
show MAYBE show Staff Lines f ++
show LIST show Staff Tuning g ++
show MAYBE show Capo h ++
show MAYBE show Staff Size i)

-- |
data Staff Details = Staff Details 1 | Staff Details 2

deriving (Eq ,Show)
-- |

read Staff Details :: Prelude.String → Result Staff Details
read Staff Details "numbers" = return Staff Details 1
read Staff Details "letters" = return Staff Details 2
read Staff Details x = fail x

-- |
show Staff Details :: Staff Details → Prelude.String
show Staff Details Staff Details 1 = "numbers"

show Staff Details Staff Details 2 = "letters"

-- |
type Staff Type = PCDATA

-- |
read Staff Type :: STM Result [Content i] Staff Type
read Staff Type = do

y ← read ELEMENT "staff-type"

read 1 read PCDATA (childs y)
-- |

show Staff Type :: Staff Type → [Content ()]
show Staff Type a = show ELEMENT "staff-type" [] (show PCDATA a)

-- |
type Staff Lines = PCDATA

-- |
read Staff Lines :: STM Result [Content i] Staff Lines

10

read Staff Lines = do
y ← read ELEMENT "staff-lines"

read 1 read PCDATA (childs y)
-- |

show Staff Lines :: Staff Lines → [Content ()]
show Staff Lines a = show ELEMENT "staff-lines" [] (show PCDATA a)

The tuning-step, tuning-alter, and tuning-octave elements are defined in the common.mod file. Staff
lines are numbered from bottom to top.

-- |
type Staff Tuning = (CDATA, (Tuning Step,Maybe Tuning Alter ,Tuning Octave))

-- |
read Staff Tuning :: Eq i ⇒ STM Result [Content i] Staff Tuning
read Staff Tuning = do

y ← read ELEMENT "staff-tuning"

y1 ← read 1 (read REQUIRED "line" read CDATA) (attributes y)
y2 ← read 3 read Tuning Step (read MAYBE read Tuning Alter)

read Tuning Octave (childs y)
return (y1 , y2)
-- |

show Staff Tuning :: Staff Tuning → [Content ()]
show Staff Tuning (a, (b, c, d)) =

show ELEMENT "staff-tuning" (show REQUIRED "line" show CDATA a)
(show Tuning Step b ++

show MAYBE show Tuning Alter c ++
show Tuning Octave d)

The capo element indicates at which fret a capo should be placed on a fretted instrument. This changes
the open tuning of the strings specified by staff-tuning by the specified number of half-steps.

-- |
type Capo = PCDATA

-- |
read Capo :: STM Result [Content i] Capo
read Capo = do

y ← read ELEMENT "capo"

read 1 read PCDATA (childs y)
-- |

show Capo :: Capo → [Content ()]
show Capo a = show ELEMENT "capo" [] (show PCDATA a)

The staff-size element indicates how large a staff space is on this staff, expressed as a percentage of
the work’s default scaling. Values less than 100 make the staff space smaller while values over 100 make
the staff space larger. A staff-type of cue, ossia, or editorial implies a staff-size of less than 100, but the
exact value is implementation-dependent unless specified here. Staff size affects staff height only, not the
relationship of the staff to the left and right margins.

-- |
type Staff Size = PCDATA

-- |
read Staff Size :: STM Result [Content i] Staff Size
read Staff Size = do

y ← read ELEMENT "staff-size"

read 1 read PCDATA (childs y)
-- |

show Staff Size :: Staff Size → [Content ()]
show Staff Size a = show ELEMENT "staff-size" [] (show PCDATA a)

If the part is being encoded for a transposing instrument in written vs. concert pitch, the transposition
must be encoded in the transpose element. The transpose element represents what must be added to the
written pitch to get the correct sounding pitch.

11

The transposition is represented by chromatic steps (required) and three optional elements: diatonic
pitch steps, octave changes, and doubling an octave down. The chromatic and octave-change elements are
numeric values added to the encoded pitch data to create the sounding pitch. The diatonic element is also
numeric and allows for correct spelling of enharmonic transpositions.

-- ** Transpose
-- |

type Transpose = (Maybe Diatonic,Chromatic,Maybe Octave Change,
Maybe Double)
-- |

read Transpose :: Eq i ⇒ STM Result [Content i] Transpose
read Transpose = do

y ← read ELEMENT "transpose"

read 4 (read MAYBE read Diatonic) read Chromatic
(read MAYBE read Octave Change)
(read MAYBE read Double) (childs y)

-- |
show Transpose :: Transpose → [Content ()]
show Transpose (a, b, c, d) =

show ELEMENT "transpose" [] (show MAYBE show Diatonic a ++
show Chromatic b ++
show MAYBE show Octave Change c ++
show MAYBE show Double d)

-- |
type Diatonic = PCDATA

-- |
read Diatonic :: STM Result [Content i] Diatonic
read Diatonic = do

y ← read ELEMENT "diatonic"

read 1 read PCDATA (childs y)
-- |

show Diatonic :: Diatonic → [Content ()]
show Diatonic a = show ELEMENT "diatonic" [] (show PCDATA a)

-- |
type Chromatic = PCDATA

-- |
read Chromatic :: STM Result [Content i] Chromatic
read Chromatic = do

y ← read ELEMENT "chromatic"

read 1 read PCDATA (childs y)
-- |

show Chromatic :: Chromatic → [Content ()]
show Chromatic a = show ELEMENT "chromatic" [] (show PCDATA a)

-- |
type Octave Change = PCDATA

-- |
read Octave Change :: STM Result [Content i] Octave Change
read Octave Change = do

y ← read ELEMENT "octave-change"

read 1 read PCDATA (childs y)
-- |

show Octave Change :: Octave Change → [Content ()]
show Octave Change a = show ELEMENT "octave-change" [] (show PCDATA a)

-- |
type Double = ()

-- |
read Double :: STM Result [Content i] Double
read Double = read ELEMENT "double">> return ()

-- |

12

show Double :: Double → [Content ()]
show Double = show ELEMENT "double" [] []

Directives are like directions, but can be grouped together with attributes for convenience. This is
typically used for tempo markings at the beginning of a piece of music. This element has been deprecated
in Version 2.0 in favor of the directive attribute for direction elements. Language names come from ISO
639, with optional country subcodes from ISO 3166.

-- ** Directive
-- |

type Directive = ((Print Style,Maybe CDATA),CDATA)
-- |

read Directive :: STM Result [Content i] Directive
read Directive = do

y ← read ELEMENT "directive"

y1 ← read 2 read Print Style
(read IMPLIED "xml:lang" read CDATA) (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Directive :: Directive → [Content ()]
show Directive ((a, b), c) =

show ELEMENT "directive" (show Print Style a ++
show IMPLIED "xml:lang" show CDATA b)
(show PCDATA c)

A measure-style indicates a special way to print partial to multiple measures within a part. This
includes multiple rests over several measures, repeats of beats, single, or multiple measures, and use of
slash notation.

The multiple-rest and measure-repeat symbols indicate the number of measures covered in the element
content. The beat-repeat and slash elements can cover partial measures. All but the multiple-rest element
use a type attribute to indicate starting and stopping the use of the style. The optional number attribute
specifies the staff number from top to bottom on the system, as with clef.

-- ** Measure Style
-- |

type Measure Style = ((Maybe CDATA,Font ,Color),Measure Style)
-- |

read Measure Style :: Eq i ⇒ STM Result [Content i] Measure Style
read Measure Style = do

y ← read ELEMENT "measure-style"

y1 ← read 3 (read IMPLIED "number" read CDATA)
read Font read Color (attributes y)

y2 ← read 1 read Measure Style (childs y)
return (y1 , y2)
-- |

show Measure Style :: Measure Style → [Content ()]
show Measure Style ((a, b, c), d) =

show ELEMENT "measure-style" (show IMPLIED "number" show CDATA a ++
show Font b ++ show Color c)
(show Measure Style d)

-- |
data Measure Style = Measure Style 1 Multiple Rest
| Measure Style 2 Measure Repeat
| Measure Style 3 Beat Repeat
| Measure Style 4 Slash
deriving (Eq ,Show)

-- |
read Measure Style :: Eq i ⇒ STM Result [Content i] Measure Style
read Measure Style =

13

(read Multiple Rest >>= return ·Measure Style 1) ‘mplus‘
(read Measure Repeat >>= return ·Measure Style 2) ‘mplus‘
(read Beat Repeat >>= return ·Measure Style 3) ‘mplus‘
(read Slash >>= return ·Measure Style 4)
-- |

show Measure Style :: Measure Style → [Content ()]
show Measure Style (Measure Style 1 a) = show Multiple Rest a
show Measure Style (Measure Style 2 a) = show Measure Repeat a
show Measure Style (Measure Style 3 a) = show Beat Repeat a
show Measure Style (Measure Style 4 a) = show Slash a

The slash-type and slash-dot elements are optional children of the beat-repeat and slash elements.
They have the same values as the type and dot elements, and define what the beat is for the display of
repetition marks. If not present, the beat is based on the current time signature.

-- |
type Slash Type = PCDATA

-- |
read Slash Type :: STM Result [Content i] Slash Type
read Slash Type = do

y ← read ELEMENT "slash-type"

read 1 read PCDATA (childs y)
-- |

show Slash Type :: Slash Type → [Content ()]
show Slash Type a = show ELEMENT "slash-type" [] (show PCDATA a)

-- |
type Slash Dot = ()

-- |
read Slash Dot :: STM Result [Content i] Slash Dot
read Slash Dot = read ELEMENT "slash-dot">> return ()

-- |
show Slash Dot :: Slash Dot → [Content ()]
show Slash Dot = show ELEMENT "slash-dot" [] []

The text of the multiple-rest element indicates the number of measures in the multiple rest. Multiple
rests may use the 1-bar / 2-bar / 4-bar rest symbols, or a single shape. The use-symbols attribute indicates
which to use; it is no if not specified.

-- |
type Multiple Rest = (Maybe Yes No,PCDATA)

-- |
read Multiple Rest :: STM Result [Content i] Multiple Rest
read Multiple Rest = do

y ← read ELEMENT "multiple-rest"

y1 ← read 1 (read IMPLIED "use-symbols" read Yes No) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Multiple Rest :: Multiple Rest → [Content ()]
show Multiple Rest (a, b) =

show ELEMENT "multiple-rest" (show IMPLIED "use-symbols" show Yes No a)
(show PCDATA b)

The measure-repeat and beat-repeat element specify a notation style for repetitions. The actual music
being repeated needs to be repeated within the MusicXML file. These elements specify the notation that
indicates the repeat.

The measure-repeat element is used for both single and multiple measure repeats. The text of the
element indicates the number of measures to be repeated in a single pattern. The slashes attribute specifies
the number of slashes to use in the repeat sign. It is 1 if not specified. Both the start and the stop of the
measure-repeat must be specified.

14

-- |
type Measure Repeat = ((Start Stop,Maybe CDATA),PCDATA)

-- |
read Measure Repeat :: STM Result [Content i] Measure Repeat
read Measure Repeat = do

y ← read ELEMENT "measure-repeat"

y1 ← read 2 (read REQUIRED "type" read Start Stop)
(read IMPLIED "slashes" read CDATA)
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Measure Repeat :: Measure Repeat → [Content ()]
show Measure Repeat ((a, b), c) =

show ELEMENT "measure-repeat"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "slashes" show CDATA b)

(show PCDATA c)

The beat-repeat element is used to indicate that a single beat (but possibly many notes) is repeated.
Both the start and stop of the beat being repeated should be specified. The slashes attribute specifies the
number of slashes to use in the symbol. The use-dots attribute indicates whether or not to use dots as
well (for instance, with mixed rhythm patterns). By default, the value for slashes is 1 and the value for
use-dots is no.

-- |
type Beat Repeat = ((Start Stop,Maybe CDATA,Maybe Yes No),

Maybe (Slash Type, [Slash Dot]))
-- |

read Beat Repeat :: Eq i ⇒ STM Result [Content i] Beat Repeat
read Beat Repeat = do

y ← read ELEMENT "beat-repeat"

y1 ← read 3 (read REQUIRED "type" read Start Stop)
(read IMPLIED "slashes" read CDATA)
(read IMPLIED "use-dots" read Yes No)
(attributes y)

y2 ← read 1 (read MAYBE read Beat Repeat aux1) (childs y)
return (y1 , y2)
-- |

show Beat Repeat :: Beat Repeat → [Content ()]
show Beat Repeat ((a, b, c), d) =

show ELEMENT "beat-repeat" (show REQUIRED "type" show Start Stop a ++
show IMPLIED "slashes" show CDATA b ++
show IMPLIED "use-dots" show Yes No c)
(show MAYBE show Beat Repeat aux1 d)

-- |
read Beat Repeat aux1 :: Eq i ⇒ STM Result [Content i] (Slash Type, [Slash Dot])
read Beat Repeat aux1 = do

y1 ← read Slash Type
y2 ← read LIST read Slash Dot
return (y1 , y2)
-- |

show Beat Repeat aux1 :: (Slash Type, [Slash Dot])→ [Content ()]
show Beat Repeat aux1 (a, b) =

show Slash Type a ++ show LIST show Slash Dot b

The slash element is used to indicate that slash notation is to be used. If the slash is on every beat,
use-stems is no (the default). To indicate rhythms but not pitches, use-stems is set to yes. The type
attribute indicates whether this is the start or stop of a slash notation style. The use-dots attribute works
as for the beat-repeat element, and only has effect if use-stems is no.

15

-- |
type Slash = ((Start Stop,Maybe Yes No,Maybe Yes No),

Maybe (Slash Type, [Slash Dot]))
-- |

read Slash :: Eq i ⇒ STM Result [Content i] Slash
read Slash = do

y ← read ELEMENT "slash"

y1 ← read 3 (read REQUIRED "type" read Start Stop)
(read IMPLIED "use-dots" read Yes No)
(read IMPLIED "use-stems" read Yes No)
(attributes y)

y2 ← read 1 (read MAYBE read Slash aux1) (childs y)
return (y1 , y2)
-- |

show Slash :: Slash → [Content ()]
show Slash ((a, b, c), d) =

show ELEMENT "slash" (show REQUIRED "type" show Start Stop a ++
show IMPLIED "use-dots" show Yes No b ++
show IMPLIED "use-stems" show Yes No c)
(show MAYBE show Slash aux1 d)

-- |
read Slash aux1 :: Eq i ⇒ STM Result [Content i] (Slash Type, [Slash Dot])
read Slash aux1 = do

y1 ← read Slash Type
y2 ← read LIST read Slash Dot
return (y1 , y2)
-- |

show Slash aux1 :: (Slash Type, [Slash Dot])→ [Content ()]
show Slash aux1 (a, b) = show Slash Type a ++ show LIST show Slash Dot b

2.2 Barline

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Barline where
import Text .XML.MusicXML.Common
import Text .XML.HaXml .Types (Content)
import Prelude (Maybe,Show ,Eq ,Monad (. .),String , (++))

If a barline is other than a normal single barline, it should be represented by a barline element that
describes it. This includes information about repeats and multiple endings, as well as line style. Barline
data is on the same level as the other musical data in a score - a child of a measure in a partwise score, or
a part in a timewise score. This allows for barlines within measures, as in dotted barlines that subdivide
measures in complex meters. The two fermata elements allow for fermatas on both sides of the barline
(the lower one inverted).

Barlines have a location attribute to make it easier to process barlines independently of the other
musical data in a score. It is often easier to set up measures separately from entering notes. The location
attribute must match where the barline element occurs within the rest of the musical data in the score.
If location is left, it should be the first element in the measure, aside from the print, bookmark, and link
elements. If location is right, it should be the last element, again with the possible exception of the print,
bookmark, and link elements. If no location is specified, the right barline is the default. The segno, coda,

16

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Barline where
import Text.XML.MusicXML.Common
import Text.XML.HaXml.Types (Content)
import Prelude (Maybe, Show, Eq, Monad(..), String, (++))
\end{code}

\begin{musicxml}
	If a barline is other than a normal single barline, it
	should be represented by a barline element that describes
	it. This includes information about repeats and multiple
	endings, as well as line style. Barline data is on the same
	level as the other musical data in a score - a child of a
	measure in a partwise score, or a part in a timewise score.
	This allows for barlines within measures, as in dotted
	barlines that subdivide measures in complex meters. The two
	fermata elements allow for fermatas on both sides of the
	barline (the lower one inverted).
	
	Barlines have a location attribute to make it easier to
	process barlines independently of the other musical data
	in a score. It is often easier to set up measures
	separately from entering notes. The location attribute
	must match where the barline element occurs within the
	rest of the musical data in the score. If location is left,
	it should be the first element in the measure, aside from
	the print, bookmark, and link elements. If location is
	right, it should be the last element, again with the
	possible exception of the print, bookmark, and link
	elements. If no location is specified, the right barline
	is the default. The segno, coda, and divisions attributes
	work the same way as in the sound element defined in the
	direction.mod file. They are used for playback when barline
	elements contain segno or coda child elements.
\end{musicxml}
\begin{code}
-- * Barline
-- |
type Barline = ((Barline_, Maybe CDATA, Maybe CDATA, Maybe CDATA),
 (Maybe Bar_Style, Editorial, Maybe Wavy_Line,
 Maybe Segno, Maybe Coda, Maybe (Fermata, Maybe Fermata),
 Maybe Ending, Maybe Repeat))
-- |
read_Barline :: Eq i => STM Result [Content i] Barline
read_Barline = do
 y <- read_ELEMENT "barline"
 y1 <- read_4 (read_DEFAULT "location" read_Barline_ Barline_1)
 (read_IMPLIED "segno" read_CDATA)
 (read_IMPLIED "coda" read_CDATA)
 (read_IMPLIED "divisions" read_CDATA) (attributes y)
 y2 <- read_8 (read_MAYBE read_Bar_Style) read_Editorial
 (read_MAYBE read_Wavy_Line) (read_MAYBE read_Segno)
 (read_MAYBE read_Coda) (read_MAYBE read_Barline_aux1)
 (read_MAYBE read_Ending) (read_MAYBE read_Repeat)
 (childs y)
 return (y1,y2)
-- |
show_Barline :: Barline -> [Content ()]
show_Barline ((a,b,c,d),(e,f,g,h,i,j,k,l)) =
 show_ELEMENT "barline" (show_DEFAULT "location" show_Barline_ a ++
 show_IMPLIED "segno" show_CDATA b ++
 show_IMPLIED "coda" show_CDATA c ++
 show_IMPLIED "divisions" show_CDATA d)
 (show_MAYBE show_Bar_Style e ++ show_Editorial f ++
 show_MAYBE show_Wavy_Line g ++
 show_MAYBE show_Segno h ++ show_MAYBE show_Coda i ++
 show_MAYBE show_Barline_aux1 j ++
 show_MAYBE show_Ending k ++ show_MAYBE show_Repeat l)
-- |
read_Barline_aux1 :: STM Result [Content i] (Fermata, Maybe Fermata)
read_Barline_aux1 = do
 y1 <- read_Fermata
 y2 <- read_MAYBE read_Fermata
 return (y1,y2)
-- |
show_Barline_aux1 :: (Fermata, Maybe Fermata) -> [Content ()]
show_Barline_aux1 (a,b) = show_Fermata a ++ show_MAYBE show_Fermata b
-- |
data Barline_ = Barline_1 | Barline_2 | Barline_3
 deriving (Eq, Show)
-- |
read_Barline_ :: Prelude.String -> Result Barline_
read_Barline_ "right" = return Barline_1
read_Barline_ "left" = return Barline_2
read_Barline_ "middle" = return Barline_3
read_Barline_ x = fail x
-- |
show_Barline_ :: Barline_ -> Prelude.String
show_Barline_ Barline_1 = "right"
show_Barline_ Barline_2 = "left"
show_Barline_ Barline_3 = "middle"
\end{code}

\begin{musicxml}
	Bar-style contains style information. Choices are
	regular, dotted, dashed, heavy, light-light,
	light-heavy, heavy-light, heavy-heavy, tick (a
	short stroke through the top line), short (a partial
	barline between the 2nd and 4th lines), and none.
\end{musicxml}
\begin{code}
-- ** Bar_Style
-- |
type Bar_Style = (Color, PCDATA)
-- |
read_Bar_Style :: STM Result [Content i] Bar_Style
read_Bar_Style = do
 y <- read_ELEMENT "bar-style"
 y1 <- read_1 read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Bar_Style :: Bar_Style -> [Content ()]
show_Bar_Style (a,b) =
 show_ELEMENT "bar-style" (show_Color a) (show_PCDATA b)
\end{code}

\begin{musicxml}
	The voice entity and the wavy-line, segno, and fermata
	elements are defined in the common.mod file. They can
	apply to both notes and barlines.

	Endings refers to multiple (e.g. first and second) endings.
	Typically, the start type is associated with the left
	barline of the first measure in an ending. The stop and
	discontinue types are associated with the right barline of
	the last measure in an ending. Stop is used when the ending
	mark concludes with a downward jog, as is typical for first
	endings. Discontinue is used when there is no downward jog,
	as is typical for second endings that do not conclude a
	piece. The length of the jog can be specified using the
	end-length attribute. The text-x and text-y attributes
	are offsets that specify where the baseline of the start
	of the ending text appears, relative to the start of the
	ending line.

	The number attribute reflects the numeric values of what
	is under the ending line. Single endings such as "1" or
	comma-separated multiple endings such as "1, 2" may be
	used. The ending element text is used when the text
	displayed in the ending is different than what appears in
	the number attribute. The print-object element is used to
	indicate when an ending is present but not printed, as is
	often the case for many parts in a full score.
\end{musicxml}
\begin{code}
-- ** Ending
-- |
type Ending = ((CDATA, Ending_, Print_Object, Print_Style,
 Maybe Tenths, Maybe Tenths, Maybe Tenths), PCDATA)
-- |
read_Ending :: Eq i => STM Result [Content i] Ending
read_Ending = do
 y <- read_ELEMENT "ending"
 y1 <- read_7 (read_REQUIRED "number" read_CDATA)
 (read_REQUIRED "type" read_Ending_)
 read_Print_Object read_Print_Style
 (read_IMPLIED "end-length" read_Tenths)
 (read_IMPLIED "text-x" read_Tenths)
 (read_IMPLIED "text-y" read_Tenths)
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Ending :: Ending -> [Content ()]
show_Ending ((a,b,c,d,e,f,g),h) =
 show_ELEMENT "ending" (show_REQUIRED "number" show_CDATA a ++
 show_REQUIRED "type" show_Ending_ b ++
 show_Print_Object c ++ show_Print_Style d ++
 show_IMPLIED "end-length" show_Tenths e ++
 show_IMPLIED "text-x" show_Tenths f ++
 show_IMPLIED "text-y" show_Tenths g)
 (show_PCDATA h)
-- |
data Ending_ = Ending_1 | Ending_2 | Ending_3
 deriving (Eq, Show)
-- |
read_Ending_ :: Prelude.String -> Result Ending_
read_Ending_ "start" = return Ending_1
read_Ending_ "stop" = return Ending_2
read_Ending_ "discontinue" = return Ending_3
read_Ending_ x = fail x
-- |
show_Ending_ :: Ending_ -> Prelude.String
show_Ending_ Ending_1 = "start"
show_Ending_ Ending_2 = "stop"
show_Ending_ Ending_3 = "discontinue"
\end{code}

\begin{musicxml}
	Repeat marks. The start of the repeat has a forward
	direction while the end of the repeat has a backward
	direction. Backward repeats that are not part of an
	ending can use the times attribute to indicate the
	number of times the repeated section is played.
\end{musicxml}
\begin{code}
-- ** Repeat
-- |
type Repeat = ((Repeat_, Maybe CDATA), ())
-- |
read_Repeat :: STM Result [Content i] Repeat
read_Repeat = do
 y <- read_ELEMENT "repeat"
 y1 <- read_2 (read_REQUIRED "direction" read_Repeat_)
 (read_IMPLIED "times" read_CDATA) (attributes y)
 return (y1,())
-- |
show_Repeat :: Repeat -> [Content ()]
show_Repeat ((a,b),_) =
 show_ELEMENT "repeat" (show_REQUIRED "direction" show_Repeat_ a ++
 show_IMPLIED "times" show_CDATA b) []
-- |
data Repeat_ = Repeat_1 | Repeat_2
 deriving (Eq, Show)
-- |
read_Repeat_ :: Prelude.String -> Result Repeat_
read_Repeat_ "backward" = return Repeat_1
read_Repeat_ "forward" = return Repeat_2
read_Repeat_ x = fail x
-- |
show_Repeat_ :: Repeat_ -> Prelude.String
show_Repeat_ Repeat_1 = "backward"
show_Repeat_ Repeat_2 = "forward"
\end{code}

and divisions attributes work the same way as in the sound element defined in the direction.mod file. They
are used for playback when barline elements contain segno or coda child elements.

-- * Barline
-- |

type Barline = ((Barline ,Maybe CDATA,Maybe CDATA,Maybe CDATA),
(Maybe Bar Style,Editorial ,Maybe Wavy Line,
Maybe Segno,Maybe Coda,Maybe (Fermata,Maybe Fermata),
Maybe Ending ,Maybe Repeat))
-- |

read Barline :: Eq i ⇒ STM Result [Content i] Barline
read Barline = do

y ← read ELEMENT "barline"

y1 ← read 4 (read DEFAULT "location" read Barline Barline 1)
(read IMPLIED "segno" read CDATA)
(read IMPLIED "coda" read CDATA)
(read IMPLIED "divisions" read CDATA) (attributes y)

y2 ← read 8 (read MAYBE read Bar Style) read Editorial
(read MAYBE read Wavy Line) (read MAYBE read Segno)
(read MAYBE read Coda) (read MAYBE read Barline aux1)
(read MAYBE read Ending) (read MAYBE read Repeat)
(childs y)

return (y1 , y2)
-- |

show Barline :: Barline → [Content ()]
show Barline ((a, b, c, d), (e, f , g , h, i , j , k , l)) =

show ELEMENT "barline" (show DEFAULT "location" show Barline a ++
show IMPLIED "segno" show CDATA b ++
show IMPLIED "coda" show CDATA c ++
show IMPLIED "divisions" show CDATA d)

(show MAYBE show Bar Style e ++ show Editorial f ++
show MAYBE show Wavy Line g ++
show MAYBE show Segno h ++ show MAYBE show Coda i ++
show MAYBE show Barline aux1 j ++
show MAYBE show Ending k ++ show MAYBE show Repeat l)

-- |
read Barline aux1 :: STM Result [Content i] (Fermata,Maybe Fermata)
read Barline aux1 = do

y1 ← read Fermata
y2 ← read MAYBE read Fermata
return (y1 , y2)
-- |

show Barline aux1 :: (Fermata,Maybe Fermata)→ [Content ()]
show Barline aux1 (a, b) = show Fermata a ++ show MAYBE show Fermata b

-- |
data Barline = Barline 1 | Barline 2 | Barline 3

deriving (Eq ,Show)
-- |

read Barline :: Prelude.String → Result Barline
read Barline "right" = return Barline 1
read Barline "left" = return Barline 2
read Barline "middle" = return Barline 3
read Barline x = fail x

-- |
show Barline :: Barline → Prelude.String
show Barline Barline 1 = "right"

show Barline Barline 2 = "left"

show Barline Barline 3 = "middle"

17

Bar-style contains style information. Choices are regular, dotted, dashed, heavy, light-light, light-
heavy, heavy-light, heavy-heavy, tick (a short stroke through the top line), short (a partial barline between
the 2nd and 4th lines), and none.

-- ** Bar Style
-- |

type Bar Style = (Color ,PCDATA)
-- |

read Bar Style :: STM Result [Content i] Bar Style
read Bar Style = do

y ← read ELEMENT "bar-style"

y1 ← read 1 read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Bar Style :: Bar Style → [Content ()]
show Bar Style (a, b) =

show ELEMENT "bar-style" (show Color a) (show PCDATA b)

The voice entity and the wavy-line, segno, and fermata elements are defined in the common.mod file.
They can apply to both notes and barlines.

Endings refers to multiple (e.g. first and second) endings. Typically, the start type is associated with
the left barline of the first measure in an ending. The stop and discontinue types are associated with
the right barline of the last measure in an ending. Stop is used when the ending mark concludes with a
downward jog, as is typical for first endings. Discontinue is used when there is no downward jog, as is
typical for second endings that do not conclude a piece. The length of the jog can be specified using the
end-length attribute. The text-x and text-y attributes are offsets that specify where the baseline of the
start of the ending text appears, relative to the start of the ending line.

The number attribute reflects the numeric values of what is under the ending line. Single endings
such as ”1” or comma-separated multiple endings such as ”1, 2” may be used. The ending element text is
used when the text displayed in the ending is different than what appears in the number attribute. The
print-object element is used to indicate when an ending is present but not printed, as is often the case for
many parts in a full score.

-- ** Ending
-- |

type Ending = ((CDATA,Ending ,Print Object ,Print Style,
Maybe Tenths,Maybe Tenths,Maybe Tenths),PCDATA)
-- |

read Ending :: Eq i ⇒ STM Result [Content i] Ending
read Ending = do

y ← read ELEMENT "ending"

y1 ← read 7 (read REQUIRED "number" read CDATA)
(read REQUIRED "type" read Ending)
read Print Object read Print Style
(read IMPLIED "end-length" read Tenths)
(read IMPLIED "text-x" read Tenths)
(read IMPLIED "text-y" read Tenths)
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Ending :: Ending → [Content ()]
show Ending ((a, b, c, d , e, f , g), h) =

show ELEMENT "ending" (show REQUIRED "number" show CDATA a ++
show REQUIRED "type" show Ending b ++
show Print Object c ++ show Print Style d ++
show IMPLIED "end-length" show Tenths e ++
show IMPLIED "text-x" show Tenths f ++
show IMPLIED "text-y" show Tenths g)

18

(show PCDATA h)
-- |

data Ending = Ending 1 | Ending 2 | Ending 3
deriving (Eq ,Show)
-- |

read Ending :: Prelude.String → Result Ending
read Ending "start" = return Ending 1
read Ending "stop" = return Ending 2
read Ending "discontinue" = return Ending 3
read Ending x = fail x

-- |
show Ending :: Ending → Prelude.String
show Ending Ending 1 = "start"

show Ending Ending 2 = "stop"

show Ending Ending 3 = "discontinue"

Repeat marks. The start of the repeat has a forward direction while the end of the repeat has a
backward direction. Backward repeats that are not part of an ending can use the times attribute to
indicate the number of times the repeated section is played.

-- ** Repeat
-- |

type Repeat = ((Repeat ,Maybe CDATA), ())
-- |

read Repeat :: STM Result [Content i] Repeat
read Repeat = do

y ← read ELEMENT "repeat"

y1 ← read 2 (read REQUIRED "direction" read Repeat)
(read IMPLIED "times" read CDATA) (attributes y)

return (y1 , ())
-- |

show Repeat :: Repeat → [Content ()]
show Repeat ((a, b),) =

show ELEMENT "repeat" (show REQUIRED "direction" show Repeat a ++
show IMPLIED "times" show CDATA b) []

-- |
data Repeat = Repeat 1 | Repeat 2

deriving (Eq ,Show)
-- |

read Repeat :: Prelude.String → Result Repeat
read Repeat "backward" = return Repeat 1
read Repeat "forward" = return Repeat 2
read Repeat x = fail x

-- |
show Repeat :: Repeat → Prelude.String
show Repeat Repeat 1 = "backward"

show Repeat Repeat 2 = "forward"

2.3 Common

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

19

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Common (
 module Text.XML.MusicXML.Util,
 module Text.XML.MusicXML.Common)
 where
import Text.XML.MusicXML.Util
import Control.Monad (MonadPlus(..))
import Prelude (Maybe(..), Bool(..), Show, Eq,
 Monad(..), Int, (++), (.))
import qualified Data.Char (String)
import Text.XML.HaXml.Types (Attribute, Content(..))
\end{code}

\begin{musicxml}
 This file contains entities and elements that are common
	across multiple DTD modules. In particular, several elements
	here are common across both notes and measures.

	If greater ASCII compatibility is desired, entity references
	may be used instead of the direct Unicode characters.
	Currently we include ISO Latin-1 for Western European
	characters and ISO Latin-2 for Central European characters.
	These files are local copies of the W3C entities located at:

		http://www.w3.org/2003/entities/

 Data type entities. The ones that resolve to strings show
	intent for how data is formatted and used.

	Calendar dates are represented yyyy-mm-dd format, following
	ISO 8601.
\end{musicxml}
\begin{code}
-- * Entities
-- |
type YYYY_MM_DD = PCDATA
-- |
read_YYYY_MM_DD :: STM Result [Content i] YYYY_MM_DD
read_YYYY_MM_DD = read_PCDATA
-- |
show_YYYY_MM_DD :: YYYY_MM_DD -> [Content ()]
show_YYYY_MM_DD = show_PCDATA
\end{code}

\begin{musicxml}
	The tenths entity is a number representing tenths of
	interline space (positive or negative) for use in
	attributes. The layout-tenths entity is the same for
	use in elements. Both integer and decimal values are
	allowed, such as 5 for a half space and 2.5 for a
	quarter space. Interline space is measured from the
	middle of a staff line.
\end{musicxml}
\begin{code}
-- |
type Tenths = CDATA
-- |
read_Tenths :: Data.Char.String -> Result Tenths
read_Tenths = read_CDATA
-- |
show_Tenths :: Tenths -> Data.Char.String
show_Tenths = show_CDATA
-- |
type Layout_Tenths = PCDATA
-- |
read_Layout_Tenths :: STM Result [Content i] Layout_Tenths
read_Layout_Tenths = read_PCDATA
-- |
show_Layout_Tenths :: Layout_Tenths -> [Content ()]
show_Layout_Tenths = show_PCDATA
\end{code}

\begin{musicxml}
	The start-stop and start-stop-continue entities are used
	for musical elements that can either start or stop, such
	as slurs, tuplets, and wedges. The start-stop-continue
	entity is used when there is a need to refer to an
	intermediate point in the symbol, as for complex slurs.
	The start-stop-single entity is used when the same
	element is used for multi-note and single-note notations,
	as for tremolos.
\end{musicxml}
\begin{code}
-- |
data Start_Stop = Start_Stop_1 | Start_Stop_2
 deriving (Eq, Show)
-- |
read_Start_Stop :: Data.Char.String -> Result Start_Stop
read_Start_Stop "start" = return Start_Stop_1
read_Start_Stop "stop" = return Start_Stop_2
read_Start_Stop _ =
 fail "wrong value at start-stop entity"
-- |
show_Start_Stop :: Start_Stop -> Data.Char.String
show_Start_Stop Start_Stop_1 = "start"
show_Start_Stop Start_Stop_2 = "stop"
-- |
data Start_Stop_Continue = Start_Stop_Continue_1
 | Start_Stop_Continue_2
 | Start_Stop_Continue_3
 deriving (Eq, Show)
-- |
read_Start_Stop_Continue :: Data.Char.String -> Result Start_Stop_Continue
read_Start_Stop_Continue "start" = return Start_Stop_Continue_1
read_Start_Stop_Continue "stop" = return Start_Stop_Continue_2
read_Start_Stop_Continue "continue" = return Start_Stop_Continue_3
read_Start_Stop_Continue _ =
 fail "wrong value at start-stop-continue entity"
-- |
show_Start_Stop_Continue :: Start_Stop_Continue -> Data.Char.String
show_Start_Stop_Continue Start_Stop_Continue_1 = "start"
show_Start_Stop_Continue Start_Stop_Continue_2 = "stop"
show_Start_Stop_Continue Start_Stop_Continue_3 = "continue"
data Start_Stop_Single = Start_Stop_Single_1
 | Start_Stop_Single_2
 | Start_Stop_Single_3
 deriving (Eq, Show)
-- |
read_Start_Stop_Single :: Data.Char.String -> Result Start_Stop_Single
read_Start_Stop_Single "start" = return Start_Stop_Single_1
read_Start_Stop_Single "stop" = return Start_Stop_Single_2
read_Start_Stop_Single "single" = return Start_Stop_Single_3
read_Start_Stop_Single _ =
 fail "wrong value at start-stop-single entity"
-- |
show_Start_Stop_Single :: Start_Stop_Single -> Data.Char.String
show_Start_Stop_Single Start_Stop_Single_1 = "start"
show_Start_Stop_Single Start_Stop_Single_2 = "stop"
show_Start_Stop_Single Start_Stop_Single_3 = "single"
\end{code}

\begin{musicxml}
	The yes-no entity is used for boolean-like attributes.
\end{musicxml}
\begin{code}
-- | The yes-no entity is used for boolean-like attributes.
type Yes_No = Bool
-- |
read_Yes_No :: Data.Char.String -> Result Yes_No
read_Yes_No "yes" = return True
read_Yes_No "no" = return False
read_Yes_No str = fail str
-- |
show_Yes_No :: Yes_No -> Data.Char.String
show_Yes_No True = "yes"
show_Yes_No False = "no"
\end{code}

\begin{musicxml}
 The yes-no-number entity is used for attributes that can
	be either boolean or numeric values. Values can be "yes",
	"no", or numbers.
\end{musicxml}
\begin{code}
-- |
type Yes_No_Number = CDATA
-- |
read_Yes_No_Number :: Data.Char.String -> Result Yes_No_Number
read_Yes_No_Number = read_CDATA
-- |
show_Yes_No_Number :: Yes_No_Number -> Data.Char.String
show_Yes_No_Number = show_CDATA

\end{code}

\begin{musicxml}
	The symbol-size entity is used to indicate full vs.
	cue-sized vs. oversized symbols. The large value
	for oversized symbols was added in version 1.1.
\end{musicxml}
\begin{code}
-- |
data Symbol_Size = Symbol_Size_1
 | Symbol_Size_2
 | Symbol_Size_3
 deriving (Eq, Show)
-- |
read_Symbol_Size :: Data.Char.String -> Result Symbol_Size
read_Symbol_Size "full" = return Symbol_Size_1
read_Symbol_Size "cue" = return Symbol_Size_2
read_Symbol_Size "large" = return Symbol_Size_3
read_Symbol_Size _ =
 fail "wrong value at symbol-size entity"
-- |
show_Symbol_Size :: Symbol_Size -> Data.Char.String
show_Symbol_Size Symbol_Size_1 = "full"
show_Symbol_Size Symbol_Size_2 = "cue"
show_Symbol_Size Symbol_Size_3 = "large"
\end{code}

\begin{musicxml}
	The up-down entity is used for arrow direction,
	indicating which way the tip is pointing.
\end{musicxml}
\begin{code}
-- |
data Up_Down = Up_Down_1 | Up_Down_2
 deriving (Eq, Show)
-- |
read_Up_Down :: Data.Char.String -> Result Up_Down
read_Up_Down "up" = return Up_Down_1
read_Up_Down "down" = return Up_Down_2
read_Up_Down _ =
 fail "wrong value at up-down entity"
-- |
show_Up_Down :: Up_Down -> Data.Char.String
show_Up_Down Up_Down_1 = "up"
show_Up_Down Up_Down_2 = "down"
\end{code}

\begin{musicxml}
	The top-bottom entity is used to indicate the top or
	bottom part of a vertical shape like non-arpeggiate.
\end{musicxml}
\begin{code}
-- |
data Top_Bottom = Top_Bottom_1
 | Top_Bottom_2
 deriving (Eq, Show)
-- |
read_Top_Bottom :: Data.Char.String -> Result Top_Bottom
read_Top_Bottom "top" = return Top_Bottom_1
read_Top_Bottom "bottom" = return Top_Bottom_2
read_Top_Bottom _ =
 fail "wrong value at top-bottom entity"
-- |
show_Top_Bottom :: Top_Bottom -> Data.Char.String
show_Top_Bottom Top_Bottom_1 = "top"
show_Top_Bottom Top_Bottom_2 = "bottom"
\end{code}

\begin{musicxml}
	The left-right entity is used to indicate whether one
	element appears to the left or the right of another
	element.
\end{musicxml}
\begin{code}
-- |
data Left_Right = Left_Right_1 | Left_Right_2
 deriving (Eq, Show)
-- |
read_Left_Right :: Data.Char.String -> Result Left_Right
read_Left_Right "left" = return Left_Right_1
read_Left_Right "right" = return Left_Right_2
read_Left_Right _ =
 fail "wrong value at left-right entity"
-- |
show_Left_Right :: Left_Right -> Data.Char.String
show_Left_Right Left_Right_1 = "left"
show_Left_Right Left_Right_2 = "right"
\end{code}

\begin{musicxml}
	The number-of-lines entity is used to specify the
	number of lines in text decoration attributes.
\end{musicxml}
\begin{code}
-- |
data Number_Of_Lines = Number_Of_Lines_0
 | Number_Of_Lines_1
 | Number_Of_Lines_2
 | Number_Of_Lines_3
 deriving (Eq, Show)
-- |
read_Number_Of_Lines :: Data.Char.String -> Result Number_Of_Lines
read_Number_Of_Lines "0" = return Number_Of_Lines_0
read_Number_Of_Lines "1" = return Number_Of_Lines_1
read_Number_Of_Lines "2" = return Number_Of_Lines_2
read_Number_Of_Lines "3" = return Number_Of_Lines_3
read_Number_Of_Lines _ =
 fail "wrong value at number-of-lines entity"
-- |
show_Number_Of_Lines :: Number_Of_Lines -> Data.Char.String
show_Number_Of_Lines Number_Of_Lines_0 = "0"
show_Number_Of_Lines Number_Of_Lines_1 = "1"
show_Number_Of_Lines Number_Of_Lines_2 = "2"
show_Number_Of_Lines Number_Of_Lines_3 = "3"
\end{code}

\begin{musicxml}
	Slurs, tuplets, and many other features can be
	concurrent and overlapping within a single musical
	part. The number-level attribute distinguishes up to
	six concurrent objects of the same type. A reading
	program should be prepared to handle cases where
	the number-levels stop in an arbitrary order.
	Different numbers are needed when the features
	overlap in MusicXML file order. When a number-level
	value is implied, the value is 1 by default.
\end{musicxml}
\begin{code}
-- |
data Number_Level = Number_Level_1
 | Number_Level_2
 | Number_Level_3
 | Number_Level_4
 | Number_Level_5
 | Number_Level_6
 deriving (Eq, Show)
-- |
read_Number_Level :: Data.Char.String -> Result Number_Level
read_Number_Level "1" = return Number_Level_1
read_Number_Level "2" = return Number_Level_2
read_Number_Level "3" = return Number_Level_3
read_Number_Level "4" = return Number_Level_4
read_Number_Level "5" = return Number_Level_5
read_Number_Level "6" = return Number_Level_6
read_Number_Level _ =
 fail "wrong value at number-level entity"
-- |
show_Number_Level :: Number_Level -> Data.Char.String
show_Number_Level Number_Level_1 = "1"
show_Number_Level Number_Level_2 = "2"
show_Number_Level Number_Level_3 = "3"
show_Number_Level Number_Level_4 = "4"
show_Number_Level Number_Level_5 = "5"
show_Number_Level Number_Level_6 = "6"
\end{code}

\begin{musicxml}
	The MusicXML format supports six levels of beaming, up
	to 256th notes. Unlike the number-level attribute, the
	beam-level attribute identifies concurrent beams in a beam
	group. It does not distinguish overlapping beams such as
	grace notes within regular notes, or beams used in different
	voices.
\end{musicxml}
\begin{code}
-- |
data Beam_Level = Beam_Level_1
 | Beam_Level_2
 | Beam_Level_3
 | Beam_Level_4
 | Beam_Level_5
 | Beam_Level_6
 deriving (Eq, Show)
-- |
read_Beam_Level :: Data.Char.String -> Result Beam_Level
read_Beam_Level "1" = return Beam_Level_1
read_Beam_Level "2" = return Beam_Level_2
read_Beam_Level "3" = return Beam_Level_3
read_Beam_Level "4" = return Beam_Level_4
read_Beam_Level "5" = return Beam_Level_5
read_Beam_Level "6" = return Beam_Level_6
read_Beam_Level _ =
 fail "wrong value at beam-level entity"
-- |
show_Beam_Level :: Beam_Level -> Data.Char.String
show_Beam_Level Beam_Level_1 = "1"
show_Beam_Level Beam_Level_2 = "2"
show_Beam_Level Beam_Level_3 = "3"
show_Beam_Level Beam_Level_4 = "4"
show_Beam_Level Beam_Level_5 = "5"
show_Beam_Level Beam_Level_6 = "6"
\end{code}

\begin{musicxml}
	Common structures for formatting attribute definitions.

	The position attributes are based on MuseData print
	suggestions. For most elements, any program will compute
	a default x and y position. The position attributes let
	this be changed two ways.

	The default-x and default-y attributes change the
	computation of the default position. For most elements,
	the origin is changed relative to the left-hand side of
	the note or the musical position within the bar (x) and
	the top line of the staff (y).

	For the following elements, the default-x value changes
	the origin relative to the start of the current measure:

		- note
		- figured-bass
		- harmony
		- link
		- directive
		- measure-numbering
		- all descendants of the part-list element
		- all children of the direction-type element

	When the part-name and part-abbreviation elements are
	used in the print element, the default-x value changes the
	origin relative to the start of the first measure on the
	system. These values are used when the current measure or
	a succeeding measure starts a new system.

	For the note, figured-bass, and harmony elements, the
	default-x value is considered to have adjusted the musical
	position within the bar for its descendant elements.

	Since the credit-words and credit-image elements are not
	related to a measure, in these cases the default-x and
	default-y attributes adjust the origin relative to the
	bottom left-hand corner of the specified page.

	The relative-x and relative-y attributes change the position
	relative to the default position, either as computed by the
	individual program, or as overridden by the default-x and
	default-y attributes.
	
	Positive x is right, negative x is left; positive y is up,
	negative y is down. All units are in tenths of interline
	space. For stems, positive relative-y lengthens a stem
	while negative relative-y shortens it.

	The default-x and default-y position attributes provide
	higher-resolution positioning data than related features
	such as the placement attribute and the offset element.
	Applications reading a MusicXML file that can understand
	both features should generally rely on the default-x and
	default-y attributes for their greater accuracy. For the
	relative-x and relative-y attributes, the offset element,
	placement attribute, and directive attribute provide
	context for the relative position information, so the two
	features should be interpreted together.

	As elsewhere in the MusicXML format, tenths are the global
	tenths defined by the scaling element, not the local tenths
	of a staff resized by the staff-size element.
\end{musicxml}
\begin{code}
-- * Attributes
-- |
type Position = (Maybe Tenths, Maybe Tenths, Maybe Tenths, Maybe Tenths)
-- |
read_Position :: STM Result [Attribute] Position
read_Position = do
 y1 <- read_IMPLIED "default-x" read_Tenths
 y2 <- read_IMPLIED "default-y" read_Tenths
 y3 <- read_IMPLIED "relative-x" read_Tenths
 y4 <- read_IMPLIED "relative-y" read_Tenths
 return (y1,y2,y3,y4)
-- |
show_Position :: Position -> [Attribute]
show_Position (a,b,c,d) =
 show_IMPLIED "default-x" show_Tenths a ++
 show_IMPLIED "default-y" show_Tenths b ++
 show_IMPLIED "relative-x" show_Tenths c ++
 show_IMPLIED "relative-y" show_Tenths d
\end{code}

\begin{musicxml}
	The placement attribute indicates whether something is
	above or below another element, such as a note or a
	notation.
\end{musicxml}
\begin{code}
-- |
type Placement = Maybe Placement_
-- |
read_Placement :: STM Result [Attribute] Placement
read_Placement = read_IMPLIED "placement" read_Placement_
-- |
show_Placement :: Placement -> [Attribute]
show_Placement = show_IMPLIED "placement" show_Placement_
-- |
data Placement_ = Placement_1
 | Placement_2
 deriving (Eq, Show)
-- |
read_Placement_ :: Data.Char.String -> Result Placement_
read_Placement_ "above" = return Placement_1
read_Placement_ "below" = return Placement_2
read_Placement_ _ =
 fail "wrong value at placement attribute"
-- |
show_Placement_ :: Placement_ -> Data.Char.String
show_Placement_ Placement_1 = "above"
show_Placement_ Placement_2 = "below"
\end{code}

\begin{musicxml}
	The orientation attribute indicates whether slurs and
	ties are overhand (tips down) or underhand (tips up).
	This is distinct from the placement entity used by any
	notation type.
\end{musicxml}
\begin{code}
-- |
type Orientation = Maybe Orientation_
-- |
read_Orientation :: STM Result [Attribute] Orientation
read_Orientation = read_IMPLIED "orientation" read_Orientation_
-- |
show_Orientation :: Orientation -> [Attribute]
show_Orientation = show_IMPLIED "orientation" show_Orientation_
-- |
data Orientation_ = Orientation_1 | Orientation_2
 deriving (Eq, Show)
-- |
read_Orientation_ :: Data.Char.String -> Result Orientation_
read_Orientation_ "over" = return Orientation_1
read_Orientation_ "under" = return Orientation_2
read_Orientation_ _ =
 fail "wrong value at orientation attribute"
-- |
show_Orientation_ :: Orientation_ -> Data.Char.String
show_Orientation_ Orientation_1 = "over"
show_Orientation_ Orientation_2 = "under"
\end{code}

\begin{musicxml}
	The directive entity changes the default-x position
	of a direction. It indicates that the left-hand side of the
	direction is aligned with the left-hand side of the time
	signature. If no time signature is present, it is aligned
	with the left-hand side of the first music notational
	element in the measure. If a default-x, justify, or halign
	attribute is present, it overrides the directive entity.
\end{musicxml}
\begin{code}
-- |
type Directive = Maybe Yes_No
-- |
read_Directive :: STM Result [Attribute] Directive
read_Directive = read_IMPLIED "directive" read_Yes_No
-- |
show_Directive :: Directive -> [Attribute]
show_Directive = show_IMPLIED "directive" show_Yes_No
\end{code}

\begin{musicxml}
	The bezier entity is used to indicate the curvature of
	slurs and ties, representing the control points for a
	cubic bezier curve. For ties, the bezier entity is
	used with the tied element.

	Normal slurs, S-shaped slurs, and ties need only two
	bezier points: one associated with the start of the slur
	or tie, the other with the stop. Complex slurs and slurs
	divided over system breaks can specify additional
	bezier data at slur elements with a continue type.
	
	The bezier-offset, bezier-x, and bezier-y attributes
	describe the outgoing bezier point for slurs and ties
	with a start type, and the incoming bezier point for
	slurs and ties with types of stop or continue. The
	attributes bezier-offset2, bezier-x2, and bezier-y2
	are only valid with slurs of type continue, and
	describe the outgoing bezier point.
	
	The bezier-offset and bezier-offset2 attributes are
	measured in terms of musical divisions, like the offset
	element. These are the recommended attributes for
	specifying horizontal position. The other attributes
	are specified in tenths, relative to any position
	settings associated with the slur or tied element.
\end{musicxml}
\begin{code}
-- |
type Bezier = (Maybe CDATA, Maybe CDATA,
 Maybe Tenths, Maybe Tenths, Maybe Tenths, Maybe Tenths)
-- |
read_Bezier :: STM Result [Attribute] Bezier
read_Bezier = do
 y1 <- read_IMPLIED "bezier-offset" read_CDATA
 y2 <- read_IMPLIED "bezier-offset2" read_CDATA
 y3 <- read_IMPLIED "bezier-x" read_Tenths
 y4 <- read_IMPLIED "bezier-y" read_Tenths
 y5 <- read_IMPLIED "bezier-x2" read_Tenths
 y6 <- read_IMPLIED "bezier-y2" read_Tenths
 return (y1,y2,y3,y4,y5,y6)

-- |
show_Bezier :: Bezier -> [Attribute]
show_Bezier (a,b,c,d,e,f) =
 show_IMPLIED "bezier-offset" show_CDATA a ++
 show_IMPLIED "bezier-offset2" show_CDATA b ++
 show_IMPLIED "bezier-x" show_CDATA c ++
 show_IMPLIED "bezier-y" show_CDATA d ++
 show_IMPLIED "bezier-x2" show_CDATA e ++
 show_IMPLIED "bezier-y2" show_CDATA f
\end{code}

\begin{musicxml}
	The font entity gathers together attributes for
	determining the font within a directive or direction.
	They are based on the text styles for Cascading
	Style Sheets. The font-family is a comma-separated list
	of font names. These can be specific font styles such
	as Maestro or Opus, or one of several generic font styles:
	music, serif, sans-serif, handwritten, cursive, fantasy,
	and monospace. The music and handwritten values refer
	to music fonts; the rest refer to text fonts. The fantasy
	style refers to decorative text such as found in older
	German-style printing. The font-style can be normal or
	italic. The font-size can be one of the CSS sizes
	(xx-small, x-small, small, medium, large, x-large,
	xx-large) or a numeric point size. The font-weight can
	be normal or bold. The default is application-dependent,
	but is a text font vs. a music font.
\end{musicxml}
\begin{code}
-- |
type Font = (Maybe CDATA, Maybe CDATA, Maybe CDATA, Maybe CDATA)
-- |
read_Font :: STM Result [Attribute] Font
read_Font = do
 y1 <- read_IMPLIED "font-family" read_CDATA
 y2 <- read_IMPLIED "font-style" read_CDATA
 y3 <- read_IMPLIED "font-size" read_CDATA
 y4 <- read_IMPLIED "font-weight" read_CDATA
 return (y1,y2,y3,y4)
-- |
show_Font :: Font -> [Attribute]
show_Font (a,b,c,d) =
 show_IMPLIED "font-family" show_CDATA a ++
 show_IMPLIED "font-style" show_CDATA b ++
 show_IMPLIED "font-size" show_CDATA c ++
 show_IMPLIED "font-weight" show_CDATA d
\end{code}

\begin{musicxml}
	The color entity indicates the color of an element.
	Color may be represented as hexadecimal RGB triples,
	as in HTML, or as hexadecimal ARGB tuples, with the
	A indicating alpha of transparency. An alpha value
	of 00 is totally transparent; FF is totally opaque.
	If RGB is used, the A value is assumed to be FF.

	For instance, the RGB value \ "\#800080" \ represents
	purple. An ARGB value of \ \ "\#40800080" \ would be a
	transparent purple.

	As in SVG 1.1, colors are defined in terms of the
	sRGB color space (IEC 61966).
\end{musicxml}
\begin{code}
-- |
type Color = Maybe CDATA
-- |
read_Color :: STM Result [Attribute] Color
read_Color = read_IMPLIED "color" read_CDATA
-- |
show_Color :: Color -> [Attribute]
show_Color = show_IMPLIED "color" show_CDATA
\end{code}

\begin{musicxml}
	The text-decoration entity is based on the similar
	feature in XHTML and CSS. It allows for text to
	be underlined, overlined, or struck-through. It
	extends the CSS version by allow double or
	triple lines instead of just being on or off.
\end{musicxml}
\begin{code}
-- |
type Text_Decoration = (Maybe Number_Of_Lines,
 Maybe Number_Of_Lines,
 Maybe Number_Of_Lines)
-- |
read_Text_Decoration :: STM Result [Attribute] Text_Decoration
read_Text_Decoration = do
 y1 <- read_IMPLIED "underline" read_Number_Of_Lines
 y2 <- read_IMPLIED "overline" read_Number_Of_Lines
 y3 <- read_IMPLIED "line-through" read_Number_Of_Lines
 return (y1,y2,y3)
-- |
show_Text_Decoration :: Text_Decoration -> [Attribute]
show_Text_Decoration (a,b,c) =
 show_IMPLIED "underline" show_Number_Of_Lines a ++
 show_IMPLIED "overline" show_Number_Of_Lines b ++
 show_IMPLIED "line-through" show_Number_Of_Lines c
\end{code}

\begin{musicxml}
	The justify entity is used to indicate left, center,
	or right justification. The default value varies for
	different elements.
\end{musicxml}
\begin{code}
-- |
type Justify = Maybe Justify_
-- |
read_Justify :: STM Result [Attribute] Justify
read_Justify = read_IMPLIED "justify" read_Justify_
-- |
show_Justify :: Justify -> [Attribute]
show_Justify = show_IMPLIED "justify" show_Justify_
-- |
data Justify_ = Justify_1 | Justify_2 | Justify_3
 deriving (Eq, Show)
-- |
read_Justify_ :: Data.Char.String -> Result Justify_
read_Justify_ "left" = return Justify_1
read_Justify_ "center" = return Justify_2
read_Justify_ "right" = return Justify_3
read_Justify_ _ =
 fail "wrong value at justify attribute"
-- |
show_Justify_ :: Justify_ -> Data.Char.String
show_Justify_ Justify_1 = "left"
show_Justify_ Justify_2 = "center"
show_Justify_ Justify_3 = "right"
\end{code}

\begin{musicxml}
	In cases where text extends over more than one line,
	horizontal alignment and justify values can be different.
	The most typical case is for credits, such as:

		Words and music by
		 Pat Songwriter

	Typically this type of credit is aligned to the right,
	so that the position information refers to the right-
	most part of the text. But in this example, the text
	is center-justified, not right-justified.

	The halign attribute is used in these situations. If it
	is not present, its value is the same as for the justify
	attribute.
\end{musicxml}
\begin{code}
-- |
type Halign = Maybe Halign_
-- |
read_Halign :: STM Result [Attribute] Halign
read_Halign = read_IMPLIED "halign" read_Halign_
-- |
show_Halign :: Halign -> [Attribute]
show_Halign = show_IMPLIED "halign" show_Halign_
-- |
data Halign_ = Halign_1 | Halign_2 | Halign_3
 deriving (Eq, Show)
-- |
read_Halign_ :: Data.Char.String -> Result Halign_
read_Halign_ "left" = return Halign_1
read_Halign_ "center" = return Halign_2
read_Halign_ "right" = return Halign_3
read_Halign_ _ =
 fail "wrong value at halign attribute"
-- |
show_Halign_ :: Halign_ -> Data.Char.String
show_Halign_ Halign_1 = "left"
show_Halign_ Halign_2 = "center"
show_Halign_ Halign_3 = "right"
\end{code}

\begin{musicxml}
	The valign entity is used to indicate vertical
	alignment to the top, middle, bottom, or baseline
	of the text. Defaults are implementation-dependent.
\end{musicxml}
\begin{code}
-- |
type Valign = Maybe Valign_
-- |
read_Valign :: STM Result [Attribute] Valign
read_Valign = read_IMPLIED "valign" read_Valign_
-- |
show_Valign :: Valign -> [Attribute]
show_Valign = show_IMPLIED "valign" show_Valign_
-- |
data Valign_ = Valign_1 | Valign_2 | Valign_3 | Valign_4
 deriving (Eq, Show)
-- |
read_Valign_ :: Data.Char.String -> Result Valign_
read_Valign_ "top" = return Valign_1
read_Valign_ "middle" = return Valign_2
read_Valign_ "bottom" = return Valign_3
read_Valign_ "baseline" = return Valign_4
read_Valign_ _ =
 fail "wrong value at valign attribute"
-- |
show_Valign_ :: Valign_ -> Data.Char.String
show_Valign_ Valign_1 = "top"
show_Valign_ Valign_2 = "middle"
show_Valign_ Valign_3 = "bottom"
show_Valign_ Valign_4 = "baseline"
\end{code}

\begin{musicxml}
	The valign-image entity is used to indicate vertical
	alignment for images and graphics, so it removes the
	baseline value. Defaults are implementation-dependent.
\end{musicxml}
\begin{code}
-- |
type Valign_Image = Maybe Valign_Image_
-- |
read_Valign_Image :: STM Result [Attribute] Valign_Image
read_Valign_Image = read_IMPLIED "valign-image" read_Valign_Image_
-- |
show_Valign_Image :: Valign_Image -> [Attribute]
show_Valign_Image = show_IMPLIED "valign-image" show_Valign_Image_
-- |
data Valign_Image_ = Valign_Image_1 | Valign_Image_2 | Valign_Image_3
 deriving (Eq, Show)
-- |
read_Valign_Image_ :: Data.Char.String -> Result Valign_Image_
read_Valign_Image_ "top" = return Valign_Image_1
read_Valign_Image_ "middle" = return Valign_Image_2
read_Valign_Image_ "bottom" = return Valign_Image_3
read_Valign_Image_ _ =
 fail "wrong value at valign-image attribute"
-- |
show_Valign_Image_ :: Valign_Image_ -> Data.Char.String
show_Valign_Image_ Valign_Image_1 = "top"
show_Valign_Image_ Valign_Image_2 = "middle"
show_Valign_Image_ Valign_Image_3 = "bottom"
\end{code}

\begin{musicxml}
	The letter-spacing entity specifies text tracking.
	Values are either "normal" or a number representing
	the number of ems to add between each letter. The
	number may be negative in order to subtract space.
	The default is normal, which allows flexibility of
	letter-spacing for purposes of text justification.
\end{musicxml}
\begin{code}
-- |
type Letter_Spacing = Maybe CDATA
-- |
read_Letter_Spacing :: STM Result [Attribute] Letter_Spacing
read_Letter_Spacing = read_IMPLIED "letter-spacing" read_CDATA
-- |
show_Letter_Spacing :: Letter_Spacing -> [Attribute]
show_Letter_Spacing = show_IMPLIED "letter-spacing" show_CDATA
\end{code}

\begin{musicxml}
	The line-height entity specified text leading. Values
	are either "normal" or a number representing the
	percentage of the current font height to use for
	leading. The default is "normal". The exact normal
	value is implementation-dependent, but values
	between 100 and 120 are recommended.
\end{musicxml}
\begin{code}
-- |
type Line_Height = Maybe CDATA
-- |
read_Line_Height :: STM Result [Attribute] Line_Height
read_Line_Height = read_IMPLIED "line-height" read_CDATA
-- |
show_Line_Height :: Line_Height -> [Attribute]
show_Line_Height = show_IMPLIED "line-height" show_CDATA
\end{code}

\begin{musicxml}
	The text-direction entity is used to adjust and override
	the Unicode bidirectional text algorithm, similar to the
	W3C Internationalization Tag Set recommendation. Values
	are ltr (left-to-right embed), rtl (right-to-left embed),
	lro (left-to-right bidi-override), and rlo (right-to-left
	bidi-override). The default value is ltr. This entity
	is typically used by applications that store text in
	left-to-right visual order rather than logical order.
	Such applications can use the lro value to better
	communicate with other applications that more fully
	support bidirectional text.
\end{musicxml}
\begin{code}
-- |
type Text_Direction = Maybe Text_Direction_
-- |
read_Text_Direction :: STM Result [Attribute] Text_Direction
read_Text_Direction = read_IMPLIED "dir" read_Text_Direction_
-- |
show_Text_Direction :: Text_Direction -> [Attribute]
show_Text_Direction = show_IMPLIED "dir" show_Text_Direction_
-- |
data Text_Direction_ = Text_Direction_1
 | Text_Direction_2
 | Text_Direction_3
 | Text_Direction_4
 deriving (Eq, Show)
-- |
read_Text_Direction_ :: Data.Char.String -> Result Text_Direction_
read_Text_Direction_ "ltr" = return Text_Direction_1
read_Text_Direction_ "rtl" = return Text_Direction_2
read_Text_Direction_ "rlo" = return Text_Direction_3
read_Text_Direction_ "lro" = return Text_Direction_4
read_Text_Direction_ _ =
 fail "wrong value at text-direction attribute"
-- |
show_Text_Direction_ :: Text_Direction_ -> Data.Char.String
show_Text_Direction_ Text_Direction_1 = "ltr"
show_Text_Direction_ Text_Direction_2 = "rtl"
show_Text_Direction_ Text_Direction_3 = "rlo"
show_Text_Direction_ Text_Direction_4 = "lro"
\end{code}

\begin{musicxml}
	The text-rotation entity is used to rotate text
	around the alignment point specified by the
	halign and valign entities. The value is a number
	ranging from -180 to 180. Positive values are
	clockwise rotations, while negative values are
	counter-clockwise rotations.
\end{musicxml}
\begin{code}
-- |
type Text_Rotation = Maybe CDATA
-- |
read_Text_Rotation :: STM Result [Attribute] Text_Rotation
read_Text_Rotation = read_IMPLIED "text-rotation" read_CDATA
-- |
show_Text_Rotation :: Text_Rotation -> [Attribute]
show_Text_Rotation = show_IMPLIED "text-rotation" show_CDATA
\end{code}

\begin{musicxml}
	The print-style entity groups together the most popular
	combination of printing attributes: position, font, and
	color.
\end{musicxml}
\begin{code}
-- |
type Print_Style = (Position, Font, Color)
-- |
read_Print_Style :: STM Result [Attribute] Print_Style
read_Print_Style = do
 y1 <- read_Position
 y2 <- read_Font
 y3 <- read_Color
 return (y1,y2,y3)
-- |
show_Print_Style :: Print_Style -> [Attribute]
show_Print_Style (a,b,c) =
 show_Position a ++ show_Font b ++ show_Color c
\end{code}

\begin{musicxml}
	The line-shape entity is used to distinguish between
	straight and curved lines. The line-type entity
	distinguishes between solid, dashed, dotted, and
	wavy lines.
\end{musicxml}
\begin{code}
type Line_Shape = Maybe Line_Shape_
-- |
read_Line_Shape :: STM Result [Attribute] Line_Shape
read_Line_Shape = read_IMPLIED "line-shape" read_Line_Shape_
-- |
show_Line_Shape :: Line_Shape -> [Attribute]
show_Line_Shape = show_IMPLIED "line-shape" show_Line_Shape_
-- |
data Line_Shape_ = Line_Shape_1 | Line_Shape_2
 deriving (Eq, Show)
-- |
read_Line_Shape_ :: Data.Char.String -> Result Line_Shape_
read_Line_Shape_ "straight" = return Line_Shape_1
read_Line_Shape_ "curved" = return Line_Shape_2
read_Line_Shape_ _ =
 fail "wrong value at line-shape attribute"
-- |
show_Line_Shape_ :: Line_Shape_ -> Data.Char.String
show_Line_Shape_ Line_Shape_1 = "straight"
show_Line_Shape_ Line_Shape_2 = "curved"
-- |
type Line_Type = Maybe Line_Type_
-- |
read_Line_Type :: STM Result [Attribute] Line_Type
read_Line_Type = read_IMPLIED "line-type" read_Line_Type_
-- |
show_Line_Type :: Line_Type -> [Attribute]
show_Line_Type = show_IMPLIED "line-type" show_Line_Type_
-- |
data Line_Type_ = Line_Type_1 | Line_Type_2 | Line_Type_3 | Line_Type_4
 deriving (Eq, Show)
-- |
read_Line_Type_ :: Data.Char.String -> Result Line_Type_
read_Line_Type_ "solid" = return Line_Type_1
read_Line_Type_ "dashed" = return Line_Type_2
read_Line_Type_ "dotted" = return Line_Type_3
read_Line_Type_ "wavy" = return Line_Type_4
read_Line_Type_ _ =
 fail "wrong value at line-type attribute"
show_Line_Type_ :: Line_Type_ -> Data.Char.String
show_Line_Type_ Line_Type_1 = "solid"
show_Line_Type_ Line_Type_2 = "dashed"
show_Line_Type_ Line_Type_3 = "dotted"
show_Line_Type_ Line_Type_4 = "wavy"
\end{code}

\begin{musicxml}
	The printout entity is based on MuseData print
	suggestions. They allow a way to specify not to print
	print an object (e.g. note or rest), its augmentation
	dots, or its lyrics. This is especially useful for notes
	that overlap in different voices, or for chord sheets
	that contain lyrics and chords but no melody. For wholly
	invisible notes, such as those providing sound-only data,
	the attribute for print-spacing may be set to no so that
	no space is left for this note. The print-spacing value
	is only used if no note, dot, or lyric is being printed.

	By default, all these attributes are set to yes. If
	print-object is set to no, print-dot and print-lyric are
	interpreted to also be set to no if they are not present.
\end{musicxml}
\begin{code}
-- |
type Print_Object = Maybe Yes_No
-- |
read_Print_Object :: STM Result [Attribute] Print_Object
read_Print_Object = read_IMPLIED "print-object" read_Yes_No
-- |
show_Print_Object :: Print_Object -> [Attribute]
show_Print_Object = show_IMPLIED "print-object" show_Yes_No
-- |
type Print_Spacing = Maybe Yes_No
-- |
read_Print_Spacing :: STM Result [Attribute] Print_Spacing
read_Print_Spacing = read_IMPLIED "print-spacing" read_Yes_No
-- |
show_Print_Spacing :: Print_Spacing -> [Attribute]
show_Print_Spacing = show_IMPLIED "print-spacing" show_Yes_No
-- |
type Printout = (Print_Object, Maybe Yes_No, Print_Spacing, Maybe Yes_No)
-- |
read_Printout :: STM Result [Attribute] Printout
read_Printout = do
 y1 <- read_Print_Object
 y2 <- read_IMPLIED "print-dot" read_Yes_No
 y3 <- read_Print_Spacing
 y4 <- read_IMPLIED "print-lyric" read_Yes_No
 return (y1,y2,y3,y4)
-- |
show_Printout :: Printout -> [Attribute]
show_Printout (a,b,c,d) =
 show_Print_Object a ++
 show_IMPLIED "print-dot" show_Yes_No b ++
 show_Print_Spacing c ++
 show_IMPLIED "print-lyric" show_Yes_No d
\end{code}

\begin{musicxml}
	The text-formatting entity contains the common formatting
	attributes for text elements. Default values may differ
	across the elements that use this entity.
\end{musicxml}
\begin{code}
type Text_Formatting = (Justify, Halign, Valign,
 Print_Style, Text_Decoration, Text_Rotation, Letter_Spacing,
 Line_Height, Maybe CDATA, Text_Direction, Maybe Text_Formatting_)
-- |
read_Text_Formatting :: STM Result [Attribute] Text_Formatting
read_Text_Formatting = do
 y1 <- read_Justify
 y2 <- read_Halign
 y3 <- read_Valign
 y4 <- read_Print_Style
 y5 <- read_Text_Decoration
 y6 <- read_Text_Rotation
 y7 <- read_Letter_Spacing
 y8 <- read_Line_Height
 y9 <- read_IMPLIED "xml:lang" read_CDATA
 y10 <- read_Text_Direction
 y11 <- read_IMPLIED "enclosure" read_Text_Formatting_
 return (y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11)
-- |
show_Text_Formatting :: Text_Formatting -> [Attribute]
show_Text_Formatting (a,b,c,d,e,f,g,h,i,j,k) =
 show_Justify a ++
 show_Halign b ++
 show_Valign c ++
 show_Print_Style d ++
 show_Text_Decoration e ++
 show_Text_Rotation f ++
 show_Letter_Spacing g ++
 show_Line_Height h ++
 show_IMPLIED "xml:lang" show_CDATA i ++
 show_Text_Direction j ++
 show_IMPLIED "enclosure" show_Text_Formatting_ k
-- |
data Text_Formatting_ = Text_Formatting_1
 | Text_Formatting_2
 | Text_Formatting_3
 deriving (Eq, Show)
-- |
read_Text_Formatting_ :: Data.Char.String -> Result Text_Formatting_
read_Text_Formatting_ "rectangle" = return Text_Formatting_1
read_Text_Formatting_ "oval" = return Text_Formatting_2
read_Text_Formatting_ "none" = return Text_Formatting_3
read_Text_Formatting_ _ =
 fail "wrong value at enclosure attribute"
-- |
show_Text_Formatting_ :: Text_Formatting_ -> Data.Char.String
show_Text_Formatting_ Text_Formatting_1 = "rectangle"
show_Text_Formatting_ Text_Formatting_2 = "oval"
show_Text_Formatting_ Text_Formatting_3 = "none"
\end{code}

\begin{musicxml}
	The level-display entity allows specification of three
	common ways to indicate editorial indications: putting
	parentheses or square brackets around a symbol, or making
	the symbol a different size. If not specified, they are
	left to application defaults. It is used by the level and
	accidental elements.
\end{musicxml}
\begin{code}
-- |
type Level_Display = (Maybe Yes_No, Maybe Yes_No, Maybe Symbol_Size)
-- |
read_Level_Display :: STM Result [Attribute] Level_Display
read_Level_Display = do -- return (
 y1 <- read_IMPLIED "parentheses" read_Yes_No
 y2 <- read_IMPLIED "braket" read_Yes_No
 y3 <- read_IMPLIED "size" read_Symbol_Size
 return (y1,y2,y3)

-- |
show_Level_Display :: Level_Display -> [Attribute]
show_Level_Display (a,b,c) =
 show_IMPLIED "parentheses" show_Yes_No a ++
 show_IMPLIED "braket" show_Yes_No b ++
 show_IMPLIED "size" show_Symbol_Size c
\end{code}

\begin{musicxml}
	Common structures for playback attribute definitions.

	The trill-sound entity includes attributes used to guide
	the sound of trills, mordents, turns, shakes, and wavy
	lines, based on MuseData sound suggestions. The default
	choices are:
	
		start-note = "upper"
		trill-step = "whole"
		two-note-turn = "none"
		accelerate = "no"
		beats = "4" (minimum of "2").
	
	Second-beat and last-beat are percentages for landing on
	the indicated beat, with defaults of 25 and 75 respectively.
	
	For mordent and inverted-mordent elements, the defaults
	are different:
	
		The default start-note is "main", not "upper".
		The default for beats is "3", not "4".
		The default for second-beat is "12", not "25".
		The default for last-beat is "24", not "75".
\end{musicxml}
\begin{code}
-- * Attributes
-- |
type Trill_Sound = (
 Maybe Trill_Sound_A, Maybe Trill_Sound_B, Maybe Trill_Sound_C,
 Maybe Bool, Maybe CDATA, Maybe CDATA, Maybe CDATA)
-- |
read_Trill_Sound :: STM Result [Attribute] Trill_Sound
read_Trill_Sound = do
 y1 <- read_IMPLIED "start-note" read_Trill_Sound_A
 y2 <- read_IMPLIED "trill-step" read_Trill_Sound_B
 y3 <- read_IMPLIED "two-note-turn" read_Trill_Sound_C
 y4 <- read_IMPLIED "accelerate" read_Yes_No
 y5 <- read_IMPLIED "beats" read_CDATA
 y6 <- read_IMPLIED "second-beat" read_CDATA
 y7 <- read_IMPLIED "last-beat" read_CDATA
 return (y1,y2,y3,y4,y5,y6,y7)
-- |
show_Trill_Sound :: Trill_Sound -> [Attribute]
show_Trill_Sound (a,b,c,d,e,f,g) =
 show_IMPLIED "start-note" show_Trill_Sound_A a ++
 show_IMPLIED "trill-step" show_Trill_Sound_B b ++
 show_IMPLIED "two-note-turn" show_Trill_Sound_C c ++
 show_IMPLIED "accelerate" show_Yes_No d ++
 show_IMPLIED "beats" show_CDATA e ++
 show_IMPLIED "second-beat" show_CDATA f ++
 show_IMPLIED "last-beat" show_CDATA g
-- |
data Trill_Sound_A = Trill_Sound_1 | Trill_Sound_2 | Trill_Sound_3
 deriving (Eq, Show)
-- |
read_Trill_Sound_A :: Data.Char.String -> Result Trill_Sound_A
read_Trill_Sound_A "upper" = return Trill_Sound_1
read_Trill_Sound_A "main" = return Trill_Sound_2
read_Trill_Sound_A "below" = return Trill_Sound_3
read_Trill_Sound_A _ =
 fail "wrong value at start-note attribute"
-- |
show_Trill_Sound_A :: Trill_Sound_A -> Data.Char.String
show_Trill_Sound_A Trill_Sound_1 = "upper"
show_Trill_Sound_A Trill_Sound_2 = "main"
show_Trill_Sound_A Trill_Sound_3 = "below"
-- |
data Trill_Sound_B = Trill_Sound_4 | Trill_Sound_5 | Trill_Sound_6
 deriving (Eq, Show)
-- |
read_Trill_Sound_B :: Data.Char.String -> Result Trill_Sound_B
read_Trill_Sound_B "whole" = return Trill_Sound_4
read_Trill_Sound_B "half" = return Trill_Sound_5
read_Trill_Sound_B "unison" = return Trill_Sound_6
read_Trill_Sound_B _ =
 fail "wrong value at trill-step attribute"
-- |
show_Trill_Sound_B :: Trill_Sound_B -> Data.Char.String
show_Trill_Sound_B Trill_Sound_4 = "whole"
show_Trill_Sound_B Trill_Sound_5 = "half"
show_Trill_Sound_B Trill_Sound_6 = "unison"
-- |
data Trill_Sound_C = Trill_Sound_7 | Trill_Sound_8 | Trill_Sound_9
 deriving (Eq, Show)
-- |
read_Trill_Sound_C :: Data.Char.String -> Result Trill_Sound_C
read_Trill_Sound_C "whole" = return Trill_Sound_7
read_Trill_Sound_C "half" = return Trill_Sound_8
read_Trill_Sound_C "none" = return Trill_Sound_9
read_Trill_Sound_C _ =
 fail "wrong value at two-note-turn attribute"
-- |
show_Trill_Sound_C :: Trill_Sound_C -> Data.Char.String
show_Trill_Sound_C Trill_Sound_7 = "whole"
show_Trill_Sound_C Trill_Sound_8 = "half"
show_Trill_Sound_C Trill_Sound_9 = "none"
\end{code}

\begin{musicxml}
	The bend-sound entity is used for bend and slide elements,
	and is similar to the trill-sound. Here the beats element
	refers to the number of discrete elements (like MIDI pitch
	bends) used to represent a continuous bend or slide. The
	first-beat indicates the percentage of the direction for
	starting a bend; the last-beat the percentage for ending it.
	The default choices are:
	
		accelerate = "no"
		beats = "4" (minimum of "2")
		first-beat = "25"
		last-beat = "75"
\end{musicxml}
\begin{code}
-- |
type Bend_Sound = (Maybe Yes_No, Maybe CDATA, Maybe CDATA, Maybe CDATA)
-- |
read_Bend_Sound :: STM Result [Attribute] Bend_Sound
read_Bend_Sound = do
 y1 <- read_IMPLIED "accelerate" read_Yes_No
 y2 <- read_IMPLIED "beats" read_CDATA
 y3 <- read_IMPLIED "first-beat" read_CDATA
 y4 <- read_IMPLIED "last-beat" read_CDATA
 return (y1,y2,y3,y4)
-- |
show_Bend_Sound :: Bend_Sound -> [Attribute]
show_Bend_Sound (a,b,c,d) =
 show_IMPLIED "accelerate" show_Yes_No a ++
 show_IMPLIED "beats" show_CDATA b ++
 show_IMPLIED "first-beat" show_CDATA c ++
 show_IMPLIED "second-beat" show_CDATA d
\end{code}

\begin{musicxml}
 Common structures for other attribute definitions.

	The document-attributes entity is used to specify the
	attributes for an entire MusicXML document. Currently
	this is used for the version attribute.

	The version attribute was added in Version 1.1 for the
	score-partwise and score-timewise documents, and in
	Version 2.0 for opus documents. It provides an easier
	way to get version information than through the MusicXML
	public ID. The default value is 1.0 to make it possible
	for programs that handle later versions to distinguish
	earlier version files reliably. Programs that write
	MusicXML 1.1 or 2.0 files should set this attribute.
\end{musicxml}
\begin{code}
-- * Attributes
-- |
type Document_Attributes = CDATA
-- |
read_Document_Attributes :: STM Result [Attribute] Document_Attributes
read_Document_Attributes = read_DEFAULT "version" read_CDATA "1.0"
-- |
show_Document_Attributes :: Document_Attributes -> [Attribute]
show_Document_Attributes = show_DEFAULT "version" show_CDATA
\end{code}

\begin{musicxml}
	Common structures for element definitions.

	Two entities for editorial information in notes. These
	entities, and their elements defined below, are used
	across all the different component DTD modules.
\end{musicxml}
\begin{code}
-- * Elements
-- |
type Editorial = (Maybe Footnote, Maybe Level)
-- |
read_Editorial :: STM Result [Content i] (Editorial)
read_Editorial = do
 y1 <- read_MAYBE read_Footnote
 y2 <- read_MAYBE read_Level
 return (y1,y2)
-- |
show_Editorial :: Editorial -> [Content ()]
show_Editorial (a,b) =
 show_MAYBE show_Footnote a ++
 show_MAYBE show_Level b
-- |
type Editorial_Voice = (Maybe Footnote, Maybe Level, Maybe Voice)
-- |
read_Editorial_Voice :: STM Result [Content i] Editorial_Voice
read_Editorial_Voice = do
 y1 <- read_MAYBE read_Footnote
 y2 <- read_MAYBE read_Level
 y3 <- read_MAYBE read_Voice
 return (y1,y2,y3)
-- |
show_Editorial_Voice :: Editorial_Voice -> [Content ()]
show_Editorial_Voice (a,b,c) =
 show_MAYBE show_Footnote a ++
 show_MAYBE show_Level b ++
 show_MAYBE show_Voice c
\end{code}

\begin{musicxml}
	Footnote and level are used to specify editorial
	information, while voice is used to distinguish between
	multiple voices (what MuseData calls tracks) in individual
	parts. These elements are used throughout the different
	MusicXML DTD modules. If the reference attribute for the
	level element is yes, this indicates editorial information
	that is for display only and should not affect playback.
	For instance, a modern edition of older music may set
	reference="yes" on the attributes containing the music's
	original clef, key, and time signature. It is no by default.
\end{musicxml}
\begin{code}
-- * Elements
-- |
type Footnote = (Text_Formatting, PCDATA)
-- |
read_Footnote :: STM Result [Content i] Footnote
read_Footnote = do
 y <- read_ELEMENT "footnote"
 y1 <- read_1 read_Text_Formatting (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Footnote :: Footnote -> [Content ()]
show_Footnote (a,b) =
 show_ELEMENT "footnote"
 (show_Text_Formatting a)
 (show_PCDATA b)
-- |
type Level = ((Maybe Yes_No, Level_Display), PCDATA)
-- |
read_Level :: STM Result [Content i] Level
read_Level = do
 y <- read_ELEMENT "level"
 y1 <- read_2 (read_IMPLIED "reference" read_Yes_No)
 read_Level_Display (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Level :: Level -> [Content ()]
show_Level ((a,b),c) =
 show_ELEMENT "level"
 (show_IMPLIED "reference" show_Yes_No a ++
 show_Level_Display b)
 (show_PCDATA c)
-- |
type Voice = PCDATA
-- |
read_Voice :: STM Result [Content i] Voice
read_Voice = do
 y <- read_ELEMENT "voice"
 read_1 read_PCDATA (childs y)
-- |
show_Voice :: Voice -> [Content ()]
show_Voice x = show_ELEMENT "voice" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
 Fermata and wavy-line elements can be applied both to
	notes and to measures, so they are defined here. Wavy
	lines are one way to indicate trills; when used with a
	measure element, they should always have type="continue"
	set. The fermata text content represents the shape of the
	fermata sign and may be normal, angled, or square.
	An empty fermata element represents a normal fermata.
	The fermata type is upright if not specified.
\end{musicxml}
\begin{code}
-- |
type Fermata = ((Maybe Fermata_, Print_Style), PCDATA)
data Fermata_ = Fermata_1 | Fermata_2
 deriving (Eq, Show)
-- |
read_Fermata_ :: Data.Char.String -> Result Fermata_
read_Fermata_ "upright" = return Fermata_1
read_Fermata_ "inverted" = return Fermata_2
read_Fermata_ _ =
 fail "I expect type attribute"
-- |
show_Fermata_ :: Fermata_ -> Data.Char.String
show_Fermata_ Fermata_1 = "upright"
show_Fermata_ Fermata_2 = "inverted"
-- |
read_Fermata :: STM Result [Content i] Fermata
read_Fermata = do
 y <- read_ELEMENT "fermata"
 y1 <- read_2 (read_IMPLIED "type" read_Fermata_)
 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Fermata :: Fermata -> [Content ()]
show_Fermata ((a,b),c) =
 show_ELEMENT "fermata"
 (show_IMPLIED "type" show_Fermata_ a ++
 show_Print_Style b)
 (show_PCDATA c)
-- |
type Wavy_Line = ((Start_Stop_Continue, Maybe Number_Level,
 Position, Placement, Color, Trill_Sound),())
-- |
read_Wavy_Line :: STM Result [Content i] Wavy_Line
read_Wavy_Line = do
 y <- read_ELEMENT "wavy-line"
 y1 <- read_6 (read_REQUIRED "type" read_Start_Stop_Continue)
 (read_IMPLIED "number" read_Number_Level)
 read_Position read_Placement read_Color
 read_Trill_Sound (attributes y)
 return (y1,())
-- |
show_Wavy_Line :: Wavy_Line -> [Content ()]
show_Wavy_Line ((a,b,c,d,e,f),()) =
 show_ELEMENT "wavy-line"
 (show_REQUIRED "type" show_Start_Stop_Continue a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_Position c ++
 show_Placement d ++
 show_Color e ++
 show_Trill_Sound f
)
 []
\end{code}

\begin{musicxml}
	Staff assignment is only needed for music notated on
	multiple staves. Used by both notes and directions. Staff
	values are numbers, with 1 referring to the top-most staff
	in a part.
\end{musicxml}
\begin{code}
-- |
type Staff = PCDATA
-- |
read_Staff :: STM Result [Content i] Staff
read_Staff = do
 y <- read_ELEMENT "staff"
 read_1 read_PCDATA (childs y)
-- |
show_Staff :: Staff -> [Content ()]
show_Staff x = show_ELEMENT "staff" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	Segno and coda signs can be associated with a measure
	or a general musical direction. These are visual
	indicators only; a sound element is needed to guide
	playback applications reliably.
\end{musicxml}
\begin{code}
-- |
type Segno = (Print_Style, ())
-- |
read_Segno :: STM Result [Content i] Segno
read_Segno = do
 y <- read_ELEMENT "segno"
 y1 <- read_1 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Segno :: Segno -> [Content ()]
show_Segno (x,_) = show_ELEMENT "segno" (show_Print_Style x) []
-- |
type Coda = (Print_Style, ())
-- |
read_Coda :: STM Result [Content i] Coda
read_Coda = do
 y <- read_ELEMENT "coda"
 y1 <- read_1 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Coda :: Coda -> [Content ()]
show_Coda (x,_) = show_ELEMENT "coda" (show_Print_Style x) []
\end{code}

\begin{musicxml}
	These elements are used both in the time-modification and
	metronome-tuplet elements. The actual-notes element
	describes how many notes are played in the time usually
	occupied by the number of normal-notes. If the normal-notes
	type is different than the current note type (e.g., a
	quarter note within an eighth note triplet), then the
	normal-notes type (e.g. eighth) is specified in the
	normal-type and normal-dot elements.
\end{musicxml}
\begin{code}
-- |
type Actual_Notes = PCDATA
-- |
read_Actual_Notes :: STM Result [Content i] Actual_Notes
read_Actual_Notes = do
 y <- read_ELEMENT "actual-notes"
 read_1 read_PCDATA (childs y)
-- |
show_Actual_Notes :: Actual_Notes -> [Content ()]
show_Actual_Notes x = show_ELEMENT "actual-notes" [] (show_PCDATA x)
-- |
type Normal_Notes = PCDATA
-- |
read_Normal_Notes :: STM Result [Content i] Normal_Notes
read_Normal_Notes = do
 y <- read_ELEMENT "normal-notes"
 read_1 read_PCDATA (childs y)
-- |
show_Normal_Notes :: Normal_Notes -> [Content ()]
show_Normal_Notes x = show_ELEMENT "normal-notes" [] (show_PCDATA x)
-- |
type Normal_Type = PCDATA
-- |
read_Normal_Type :: STM Result [Content i] Normal_Type
read_Normal_Type = do
 y <- read_ELEMENT "normal-type"
 read_1 read_PCDATA (childs y)
-- |
show_Normal_Type :: Normal_Type -> [Content ()]
show_Normal_Type x = show_ELEMENT "normal-type" [] (show_PCDATA x)
-- |
type Normal_Dot = ()
-- |
read_Normal_Dot :: STM Result [Content i] Normal_Dot
read_Normal_Dot = read_ELEMENT "normal-dot" >> return ()
-- |
show_Normal_Dot :: Normal_Dot -> [Content ()]
show_Normal_Dot _ = show_ELEMENT "normal-dot" [] []
\end{code}

\begin{musicxml}
	Dynamics can be associated either with a note or a general
	musical direction. To avoid inconsistencies between and
	amongst the letter abbreviations for dynamics (what is sf
	vs. sfz, standing alone or with a trailing dynamic that is
	not always piano), we use the actual letters as the names
	of these dynamic elements. The other-dynamics element
	allows other dynamic marks that are not covered here, but
	many of those should perhaps be included in a more general
	musical direction element. Dynamics may also be combined as
	in <sf/><mp/>.
	
	These letter dynamic symbols are separated from crescendo,
	decrescendo, and wedge indications. Dynamic representation
	is inconsistent in scores. Many things are assumed by the
	composer and left out, such as returns to original dynamics.
	Systematic representations are quite complex: for example,
	Humdrum has at least 3 representation formats related to
	dynamics. The MusicXML format captures what is in the score,
	but does not try to be optimal for analysis or synthesis of
	dynamics.
\end{musicxml}
\begin{nocode}
read_P_F :: [Content i] -> ([Content i], Result ())
read_P_F l =
 let (s,x) = read_ELEMENT_F "p" l
 in (s, x `and` const (return ()))
read_P_J :: ()
read_P_J = ()
\end{nocode}
\begin{code}
-- |
type Dynamics = ((Print_Style, Placement),[Dynamics_])
-- |
read_Dynamics :: Eq i => STM Result [Content i] Dynamics
read_Dynamics = do
 y <- read_ELEMENT "dynamics"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 (read_LIST read_Dynamics_) (childs y)
 return (y1,y2)
-- |
show_Dynamics :: Dynamics -> [Content ()]
show_Dynamics ((a,b),c) =
 show_ELEMENT "dynamics"
 (show_Print_Style a ++ show_Placement b)
 (show_LIST show_Dynamics_ c)
-- |
data Dynamics_ = Dynamics_1 P
 | Dynamics_2 PP
 | Dynamics_3 PPP
 | Dynamics_4 PPPP
 | Dynamics_5 PPPPP
 | Dynamics_6 PPPPPP
 | Dynamics_7 F
 | Dynamics_8 FF
 | Dynamics_9 FFF
 | Dynamics_10 FFFF
 | Dynamics_11 FFFFF
 | Dynamics_12 FFFFFF
 | Dynamics_13 MP
 | Dynamics_14 MF
 | Dynamics_15 SF
 | Dynamics_16 SFP
 | Dynamics_17 SFPP
 | Dynamics_18 FP
 | Dynamics_19 RF
 | Dynamics_20 RFZ
 | Dynamics_21 SFZ
 | Dynamics_22 SFFZ
 | Dynamics_23 FZ
 | Dynamics_24 Other_Dynamics
 deriving (Eq, Show)
-- |
read_Dynamics_ :: STM Result [Content i] Dynamics_
read_Dynamics_ =
 (read_P >>= return . Dynamics_1) `mplus`
 (read_PP >>= return . Dynamics_2) `mplus`
 (read_PPP >>= return . Dynamics_3) `mplus`
 (read_PPPP >>= return . Dynamics_4) `mplus`
 (read_PPPPP >>= return . Dynamics_5) `mplus`
 (read_PPPPPP >>= return . Dynamics_6) `mplus`
 (read_F >>= return . Dynamics_7) `mplus`
 (read_FF >>= return . Dynamics_8) `mplus`
 (read_FFF >>= return . Dynamics_9) `mplus`
 (read_FFFF >>= return . Dynamics_10) `mplus`
 (read_FFFFF >>= return . Dynamics_11) `mplus`
 (read_FFFFFF >>= return . Dynamics_12) `mplus`
 (read_MP >>= return . Dynamics_13) `mplus`
 (read_MF >>= return . Dynamics_14) `mplus`
 (read_SF >>= return . Dynamics_15) `mplus`
 (read_SFP >>= return . Dynamics_16) `mplus`
 (read_SFPP >>= return . Dynamics_17) `mplus`
 (read_FP >>= return . Dynamics_18) `mplus`
 (read_RF >>= return . Dynamics_19) `mplus`
 (read_RFZ >>= return . Dynamics_20) `mplus`
 (read_SFZ >>= return . Dynamics_21) `mplus`
 (read_SFFZ >>= return . Dynamics_22) `mplus`
 (read_FZ >>= return . Dynamics_23) `mplus`
 (read_Other_Dynamics >>= return . Dynamics_24)
-- |
show_Dynamics_ :: Dynamics_ -> [Content ()]
show_Dynamics_ (Dynamics_1 x) = show_P x
show_Dynamics_ (Dynamics_2 x) = show_PP x
show_Dynamics_ (Dynamics_3 x) = show_PPP x
show_Dynamics_ (Dynamics_4 x) = show_PPPP x
show_Dynamics_ (Dynamics_5 x) = show_PPPPP x
show_Dynamics_ (Dynamics_6 x) = show_PPPPPP x
show_Dynamics_ (Dynamics_7 x) = show_F x
show_Dynamics_ (Dynamics_8 x) = show_FF x
show_Dynamics_ (Dynamics_9 x) = show_FFF x
show_Dynamics_ (Dynamics_10 x) = show_FFFF x
show_Dynamics_ (Dynamics_11 x) = show_FFFFF x
show_Dynamics_ (Dynamics_12 x) = show_FFFFFF x
show_Dynamics_ (Dynamics_13 x) = show_MP x
show_Dynamics_ (Dynamics_14 x) = show_MF x
show_Dynamics_ (Dynamics_15 x) = show_SF x
show_Dynamics_ (Dynamics_16 x) = show_SFP x
show_Dynamics_ (Dynamics_17 x) = show_SFPP x
show_Dynamics_ (Dynamics_18 x) = show_FP x
show_Dynamics_ (Dynamics_19 x) = show_RF x
show_Dynamics_ (Dynamics_20 x) = show_RFZ x
show_Dynamics_ (Dynamics_21 x) = show_SFZ x
show_Dynamics_ (Dynamics_22 x) = show_SFFZ x
show_Dynamics_ (Dynamics_23 x) = show_FZ x
show_Dynamics_ (Dynamics_24 x) = show_Other_Dynamics x
-- |
type P = ()
-- |
read_P :: STM Result [Content i] P
read_P = read_ELEMENT "p" >> return ()
-- |
show_P :: P -> [Content ()]
show_P _ = show_ELEMENT "p" [] []
-- |
type PP = ()
-- |
read_PP :: STM Result [Content i] PP
read_PP = read_ELEMENT "pp" >> return ()
-- |
show_PP :: PP -> [Content ()]
show_PP _ = show_ELEMENT "pp" [] []
-- |
type PPP = ()
-- |
read_PPP :: STM Result [Content i] PPP
read_PPP = read_ELEMENT "ppp" >> return ()
-- |
show_PPP :: PPP -> [Content ()]
show_PPP _ = show_ELEMENT "ppp" [] []
-- |
type PPPP = ()
-- |
read_PPPP :: STM Result [Content i] PPPP
read_PPPP = read_ELEMENT "pppp" >> return ()
-- |
show_PPPP :: PPPP -> [Content ()]
show_PPPP _ = show_ELEMENT "pppp" [] []
-- |
type PPPPP = ()
-- |
read_PPPPP :: STM Result [Content i] PPPPP
read_PPPPP = read_ELEMENT "ppppp" >> return ()
-- |
show_PPPPP :: PPPPP -> [Content ()]
show_PPPPP _ = show_ELEMENT "ppppp" [] []
-- |
type PPPPPP = ()
-- |
read_PPPPPP :: STM Result [Content i] PPPPPP
read_PPPPPP = read_ELEMENT "pppppp" >> return ()
-- |
show_PPPPPP :: PPPPPP -> [Content ()]
show_PPPPPP _ = show_ELEMENT "pppppp" [] []
-- |
type FFFFFF = ()
-- |
read_FFFFFF :: STM Result [Content i] FFFFFF
read_FFFFFF = read_ELEMENT "ffffff" >> return ()
-- |
show_FFFFFF :: FFFFFF -> [Content ()]
show_FFFFFF _ = show_ELEMENT "ffffff" [] []
-- |
type FFFFF = ()
-- |
read_FFFFF :: STM Result [Content i] FFFFF
read_FFFFF = read_ELEMENT "fffff" >> return ()
-- |
show_FFFFF :: FFFFF -> [Content ()]
show_FFFFF _ = show_ELEMENT "fffff" [] []
-- |
type FFFF = ()
-- |
read_FFFF :: STM Result [Content i] FFFF
read_FFFF = read_ELEMENT "ffff" >> return ()
-- |
show_FFFF :: FFFF -> [Content ()]
show_FFFF _ = show_ELEMENT "ffff" [] []
-- |
type FFF = ()
-- |
read_FFF :: STM Result [Content i] FFF
read_FFF = read_ELEMENT "fff" >> return ()
-- |
show_FFF :: FFF -> [Content ()]
show_FFF _ = show_ELEMENT "fff" [] []
-- |
type FF = ()
-- |
read_FF :: STM Result [Content i] FF
read_FF = read_ELEMENT "ff" >> return ()
-- |
show_FF :: FF -> [Content ()]
show_FF _ = show_ELEMENT "ff" [] []
-- |
type F = ()
-- |
read_F :: STM Result [Content i] F
read_F = read_ELEMENT "f" >> return ()
-- |
show_F :: F -> [Content ()]
show_F _ = show_ELEMENT "f" [] []
-- |
type MP = ()
-- |
read_MP :: STM Result [Content i] MP
read_MP = read_ELEMENT "mp" >> return ()
-- |
show_MP :: MP -> [Content ()]
show_MP _ = show_ELEMENT "mp" [] []
-- |
type MF = ()
-- |
read_MF :: STM Result [Content i] MF
read_MF = read_ELEMENT "mf" >> return ()
-- |
show_MF :: MF -> [Content ()]
show_MF _ = show_ELEMENT "mf" [] []
-- |
type SF = ()
-- |
read_SF :: STM Result [Content i] SF
read_SF = read_ELEMENT "sf" >> return ()
-- |
show_SF :: SF -> [Content ()]
show_SF _ = show_ELEMENT "sf" [] []
-- |
type SFP = ()
-- |
read_SFP :: STM Result [Content i] SFP
read_SFP = read_ELEMENT "sfp" >> return ()
-- |
show_SFP :: SFP -> [Content ()]
show_SFP _ = show_ELEMENT "sfp" [] []
-- |
type SFPP = ()
-- |
read_SFPP :: STM Result [Content i] SFPP
read_SFPP = read_ELEMENT "sfpp" >> return ()
-- |
show_SFPP :: SFPP -> [Content ()]
show_SFPP _ = show_ELEMENT "sfpp" [] []
-- |
type FP = ()
-- |
read_FP :: STM Result [Content i] FP
read_FP = read_ELEMENT "fp" >> return ()
-- |
show_FP :: FP -> [Content ()]
show_FP _ = show_ELEMENT "fp" [] []
-- |
type RF = ()
-- |
read_RF :: STM Result [Content i] RF
read_RF = read_ELEMENT "rf" >> return ()
-- |
show_RF :: RF -> [Content ()]
show_RF _ = show_ELEMENT "rf" [] []
-- |
type RFZ = ()
-- |
read_RFZ :: STM Result [Content i] RFZ
read_RFZ = read_ELEMENT "rfz" >> return ()
-- |
show_RFZ :: RFZ -> [Content ()]
show_RFZ _ = show_ELEMENT "rfz" [] []
-- |
type SFZ = ()
-- |
read_SFZ :: STM Result [Content i] SFZ
read_SFZ = read_ELEMENT "sfz" >> return ()
-- |
show_SFZ :: SFZ -> [Content ()]
show_SFZ _ = show_ELEMENT "sfz" [] []
-- |
type SFFZ = ()
-- |
read_SFFZ :: STM Result [Content i] SFFZ
read_SFFZ = read_ELEMENT "sffz" >> return ()
-- |
show_SFFZ :: SFFZ -> [Content ()]
show_SFFZ _ = show_ELEMENT "sffz" [] []
-- |
type FZ = ()
-- |
read_FZ :: STM Result [Content i] FZ
read_FZ = read_ELEMENT "fz" >> return ()
-- |
show_FZ :: FZ -> [Content ()]
show_FZ _ = show_ELEMENT "fz" [] []
-- |
type Other_Dynamics = PCDATA
-- |
read_Other_Dynamics :: STM Result [Content i] Other_Dynamics
read_Other_Dynamics = do
 y <- read_ELEMENT "other-dynamics"
 read_1 read_PCDATA (childs y)
-- |
show_Other_Dynamics :: Other_Dynamics -> [Content ()]
show_Other_Dynamics x = show_ELEMENT "other-dynamics" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	The fret, string, and fingering elements can be used either
	in a technical element for a note or in a frame element as
	part of a chord symbol.

	Fingering is typically indicated 1,2,3,4,5. Multiple
	fingerings may be given, typically to substitute
	fingerings in the middle of a note. The substitution
	and alternate values are "no" if the attribute is
	not present. For guitar and other fretted instruments,
	the fingering element represents the fretting finger;
	the pluck element represents the plucking finger.
\end{musicxml}
\begin{code}
-- |
type Fingering = ((Maybe Yes_No, Maybe Yes_No, Print_Style, Placement), PCDATA)
-- |
read_Fingering :: STM Result [Content i] Fingering
read_Fingering = do
 y <- read_ELEMENT "fingering"
 y1 <- read_4 (read_IMPLIED "substitution" read_Yes_No)
 (read_IMPLIED "alternate" read_Yes_No)
 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Fingering :: Fingering -> [Content ()]
show_Fingering ((a,b,c,d),e)=
 show_ELEMENT "fingering"
 (show_IMPLIED "substitution" show_Yes_No a ++
 show_IMPLIED "alternate" show_Yes_No b ++
 show_Print_Style c ++
 show_Placement d)
 (show_PCDATA e)
\end{code}

\begin{musicxml}
	Fret and string are used with tablature notation and chord
	symbols. Fret numbers start with 0 for an open string and
	1 for the first fret. String numbers start with 1 for the
	highest string. The string element can also be used in
	regular notation.
\end{musicxml}
\begin{code}
-- |
type Fret = ((Font, Color), PCDATA)
-- |
read_Fret :: STM Result [Content i] Fret
read_Fret = do
 y <- read_ELEMENT "fret"
 y1 <- read_2 read_Font read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Fret :: Fret -> [Content ()]
show_Fret ((a,b),c) =
 show_ELEMENT "fret"
 (show_Font a ++ show_Color b)
 (show_PCDATA c)
-- |
type String = ((Print_Style, Placement), PCDATA)
-- |
read_String :: STM Result [Content i] String
read_String = do
 y <- read_ELEMENT "string"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_String :: String -> [Content ()]
show_String ((a,b),c) =
 show_ELEMENT "string"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The tuning-step, tuning-alter, and tuning-octave elements
	are represented like the step, alter, and octave elements,
	with different names to reflect their different function.
	They are used in the staff-tuning and accord elements.
\end{musicxml}
\begin{code}
-- |
type Tuning_Step = PCDATA
-- |
read_Tuning_Step :: STM Result [Content i] Tuning_Step
read_Tuning_Step = do
 y <- read_ELEMENT "tuning-step"
 read_1 read_PCDATA (childs y)
-- |
show_Tuning_Step :: Tuning_Step -> [Content ()]
show_Tuning_Step x = show_ELEMENT "tuning-step" [] (show_PCDATA x)
-- |
type Tuning_Alter = PCDATA
-- |
read_Tuning_Alter :: STM Result [Content i] Tuning_Alter
read_Tuning_Alter = do
 y <- read_ELEMENT "tuning-alter"
 read_1 read_PCDATA (childs y)
-- |
show_Tuning_Alter :: Tuning_Alter -> [Content ()]
show_Tuning_Alter x = show_ELEMENT "tuning-alter" [] (show_PCDATA x)
-- |
type Tuning_Octave = PCDATA
-- |
read_Tuning_Octave :: STM Result [Content i] Tuning_Octave
read_Tuning_Octave = do
 y <- read_ELEMENT "tuning-octave"
 read_1 read_PCDATA (childs y)
-- |
show_Tuning_Octave :: Tuning_Octave -> [Content ()]
show_Tuning_Octave x = show_ELEMENT "tuning-octave" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	The display-text element is used for exact formatting of
	multi-font text in element in display elements such as
	part-name-display. Language is Italian ("it") by default.
	Enclosure is none by default.
\end{musicxml}
\begin{code}
-- |
type Display_Text = (Text_Formatting, PCDATA)
-- |
read_Display_Text :: STM Result [Content i] Display_Text
read_Display_Text = do
 y <- read_ELEMENT "display-text"
 y1 <- read_1 read_Text_Formatting (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Display_Text :: Display_Text -> [Content ()]
show_Display_Text (a,b) =
 show_ELEMENT "display-text"
 (show_Text_Formatting a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The accidental-text element is used for exact formatting of
	accidentals in display elements such as part-name-display.
	Values are the same as for the accidental element.
	Enclosure is none by default.
\end{musicxml}
\begin{code}
-- |
type Accidental_Text = (Text_Formatting, PCDATA)
-- |
read_Accidental_Text :: STM Result [Content i] Accidental_Text
read_Accidental_Text = do
 y <- read_ELEMENT "accidental-text"
 y1 <- read_1 read_Text_Formatting (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Accidental_Text :: Accidental_Text -> [Content ()]
show_Accidental_Text (a,b) =
 show_ELEMENT "accidental-text"
 (show_Text_Formatting a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The part-name-display and part-abbreviation-display
	elements are used in both the \ score.mod and direction.mod
	files. They allow more precise control of how part names
	and abbreviations appear throughout a score. The
	print-object attributes can be used to determine what,
	if anything, is printed at the start of each system.
	Formatting specified in the part-name-display and
	part-abbreviation-display elements override the formatting
	specified in the part-name and part-abbreviation elements,
	respectively.
\end{musicxml}
\begin{code}
type Part_Name_Display = (Print_Object, [Part_Name_Display_])
-- |
read_Part_Name_Display :: Eq i => STM Result [Content i] Part_Name_Display
read_Part_Name_Display = do
 y <- read_ELEMENT "part-name-display"
 y1 <- read_1 read_Print_Object (attributes y)
 y2 <- read_1 (read_LIST read_Part_Name_Display_) (childs y)
 return (y1,y2)
-- |
show_Part_Name_Display :: Part_Name_Display -> [Content ()]
show_Part_Name_Display (a,b) =
 show_ELEMENT "part-name-display"
 (show_Print_Object a)
 (show_LIST show_Part_Name_Display_ b)
-- |
data Part_Name_Display_ = Part_Name_Display_1 Display_Text
 | Part_Name_Display_2 Accidental_Text
 deriving (Eq, Show)
-- |
read_Part_Name_Display_ :: STM Result [Content i] Part_Name_Display_
read_Part_Name_Display_ =
 (read_Display_Text >>= (return . Part_Name_Display_1)) `mplus`
 (read_Accidental_Text >>= (return . Part_Name_Display_2)) `mplus`
 fail "part-name-display"
-- |
show_Part_Name_Display_ :: Part_Name_Display_ -> [Content ()]
show_Part_Name_Display_ (Part_Name_Display_1 x) = show_Display_Text x
show_Part_Name_Display_ (Part_Name_Display_2 x) = show_Accidental_Text x
-- |
type Part_Abbreviation_Display = (Print_Object, [Part_Abbreviation_Display_])
-- |
read_Part_Abbreviation_Display :: Eq i =>
 STM Result [Content i] Part_Abbreviation_Display
read_Part_Abbreviation_Display = do
 y <- read_ELEMENT "part-abbreviation-display"
 y1 <- read_1 read_Print_Object (attributes y)
 y2 <- read_1 (read_LIST read_Part_Abbreviation_Display_) (childs y)
 return (y1,y2)
-- |
show_Part_Abbreviation_Display :: Part_Abbreviation_Display -> [Content ()]
show_Part_Abbreviation_Display (a,b) =
 show_ELEMENT "part-abbreviation-display"
 (show_Print_Object a)
 (show_LIST show_Part_Abbreviation_Display_ b)
-- |
data Part_Abbreviation_Display_ =
 Part_Abbreviation_Display_1 Display_Text
 | Part_Abbreviation_Display_2 Accidental_Text
 deriving (Eq, Show)
-- |
read_Part_Abbreviation_Display_ ::
 STM Result [Content i] Part_Abbreviation_Display_
read_Part_Abbreviation_Display_ =
 (read_Display_Text >>= (return . Part_Abbreviation_Display_1)) `mplus`
 (read_Accidental_Text >>= (return . Part_Abbreviation_Display_2)) `mplus`
 fail "part-name-display"
-- |
show_Part_Abbreviation_Display_ :: Part_Abbreviation_Display_ -> [Content ()]
show_Part_Abbreviation_Display_
 (Part_Abbreviation_Display_1 x) = show_Display_Text x
show_Part_Abbreviation_Display_
 (Part_Abbreviation_Display_2 x) = show_Accidental_Text x
-- |
\end{code}

\begin{musicxml}
	The midi-instrument element can be a part of either
	the score-instrument element at the start of a part,
	or the sound element within a part. The id attribute
	refers to the score-instrument affected by the change.
\end{musicxml}
\begin{code}
-- |
type Midi_Instrument = (ID, (Maybe Midi_Channel, Maybe Midi_Name,
 Maybe Midi_Bank, Maybe Midi_Program, Maybe Midi_Unpitched,
 Maybe Volume, Maybe Pan, Maybe Elevation))
-- |
read_Midi_Instrument :: STM Result [Content i] Midi_Instrument
read_Midi_Instrument = do
 y <- read_ELEMENT "midi-instrument"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 y2 <- read_8 (read_MAYBE read_Midi_Channel) (read_MAYBE read_Midi_Name)
 (read_MAYBE read_Midi_Bank) (read_MAYBE read_Midi_Program)
 (read_MAYBE read_Midi_Unpitched) (read_MAYBE read_Volume)
 (read_MAYBE read_Pan) (read_MAYBE read_Elevation)
 (childs y)
 return (y1,y2)
-- |
show_Midi_Instrument :: Midi_Instrument -> [Content ()]
show_Midi_Instrument (a,(b,c,d,e,f,g,h,i)) =
 show_ELEMENT "midi-instrument"
 (show_REQUIRED "id" show_ID a)
 (show_MAYBE show_Midi_Channel b ++ show_MAYBE show_Midi_Name c ++
 show_MAYBE show_Midi_Bank d ++ show_MAYBE show_Midi_Program e ++
 show_MAYBE show_Midi_Unpitched f ++ show_MAYBE show_Volume g ++
 show_MAYBE show_Pan h ++ show_MAYBE show_Elevation i)
\end{code}

\begin{musicxml}
	MIDI 1.0 channel numbers range from 1 to 16.
\end{musicxml}
\begin{code}
-- |
type Midi_Channel = PCDATA
-- |
read_Midi_Channel :: STM Result [Content i] Midi_Channel
read_Midi_Channel = do
 y <- read_ELEMENT "midi-channel"
 read_1 read_PCDATA (childs y)
-- |
show_Midi_Channel :: Midi_Channel -> [Content ()]
show_Midi_Channel x =
 show_ELEMENT "midi-channel" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	MIDI names correspond to ProgramName meta-events within
	a Standard MIDI File.
\end{musicxml}
\begin{code}
-- |
type Midi_Name = PCDATA
-- |
read_Midi_Name :: STM Result [Content i] Midi_Name
read_Midi_Name = do
 y <- read_ELEMENT "midi-name"
 read_1 read_PCDATA (childs y)
-- |
show_Midi_Name :: Midi_Name -> [Content ()]
show_Midi_Name x =
 show_ELEMENT "midi-name" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
 MIDI 1.0 bank numbers range from 1 to 16,384.
\end{musicxml}
\begin{code}
-- |
type Midi_Bank = PCDATA
-- |
read_Midi_Bank :: STM Result [Content i] Midi_Bank
read_Midi_Bank = do
 y <- read_ELEMENT "midi-bank"
 read_1 read_PCDATA (childs y)
-- |
show_Midi_Bank :: Midi_Bank -> [Content ()]
show_Midi_Bank x =
 show_ELEMENT "midi-bank" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
 MIDI 1.0 program numbers range from 1 to 128.
\end{musicxml}
\begin{code}
-- |
type Midi_Program = PCDATA
-- |
read_Midi_Program :: STM Result [Content i] Midi_Program
read_Midi_Program = do
 y <- read_ELEMENT "midi-program"
 read_1 read_PCDATA (childs y)
-- |
show_Midi_Program :: Midi_Program -> [Content ()]
show_Midi_Program x =
 show_ELEMENT "midi-program" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	For unpitched instruments, specify a MIDI 1.0 note number
	ranging from 1 to 128. Usually used with MIDI banks for
	percussion.
\end{musicxml}
\begin{code}
-- |
type Midi_Unpitched = PCDATA
-- |
read_Midi_Unpitched :: STM Result [Content i] Midi_Unpitched
read_Midi_Unpitched = do
 y <- read_ELEMENT "midi-unpitched"
 read_1 read_PCDATA (childs y)
-- |
show_Midi_Unpitched :: Midi_Unpitched -> [Content ()]
show_Midi_Unpitched x =
 show_ELEMENT "midi-unpitched" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	The volume value is a percentage of the maximum
	ranging from 0 to 100, with decimal values allowed.
	This corresponds to a scaling value for the MIDI 1.0
	channel volume controller.
\end{musicxml}
\begin{code}
-- |
type Volume = PCDATA
-- |
read_Volume :: STM Result [Content i] Volume
read_Volume = do
 y <- read_ELEMENT "volume"
 read_1 read_PCDATA (childs y)
-- |
show_Volume :: Volume -> [Content ()]
show_Volume x =
 show_ELEMENT "volume" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	Pan and elevation allow placing of sound in a 3-D space
	relative to the listener. Both are expressed in degrees
	ranging from -180 to 180. For pan, 0 is straight ahead,
	-90 is hard left, 90 is hard right, and -180 and 180
	are directly behind the listener. For elevation, 0 is
	level with the listener, 90 is directly above, and -90
	is directly below.
\end{musicxml}
\begin{code}
-- |
type Pan = PCDATA
-- |
read_Pan :: STM Result [Content i] Pan
read_Pan = do
 y <- read_ELEMENT "pan"
 read_1 read_PCDATA (childs y)
-- |
show_Pan :: Pan -> [Content ()]
show_Pan x =
 show_ELEMENT "pan" [] (show_PCDATA x)
-- |
type Elevation = PCDATA
-- |
read_Elevation :: STM Result [Content i] Elevation
read_Elevation = do
 y <- read_ELEMENT "elevation"
 read_1 read_PCDATA (childs y)
-- |
show_Elevation :: Elevation -> [Content ()]
show_Elevation x =
 show_ELEMENT "elevation" [] (show_PCDATA x)
\end{code}

module Text .XML.MusicXML.Common (
module Text .XML.MusicXML.Util ,
module Text .XML.MusicXML.Common)
where

import Text .XML.MusicXML.Util
import Control .Monad (MonadPlus (. .))
import Prelude (Maybe (. .),Bool (. .),Show ,Eq ,

Monad (. .), Int , (++), (·))
import qualified Data.Char (String)
import Text .XML.HaXml .Types (Attribute,Content (. .))

This file contains entities and elements that are common across multiple DTD modules. In particular,
several elements here are common across both notes and measures.

If greater ASCII compatibility is desired, entity references may be used instead of the direct Unicode
characters. Currently we include ISO Latin-1 for Western European characters and ISO Latin-2 for Central
European characters. These files are local copies of the W3C entities located at:

http://www.w3.org/2003/entities/
Data type entities. The ones that resolve to strings show intent for how data is formatted and used.
Calendar dates are represented yyyy-mm-dd format, following ISO 8601.

-- * Entities
-- |

type YYYY MM DD = PCDATA
-- |

read YYYY MM DD :: STM Result [Content i] YYYY MM DD
read YYYY MM DD = read PCDATA

-- |
show YYYY MM DD :: YYYY MM DD → [Content ()]
show YYYY MM DD = show PCDATA

The tenths entity is a number representing tenths of interline space (positive or negative) for use in
attributes. The layout-tenths entity is the same for use in elements. Both integer and decimal values are
allowed, such as 5 for a half space and 2.5 for a quarter space. Interline space is measured from the middle
of a staff line.

-- |
type Tenths = CDATA

-- |
read Tenths :: Data.Char .String → Result Tenths
read Tenths = read CDATA

-- |
show Tenths :: Tenths → Data.Char .String
show Tenths = show CDATA

-- |
type Layout Tenths = PCDATA

-- |
read Layout Tenths :: STM Result [Content i] Layout Tenths
read Layout Tenths = read PCDATA

-- |
show Layout Tenths :: Layout Tenths → [Content ()]
show Layout Tenths = show PCDATA

The start-stop and start-stop-continue entities are used for musical elements that can either start or
stop, such as slurs, tuplets, and wedges. The start-stop-continue entity is used when there is a need to
refer to an intermediate point in the symbol, as for complex slurs. The start-stop-single entity is used
when the same element is used for multi-note and single-note notations, as for tremolos.

-- |
data Start Stop = Start Stop 1 | Start Stop 2

deriving (Eq ,Show)

20

-- |
read Start Stop :: Data.Char .String → Result Start Stop
read Start Stop "start" = return Start Stop 1
read Start Stop "stop" = return Start Stop 2
read Start Stop =

fail "wrong value at start-stop entity"

-- |
show Start Stop :: Start Stop → Data.Char .String
show Start Stop Start Stop 1 = "start"

show Start Stop Start Stop 2 = "stop"

-- |
data Start Stop Continue = Start Stop Continue 1

| Start Stop Continue 2
| Start Stop Continue 3
deriving (Eq ,Show)

-- |
read Start Stop Continue :: Data.Char .String → Result Start Stop Continue
read Start Stop Continue "start" = return Start Stop Continue 1
read Start Stop Continue "stop" = return Start Stop Continue 2
read Start Stop Continue "continue" = return Start Stop Continue 3
read Start Stop Continue =

fail "wrong value at start-stop-continue entity"

-- |
show Start Stop Continue :: Start Stop Continue → Data.Char .String
show Start Stop Continue Start Stop Continue 1 = "start"

show Start Stop Continue Start Stop Continue 2 = "stop"

show Start Stop Continue Start Stop Continue 3 = "continue"

data Start Stop Single = Start Stop Single 1
| Start Stop Single 2
| Start Stop Single 3
deriving (Eq ,Show)

-- |
read Start Stop Single :: Data.Char .String → Result Start Stop Single
read Start Stop Single "start" = return Start Stop Single 1
read Start Stop Single "stop" = return Start Stop Single 2
read Start Stop Single "single" = return Start Stop Single 3
read Start Stop Single =

fail "wrong value at start-stop-single entity"

-- |
show Start Stop Single :: Start Stop Single → Data.Char .String
show Start Stop Single Start Stop Single 1 = "start"

show Start Stop Single Start Stop Single 2 = "stop"

show Start Stop Single Start Stop Single 3 = "single"

The yes-no entity is used for boolean-like attributes.

-- | The yes-no entity is used for boolean-like attributes.
type Yes No = Bool

-- |
read Yes No :: Data.Char .String → Result Yes No
read Yes No "yes" = return True
read Yes No "no" = return False
read Yes No str = fail str

-- |
show Yes No :: Yes No → Data.Char .String
show Yes No True = "yes"

show Yes No False = "no"

The yes-no-number entity is used for attributes that can be either boolean or numeric values. Values
can be ”yes”, ”no”, or numbers.

21

-- |
type Yes No Number = CDATA

-- |
read Yes No Number :: Data.Char .String → Result Yes No Number
read Yes No Number = read CDATA

-- |
show Yes No Number :: Yes No Number → Data.Char .String
show Yes No Number = show CDATA

The symbol-size entity is used to indicate full vs. cue-sized vs. oversized symbols. The large value for
oversized symbols was added in version 1.1.

-- |
data Symbol Size = Symbol Size 1
| Symbol Size 2
| Symbol Size 3
deriving (Eq ,Show)

-- |
read Symbol Size :: Data.Char .String → Result Symbol Size
read Symbol Size "full" = return Symbol Size 1
read Symbol Size "cue" = return Symbol Size 2
read Symbol Size "large" = return Symbol Size 3
read Symbol Size =

fail "wrong value at symbol-size entity"

-- |
show Symbol Size :: Symbol Size → Data.Char .String
show Symbol Size Symbol Size 1 = "full"

show Symbol Size Symbol Size 2 = "cue"

show Symbol Size Symbol Size 3 = "large"

The up-down entity is used for arrow direction, indicating which way the tip is pointing.

-- |
data Up Down = Up Down 1 | Up Down 2

deriving (Eq ,Show)
-- |

read Up Down :: Data.Char .String → Result Up Down
read Up Down "up" = return Up Down 1
read Up Down "down" = return Up Down 2
read Up Down =

fail "wrong value at up-down entity"

-- |
show Up Down :: Up Down → Data.Char .String
show Up Down Up Down 1 = "up"

show Up Down Up Down 2 = "down"

The top-bottom entity is used to indicate the top or bottom part of a vertical shape like non-
arpeggiate.

-- |
data Top Bottom = Top Bottom 1
| Top Bottom 2
deriving (Eq ,Show)

-- |
read Top Bottom :: Data.Char .String → Result Top Bottom
read Top Bottom "top" = return Top Bottom 1
read Top Bottom "bottom" = return Top Bottom 2
read Top Bottom =

fail "wrong value at top-bottom entity"

-- |

22

show Top Bottom :: Top Bottom → Data.Char .String
show Top Bottom Top Bottom 1 = "top"

show Top Bottom Top Bottom 2 = "bottom"

The left-right entity is used to indicate whether one element appears to the left or the right of another
element.

-- |
data Left Right = Left Right 1 | Left Right 2

deriving (Eq ,Show)
-- |

read Left Right :: Data.Char .String → Result Left Right
read Left Right "left" = return Left Right 1
read Left Right "right" = return Left Right 2
read Left Right =

fail "wrong value at left-right entity"

-- |
show Left Right :: Left Right → Data.Char .String
show Left Right Left Right 1 = "left"

show Left Right Left Right 2 = "right"

The number-of-lines entity is used to specify the number of lines in text decoration attributes.

-- |
data Number Of Lines = Number Of Lines 0
| Number Of Lines 1
| Number Of Lines 2
| Number Of Lines 3
deriving (Eq ,Show)
-- |

read Number Of Lines :: Data.Char .String → Result Number Of Lines
read Number Of Lines "0" = return Number Of Lines 0
read Number Of Lines "1" = return Number Of Lines 1
read Number Of Lines "2" = return Number Of Lines 2
read Number Of Lines "3" = return Number Of Lines 3
read Number Of Lines =

fail "wrong value at number-of-lines entity"

-- |
show Number Of Lines :: Number Of Lines → Data.Char .String
show Number Of Lines Number Of Lines 0 = "0"

show Number Of Lines Number Of Lines 1 = "1"

show Number Of Lines Number Of Lines 2 = "2"

show Number Of Lines Number Of Lines 3 = "3"

Slurs, tuplets, and many other features can be concurrent and overlapping within a single musical
part. The number-level attribute distinguishes up to six concurrent objects of the same type. A reading
program should be prepared to handle cases where the number-levels stop in an arbitrary order. Different
numbers are needed when the features overlap in MusicXML file order. When a number-level value is
implied, the value is 1 by default.

-- |
data Number Level = Number Level 1
| Number Level 2
| Number Level 3
| Number Level 4
| Number Level 5
| Number Level 6
deriving (Eq ,Show)
-- |

read Number Level :: Data.Char .String → Result Number Level

23

read Number Level "1" = return Number Level 1
read Number Level "2" = return Number Level 2
read Number Level "3" = return Number Level 3
read Number Level "4" = return Number Level 4
read Number Level "5" = return Number Level 5
read Number Level "6" = return Number Level 6
read Number Level =

fail "wrong value at number-level entity"

-- |
show Number Level :: Number Level → Data.Char .String
show Number Level Number Level 1 = "1"

show Number Level Number Level 2 = "2"

show Number Level Number Level 3 = "3"

show Number Level Number Level 4 = "4"

show Number Level Number Level 5 = "5"

show Number Level Number Level 6 = "6"

The MusicXML format supports six levels of beaming, up to 256th notes. Unlike the number-level
attribute, the beam-level attribute identifies concurrent beams in a beam group. It does not distinguish
overlapping beams such as grace notes within regular notes, or beams used in different voices.

-- |
data Beam Level = Beam Level 1
| Beam Level 2
| Beam Level 3
| Beam Level 4
| Beam Level 5
| Beam Level 6
deriving (Eq ,Show)
-- |

read Beam Level :: Data.Char .String → Result Beam Level
read Beam Level "1" = return Beam Level 1
read Beam Level "2" = return Beam Level 2
read Beam Level "3" = return Beam Level 3
read Beam Level "4" = return Beam Level 4
read Beam Level "5" = return Beam Level 5
read Beam Level "6" = return Beam Level 6
read Beam Level =

fail "wrong value at beam-level entity"

-- |
show Beam Level :: Beam Level → Data.Char .String
show Beam Level Beam Level 1 = "1"

show Beam Level Beam Level 2 = "2"

show Beam Level Beam Level 3 = "3"

show Beam Level Beam Level 4 = "4"

show Beam Level Beam Level 5 = "5"

show Beam Level Beam Level 6 = "6"

Common structures for formatting attribute definitions.
The position attributes are based on MuseData print suggestions. For most elements, any program

will compute a default x and y position. The position attributes let this be changed two ways.
The default-x and default-y attributes change the computation of the default position. For most

elements, the origin is changed relative to the left-hand side of the note or the musical position within the
bar (x) and the top line of the staff (y).

For the following elements, the default-x value changes the origin relative to the start of the current
measure:

- note - figured-bass - harmony - link - directive - measure-numbering - all descendants of the part-list
element - all children of the direction-type element

24

When the part-name and part-abbreviation elements are used in the print element, the default-x value
changes the origin relative to the start of the first measure on the system. These values are used when the
current measure or a succeeding measure starts a new system.

For the note, figured-bass, and harmony elements, the default-x value is considered to have adjusted
the musical position within the bar for its descendant elements.

Since the credit-words and credit-image elements are not related to a measure, in these cases the
default-x and default-y attributes adjust the origin relative to the bottom left-hand corner of the specified
page.

The relative-x and relative-y attributes change the position relative to the default position, either as
computed by the individual program, or as overridden by the default-x and default-y attributes.

Positive x is right, negative x is left; positive y is up, negative y is down. All units are in tenths of
interline space. For stems, positive relative-y lengthens a stem while negative relative-y shortens it.

The default-x and default-y position attributes provide higher-resolution positioning data than related
features such as the placement attribute and the offset element. Applications reading a MusicXML file
that can understand both features should generally rely on the default-x and default-y attributes for their
greater accuracy. For the relative-x and relative-y attributes, the offset element, placement attribute, and
directive attribute provide context for the relative position information, so the two features should be
interpreted together.

As elsewhere in the MusicXML format, tenths are the global tenths defined by the scaling element,
not the local tenths of a staff resized by the staff-size element.

-- * Attributes
-- |

type Position = (Maybe Tenths,Maybe Tenths,Maybe Tenths,Maybe Tenths)
-- |

read Position :: STM Result [Attribute] Position
read Position = do

y1 ← read IMPLIED "default-x" read Tenths
y2 ← read IMPLIED "default-y" read Tenths
y3 ← read IMPLIED "relative-x" read Tenths
y4 ← read IMPLIED "relative-y" read Tenths
return (y1 , y2 , y3 , y4)
-- |

show Position :: Position → [Attribute]
show Position (a, b, c, d) =

show IMPLIED "default-x" show Tenths a ++
show IMPLIED "default-y" show Tenths b ++
show IMPLIED "relative-x" show Tenths c ++
show IMPLIED "relative-y" show Tenths d

The placement attribute indicates whether something is above or below another element, such as a
note or a notation.

-- |
type Placement = Maybe Placement

-- |
read Placement :: STM Result [Attribute] Placement
read Placement = read IMPLIED "placement" read Placement

-- |
show Placement :: Placement → [Attribute]
show Placement = show IMPLIED "placement" show Placement

-- |
data Placement = Placement 1
| Placement 2
deriving (Eq ,Show)

-- |
read Placement :: Data.Char .String → Result Placement
read Placement "above" = return Placement 1
read Placement "below" = return Placement 2

25

read Placement =
fail "wrong value at placement attribute"

-- |
show Placement :: Placement → Data.Char .String
show Placement Placement 1 = "above"

show Placement Placement 2 = "below"

The orientation attribute indicates whether slurs and ties are overhand (tips down) or underhand (tips
up). This is distinct from the placement entity used by any notation type.

-- |
type Orientation = Maybe Orientation

-- |
read Orientation :: STM Result [Attribute] Orientation
read Orientation = read IMPLIED "orientation" read Orientation

-- |
show Orientation :: Orientation → [Attribute]
show Orientation = show IMPLIED "orientation" show Orientation

-- |
data Orientation = Orientation 1 | Orientation 2

deriving (Eq ,Show)
-- |

read Orientation :: Data.Char .String → Result Orientation
read Orientation "over" = return Orientation 1
read Orientation "under" = return Orientation 2
read Orientation =

fail "wrong value at orientation attribute"

-- |
show Orientation :: Orientation → Data.Char .String
show Orientation Orientation 1 = "over"

show Orientation Orientation 2 = "under"

The directive entity changes the default-x position of a direction. It indicates that the left-hand side
of the direction is aligned with the left-hand side of the time signature. If no time signature is present,
it is aligned with the left-hand side of the first music notational element in the measure. If a default-x,
justify, or halign attribute is present, it overrides the directive entity.

-- |
type Directive = Maybe Yes No

-- |
read Directive :: STM Result [Attribute] Directive
read Directive = read IMPLIED "directive" read Yes No

-- |
show Directive :: Directive → [Attribute]
show Directive = show IMPLIED "directive" show Yes No

The bezier entity is used to indicate the curvature of slurs and ties, representing the control points for
a cubic bezier curve. For ties, the bezier entity is used with the tied element.

Normal slurs, S-shaped slurs, and ties need only two bezier points: one associated with the start of
the slur or tie, the other with the stop. Complex slurs and slurs divided over system breaks can specify
additional bezier data at slur elements with a continue type.

The bezier-offset, bezier-x, and bezier-y attributes describe the outgoing bezier point for slurs and ties
with a start type, and the incoming bezier point for slurs and ties with types of stop or continue. The
attributes bezier-offset2, bezier-x2, and bezier-y2 are only valid with slurs of type continue, and describe
the outgoing bezier point.

The bezier-offset and bezier-offset2 attributes are measured in terms of musical divisions, like the offset
element. These are the recommended attributes for specifying horizontal position. The other attributes
are specified in tenths, relative to any position settings associated with the slur or tied element.

-- |
type Bezier = (Maybe CDATA,Maybe CDATA,

26

Maybe Tenths,Maybe Tenths,Maybe Tenths,Maybe Tenths)
-- |

read Bezier :: STM Result [Attribute] Bezier
read Bezier = do

y1 ← read IMPLIED "bezier-offset" read CDATA
y2 ← read IMPLIED "bezier-offset2" read CDATA
y3 ← read IMPLIED "bezier-x" read Tenths
y4 ← read IMPLIED "bezier-y" read Tenths
y5 ← read IMPLIED "bezier-x2" read Tenths
y6 ← read IMPLIED "bezier-y2" read Tenths
return (y1 , y2 , y3 , y4 , y5 , y6)

-- |
show Bezier :: Bezier → [Attribute]
show Bezier (a, b, c, d , e, f) =

show IMPLIED "bezier-offset" show CDATA a ++
show IMPLIED "bezier-offset2" show CDATA b ++
show IMPLIED "bezier-x" show CDATA c ++
show IMPLIED "bezier-y" show CDATA d ++
show IMPLIED "bezier-x2" show CDATA e ++
show IMPLIED "bezier-y2" show CDATA f

The font entity gathers together attributes for determining the font within a directive or direction.
They are based on the text styles for Cascading Style Sheets. The font-family is a comma-separated list
of font names. These can be specific font styles such as Maestro or Opus, or one of several generic font
styles: music, serif, sans-serif, handwritten, cursive, fantasy, and monospace. The music and handwritten
values refer to music fonts; the rest refer to text fonts. The fantasy style refers to decorative text such
as found in older German-style printing. The font-style can be normal or italic. The font-size can be one
of the CSS sizes (xx-small, x-small, small, medium, large, x-large, xx-large) or a numeric point size. The
font-weight can be normal or bold. The default is application-dependent, but is a text font vs. a music
font.

-- |
type Font = (Maybe CDATA,Maybe CDATA,Maybe CDATA,Maybe CDATA)

-- |
read Font :: STM Result [Attribute] Font
read Font = do

y1 ← read IMPLIED "font-family" read CDATA
y2 ← read IMPLIED "font-style" read CDATA
y3 ← read IMPLIED "font-size" read CDATA
y4 ← read IMPLIED "font-weight" read CDATA
return (y1 , y2 , y3 , y4)
-- |

show Font :: Font → [Attribute]
show Font (a, b, c, d) =

show IMPLIED "font-family" show CDATA a ++
show IMPLIED "font-style" show CDATA b ++
show IMPLIED "font-size" show CDATA c ++
show IMPLIED "font-weight" show CDATA d

The color entity indicates the color of an element. Color may be represented as hexadecimal RGB
triples, as in HTML, or as hexadecimal ARGB tuples, with the A indicating alpha of transparency. An
alpha value of 00 is totally transparent; FF is totally opaque. If RGB is used, the A value is assumed to
be FF.

For instance, the RGB value ”#800080” represents purple. An ARGB value of ”#40800080” would
be a transparent purple.

As in SVG 1.1, colors are defined in terms of the sRGB color space (IEC 61966).

-- |
type Color = Maybe CDATA

27

-- |
read Color :: STM Result [Attribute] Color
read Color = read IMPLIED "color" read CDATA

-- |
show Color :: Color → [Attribute]
show Color = show IMPLIED "color" show CDATA

The text-decoration entity is based on the similar feature in XHTML and CSS. It allows for text to be
underlined, overlined, or struck-through. It extends the CSS version by allow double or triple lines instead
of just being on or off.

-- |
type Text Decoration = (Maybe Number Of Lines,

Maybe Number Of Lines,
Maybe Number Of Lines)
-- |

read Text Decoration :: STM Result [Attribute] Text Decoration
read Text Decoration = do

y1 ← read IMPLIED "underline" read Number Of Lines
y2 ← read IMPLIED "overline" read Number Of Lines
y3 ← read IMPLIED "line-through" read Number Of Lines
return (y1 , y2 , y3)
-- |

show Text Decoration :: Text Decoration → [Attribute]
show Text Decoration (a, b, c) =

show IMPLIED "underline" show Number Of Lines a ++
show IMPLIED "overline" show Number Of Lines b ++
show IMPLIED "line-through" show Number Of Lines c

The justify entity is used to indicate left, center, or right justification. The default value varies for
different elements.

-- |
type Justify = Maybe Justify

-- |
read Justify :: STM Result [Attribute] Justify
read Justify = read IMPLIED "justify" read Justify

-- |
show Justify :: Justify → [Attribute]
show Justify = show IMPLIED "justify" show Justify

-- |
data Justify = Justify 1 | Justify 2 | Justify 3

deriving (Eq ,Show)
-- |

read Justify :: Data.Char .String → Result Justify
read Justify "left" = return Justify 1
read Justify "center" = return Justify 2
read Justify "right" = return Justify 3
read Justify =

fail "wrong value at justify attribute"

-- |
show Justify :: Justify → Data.Char .String
show Justify Justify 1 = "left"

show Justify Justify 2 = "center"

show Justify Justify 3 = "right"

In cases where text extends over more than one line, horizontal alignment and justify values can be
different. The most typical case is for credits, such as:

Words and music by Pat Songwriter

28

Typically this type of credit is aligned to the right, so that the position information refers to the right-
most part of the text. But in this example, the text is center-justified, not right-justified.

The halign attribute is used in these situations. If it is not present, its value is the same as for the
justify attribute.

-- |
type Halign = Maybe Halign

-- |
read Halign :: STM Result [Attribute] Halign
read Halign = read IMPLIED "halign" read Halign

-- |
show Halign :: Halign → [Attribute]
show Halign = show IMPLIED "halign" show Halign

-- |
data Halign = Halign 1 | Halign 2 | Halign 3

deriving (Eq ,Show)
-- |

read Halign :: Data.Char .String → Result Halign
read Halign "left" = return Halign 1
read Halign "center" = return Halign 2
read Halign "right" = return Halign 3
read Halign =

fail "wrong value at halign attribute"

-- |
show Halign :: Halign → Data.Char .String
show Halign Halign 1 = "left"

show Halign Halign 2 = "center"

show Halign Halign 3 = "right"

The valign entity is used to indicate vertical alignment to the top, middle, bottom, or baseline of the
text. Defaults are implementation-dependent.

-- |
type Valign = Maybe Valign

-- |
read Valign :: STM Result [Attribute] Valign
read Valign = read IMPLIED "valign" read Valign

-- |
show Valign :: Valign → [Attribute]
show Valign = show IMPLIED "valign" show Valign

-- |
data Valign = Valign 1 | Valign 2 | Valign 3 | Valign 4

deriving (Eq ,Show)
-- |

read Valign :: Data.Char .String → Result Valign
read Valign "top" = return Valign 1
read Valign "middle" = return Valign 2
read Valign "bottom" = return Valign 3
read Valign "baseline" = return Valign 4
read Valign =

fail "wrong value at valign attribute"

-- |
show Valign :: Valign → Data.Char .String
show Valign Valign 1 = "top"

show Valign Valign 2 = "middle"

show Valign Valign 3 = "bottom"

show Valign Valign 4 = "baseline"

The valign-image entity is used to indicate vertical alignment for images and graphics, so it removes
the baseline value. Defaults are implementation-dependent.

29

-- |
type Valign Image = Maybe Valign Image

-- |
read Valign Image :: STM Result [Attribute] Valign Image
read Valign Image = read IMPLIED "valign-image" read Valign Image

-- |
show Valign Image :: Valign Image → [Attribute]
show Valign Image = show IMPLIED "valign-image" show Valign Image

-- |
data Valign Image = Valign Image 1 | Valign Image 2 | Valign Image 3

deriving (Eq ,Show)
-- |

read Valign Image :: Data.Char .String → Result Valign Image
read Valign Image "top" = return Valign Image 1
read Valign Image "middle" = return Valign Image 2
read Valign Image "bottom" = return Valign Image 3
read Valign Image =

fail "wrong value at valign-image attribute"

-- |
show Valign Image :: Valign Image → Data.Char .String
show Valign Image Valign Image 1 = "top"

show Valign Image Valign Image 2 = "middle"

show Valign Image Valign Image 3 = "bottom"

The letter-spacing entity specifies text tracking. Values are either ”normal” or a number representing
the number of ems to add between each letter. The number may be negative in order to subtract space.
The default is normal, which allows flexibility of letter-spacing for purposes of text justification.

-- |
type Letter Spacing = Maybe CDATA

-- |
read Letter Spacing :: STM Result [Attribute] Letter Spacing
read Letter Spacing = read IMPLIED "letter-spacing" read CDATA

-- |
show Letter Spacing :: Letter Spacing → [Attribute]
show Letter Spacing = show IMPLIED "letter-spacing" show CDATA

The line-height entity specified text leading. Values are either ”normal” or a number representing the
percentage of the current font height to use for leading. The default is ”normal”. The exact normal value
is implementation-dependent, but values between 100 and 120 are recommended.

-- |
type Line Height = Maybe CDATA

-- |
read Line Height :: STM Result [Attribute] Line Height
read Line Height = read IMPLIED "line-height" read CDATA

-- |
show Line Height :: Line Height → [Attribute]
show Line Height = show IMPLIED "line-height" show CDATA

The text-direction entity is used to adjust and override the Unicode bidirectional text algorithm,
similar to the W3C Internationalization Tag Set recommendation. Values are ltr (left-to-right embed),
rtl (right-to-left embed), lro (left-to-right bidi-override), and rlo (right-to-left bidi-override). The default
value is ltr. This entity is typically used by applications that store text in left-to-right visual order rather
than logical order. Such applications can use the lro value to better communicate with other applications
that more fully support bidirectional text.

-- |
type Text Direction = Maybe Text Direction

-- |

30

read Text Direction :: STM Result [Attribute] Text Direction
read Text Direction = read IMPLIED "dir" read Text Direction

-- |
show Text Direction :: Text Direction → [Attribute]
show Text Direction = show IMPLIED "dir" show Text Direction

-- |
data Text Direction = Text Direction 1
| Text Direction 2
| Text Direction 3
| Text Direction 4
deriving (Eq ,Show)
-- |

read Text Direction :: Data.Char .String → Result Text Direction
read Text Direction "ltr" = return Text Direction 1
read Text Direction "rtl" = return Text Direction 2
read Text Direction "rlo" = return Text Direction 3
read Text Direction "lro" = return Text Direction 4
read Text Direction =

fail "wrong value at text-direction attribute"

-- |
show Text Direction :: Text Direction → Data.Char .String
show Text Direction Text Direction 1 = "ltr"

show Text Direction Text Direction 2 = "rtl"

show Text Direction Text Direction 3 = "rlo"

show Text Direction Text Direction 4 = "lro"

The text-rotation entity is used to rotate text around the alignment point specified by the halign and
valign entities. The value is a number ranging from -180 to 180. Positive values are clockwise rotations,
while negative values are counter-clockwise rotations.

-- |
type Text Rotation = Maybe CDATA

-- |
read Text Rotation :: STM Result [Attribute] Text Rotation
read Text Rotation = read IMPLIED "text-rotation" read CDATA

-- |
show Text Rotation :: Text Rotation → [Attribute]
show Text Rotation = show IMPLIED "text-rotation" show CDATA

The print-style entity groups together the most popular combination of printing attributes: position,
font, and color.

-- |
type Print Style = (Position,Font ,Color)

-- |
read Print Style :: STM Result [Attribute] Print Style
read Print Style = do

y1 ← read Position
y2 ← read Font
y3 ← read Color
return (y1 , y2 , y3)
-- |

show Print Style :: Print Style → [Attribute]
show Print Style (a, b, c) =

show Position a ++ show Font b ++ show Color c

The line-shape entity is used to distinguish between straight and curved lines. The line-type entity
distinguishes between solid, dashed, dotted, and wavy lines.

type Line Shape = Maybe Line Shape
-- |

31

read Line Shape :: STM Result [Attribute] Line Shape
read Line Shape = read IMPLIED "line-shape" read Line Shape

-- |
show Line Shape :: Line Shape → [Attribute]
show Line Shape = show IMPLIED "line-shape" show Line Shape

-- |
data Line Shape = Line Shape 1 | Line Shape 2

deriving (Eq ,Show)
-- |

read Line Shape :: Data.Char .String → Result Line Shape
read Line Shape "straight" = return Line Shape 1
read Line Shape "curved" = return Line Shape 2
read Line Shape =

fail "wrong value at line-shape attribute"

-- |
show Line Shape :: Line Shape → Data.Char .String
show Line Shape Line Shape 1 = "straight"

show Line Shape Line Shape 2 = "curved"

-- |
type Line Type = Maybe Line Type

-- |
read Line Type :: STM Result [Attribute] Line Type
read Line Type = read IMPLIED "line-type" read Line Type

-- |
show Line Type :: Line Type → [Attribute]
show Line Type = show IMPLIED "line-type" show Line Type

-- |
data Line Type = Line Type 1 | Line Type 2 | Line Type 3 | Line Type 4

deriving (Eq ,Show)
-- |

read Line Type :: Data.Char .String → Result Line Type
read Line Type "solid" = return Line Type 1
read Line Type "dashed" = return Line Type 2
read Line Type "dotted" = return Line Type 3
read Line Type "wavy" = return Line Type 4
read Line Type =

fail "wrong value at line-type attribute"

show Line Type :: Line Type → Data.Char .String
show Line Type Line Type 1 = "solid"

show Line Type Line Type 2 = "dashed"

show Line Type Line Type 3 = "dotted"

show Line Type Line Type 4 = "wavy"

The printout entity is based on MuseData print suggestions. They allow a way to specify not to print
print an object (e.g. note or rest), its augmentation dots, or its lyrics. This is especially useful for notes
that overlap in different voices, or for chord sheets that contain lyrics and chords but no melody. For
wholly invisible notes, such as those providing sound-only data, the attribute for print-spacing may be set
to no so that no space is left for this note. The print-spacing value is only used if no note, dot, or lyric is
being printed.

By default, all these attributes are set to yes. If print-object is set to no, print-dot and print-lyric are
interpreted to also be set to no if they are not present.

-- |
type Print Object = Maybe Yes No

-- |
read Print Object :: STM Result [Attribute] Print Object
read Print Object = read IMPLIED "print-object" read Yes No

-- |
show Print Object :: Print Object → [Attribute]

32

show Print Object = show IMPLIED "print-object" show Yes No
-- |

type Print Spacing = Maybe Yes No
-- |

read Print Spacing :: STM Result [Attribute] Print Spacing
read Print Spacing = read IMPLIED "print-spacing" read Yes No

-- |
show Print Spacing :: Print Spacing → [Attribute]
show Print Spacing = show IMPLIED "print-spacing" show Yes No

-- |
type Printout = (Print Object ,Maybe Yes No,Print Spacing ,Maybe Yes No)

-- |
read Printout :: STM Result [Attribute] Printout
read Printout = do

y1 ← read Print Object
y2 ← read IMPLIED "print-dot" read Yes No
y3 ← read Print Spacing
y4 ← read IMPLIED "print-lyric" read Yes No
return (y1 , y2 , y3 , y4)
-- |

show Printout :: Printout → [Attribute]
show Printout (a, b, c, d) =

show Print Object a ++
show IMPLIED "print-dot" show Yes No b ++
show Print Spacing c ++
show IMPLIED "print-lyric" show Yes No d

The text-formatting entity contains the common formatting attributes for text elements. Default
values may differ across the elements that use this entity.

type Text Formatting = (Justify ,Halign,Valign,
Print Style,Text Decoration,Text Rotation,Letter Spacing ,
Line Height ,Maybe CDATA,Text Direction,Maybe Text Formatting)
-- |

read Text Formatting :: STM Result [Attribute] Text Formatting
read Text Formatting = do

y1 ← read Justify
y2 ← read Halign
y3 ← read Valign
y4 ← read Print Style
y5 ← read Text Decoration
y6 ← read Text Rotation
y7 ← read Letter Spacing
y8 ← read Line Height
y9 ← read IMPLIED "xml:lang" read CDATA
y10 ← read Text Direction
y11 ← read IMPLIED "enclosure" read Text Formatting
return (y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , y9 , y10 , y11)
-- |

show Text Formatting :: Text Formatting → [Attribute]
show Text Formatting (a, b, c, d , e, f , g , h, i , j , k) =

show Justify a ++
show Halign b ++
show Valign c ++
show Print Style d ++
show Text Decoration e ++
show Text Rotation f ++
show Letter Spacing g ++
show Line Height h ++

33

show IMPLIED "xml:lang" show CDATA i ++
show Text Direction j ++
show IMPLIED "enclosure" show Text Formatting k
-- |

data Text Formatting = Text Formatting 1
| Text Formatting 2
| Text Formatting 3
deriving (Eq ,Show)

-- |
read Text Formatting :: Data.Char .String → Result Text Formatting
read Text Formatting "rectangle" = return Text Formatting 1
read Text Formatting "oval" = return Text Formatting 2
read Text Formatting "none" = return Text Formatting 3
read Text Formatting =

fail "wrong value at enclosure attribute"

-- |
show Text Formatting :: Text Formatting → Data.Char .String
show Text Formatting Text Formatting 1 = "rectangle"

show Text Formatting Text Formatting 2 = "oval"

show Text Formatting Text Formatting 3 = "none"

The level-display entity allows specification of three common ways to indicate editorial indications:
putting parentheses or square brackets around a symbol, or making the symbol a different size. If not
specified, they are left to application defaults. It is used by the level and accidental elements.

-- |
type Level Display = (Maybe Yes No,Maybe Yes No,Maybe Symbol Size)

-- |
read Level Display :: STM Result [Attribute] Level Display
read Level Display = do -- return (

y1 ← read IMPLIED "parentheses" read Yes No
y2 ← read IMPLIED "braket" read Yes No
y3 ← read IMPLIED "size" read Symbol Size
return (y1 , y2 , y3)

-- |
show Level Display :: Level Display → [Attribute]
show Level Display (a, b, c) =

show IMPLIED "parentheses" show Yes No a ++
show IMPLIED "braket" show Yes No b ++
show IMPLIED "size" show Symbol Size c

Common structures for playback attribute definitions.
The trill-sound entity includes attributes used to guide the sound of trills, mordents, turns, shakes,

and wavy lines, based on MuseData sound suggestions. The default choices are:
start-note = ”upper” trill-step = ”whole” two-note-turn = ”none” accelerate = ”no” beats = ”4” (mini-

mum of ”2”).
Second-beat and last-beat are percentages for landing on the indicated beat, with defaults of 25 and

75 respectively.
For mordent and inverted-mordent elements, the defaults are different:
The default start-note is ”main”, not ”upper”. The default for beats is ”3”, not ”4”. The default for

second-beat is ”12”, not ”25”. The default for last-beat is ”24”, not ”75”.

-- * Attributes
-- |

type Trill Sound = (
Maybe Trill Sound A,Maybe Trill Sound B ,Maybe Trill Sound C ,
Maybe Bool ,Maybe CDATA,Maybe CDATA,Maybe CDATA)
-- |

read Trill Sound :: STM Result [Attribute] Trill Sound

34

read Trill Sound = do
y1 ← read IMPLIED "start-note" read Trill Sound A
y2 ← read IMPLIED "trill-step" read Trill Sound B
y3 ← read IMPLIED "two-note-turn" read Trill Sound C
y4 ← read IMPLIED "accelerate" read Yes No
y5 ← read IMPLIED "beats" read CDATA
y6 ← read IMPLIED "second-beat" read CDATA
y7 ← read IMPLIED "last-beat" read CDATA
return (y1 , y2 , y3 , y4 , y5 , y6 , y7)
-- |

show Trill Sound :: Trill Sound → [Attribute]
show Trill Sound (a, b, c, d , e, f , g) =

show IMPLIED "start-note" show Trill Sound A a ++
show IMPLIED "trill-step" show Trill Sound B b ++
show IMPLIED "two-note-turn" show Trill Sound C c ++
show IMPLIED "accelerate" show Yes No d ++
show IMPLIED "beats" show CDATA e ++
show IMPLIED "second-beat" show CDATA f ++
show IMPLIED "last-beat" show CDATA g
-- |

data Trill Sound A = Trill Sound 1 | Trill Sound 2 | Trill Sound 3
deriving (Eq ,Show)
-- |

read Trill Sound A :: Data.Char .String → Result Trill Sound A
read Trill Sound A "upper" = return Trill Sound 1
read Trill Sound A "main" = return Trill Sound 2
read Trill Sound A "below" = return Trill Sound 3
read Trill Sound A =

fail "wrong value at start-note attribute"

-- |
show Trill Sound A :: Trill Sound A→ Data.Char .String
show Trill Sound A Trill Sound 1 = "upper"

show Trill Sound A Trill Sound 2 = "main"

show Trill Sound A Trill Sound 3 = "below"

-- |
data Trill Sound B = Trill Sound 4 | Trill Sound 5 | Trill Sound 6

deriving (Eq ,Show)
-- |

read Trill Sound B :: Data.Char .String → Result Trill Sound B
read Trill Sound B "whole" = return Trill Sound 4
read Trill Sound B "half" = return Trill Sound 5
read Trill Sound B "unison" = return Trill Sound 6
read Trill Sound B =

fail "wrong value at trill-step attribute"

-- |
show Trill Sound B :: Trill Sound B → Data.Char .String
show Trill Sound B Trill Sound 4 = "whole"

show Trill Sound B Trill Sound 5 = "half"

show Trill Sound B Trill Sound 6 = "unison"

-- |
data Trill Sound C = Trill Sound 7 | Trill Sound 8 | Trill Sound 9

deriving (Eq ,Show)
-- |

read Trill Sound C :: Data.Char .String → Result Trill Sound C
read Trill Sound C "whole" = return Trill Sound 7
read Trill Sound C "half" = return Trill Sound 8
read Trill Sound C "none" = return Trill Sound 9
read Trill Sound C =

35

fail "wrong value at two-note-turn attribute"

-- |
show Trill Sound C :: Trill Sound C → Data.Char .String
show Trill Sound C Trill Sound 7 = "whole"

show Trill Sound C Trill Sound 8 = "half"

show Trill Sound C Trill Sound 9 = "none"

The bend-sound entity is used for bend and slide elements, and is similar to the trill-sound. Here
the beats element refers to the number of discrete elements (like MIDI pitch bends) used to represent a
continuous bend or slide. The first-beat indicates the percentage of the direction for starting a bend; the
last-beat the percentage for ending it. The default choices are:

accelerate = ”no” beats = ”4” (minimum of ”2”) first-beat = ”25” last-beat = ”75”

-- |
type Bend Sound = (Maybe Yes No,Maybe CDATA,Maybe CDATA,Maybe CDATA)

-- |
read Bend Sound :: STM Result [Attribute] Bend Sound
read Bend Sound = do

y1 ← read IMPLIED "accelerate" read Yes No
y2 ← read IMPLIED "beats" read CDATA
y3 ← read IMPLIED "first-beat" read CDATA
y4 ← read IMPLIED "last-beat" read CDATA
return (y1 , y2 , y3 , y4)
-- |

show Bend Sound :: Bend Sound → [Attribute]
show Bend Sound (a, b, c, d) =

show IMPLIED "accelerate" show Yes No a ++
show IMPLIED "beats" show CDATA b ++
show IMPLIED "first-beat" show CDATA c ++
show IMPLIED "second-beat" show CDATA d

Common structures for other attribute definitions.
The document-attributes entity is used to specify the attributes for an entire MusicXML document.

Currently this is used for the version attribute.
The version attribute was added in Version 1.1 for the score-partwise and score-timewise documents,

and in Version 2.0 for opus documents. It provides an easier way to get version information than through
the MusicXML public ID. The default value is 1.0 to make it possible for programs that handle later
versions to distinguish earlier version files reliably. Programs that write MusicXML 1.1 or 2.0 files should
set this attribute.

-- * Attributes
-- |

type Document Attributes = CDATA
-- |

read Document Attributes :: STM Result [Attribute] Document Attributes
read Document Attributes = read DEFAULT "version" read CDATA "1.0"

-- |
show Document Attributes :: Document Attributes → [Attribute]
show Document Attributes = show DEFAULT "version" show CDATA

Common structures for element definitions.
Two entities for editorial information in notes. These entities, and their elements defined below, are

used across all the different component DTD modules.

-- * Elements
-- |

type Editorial = (Maybe Footnote,Maybe Level)
-- |

read Editorial :: STM Result [Content i] (Editorial)
read Editorial = do

36

y1 ← read MAYBE read Footnote
y2 ← read MAYBE read Level
return (y1 , y2)
-- |

show Editorial :: Editorial → [Content ()]
show Editorial (a, b) =

show MAYBE show Footnote a ++
show MAYBE show Level b
-- |

type Editorial Voice = (Maybe Footnote,Maybe Level ,Maybe Voice)
-- |

read Editorial Voice :: STM Result [Content i] Editorial Voice
read Editorial Voice = do

y1 ← read MAYBE read Footnote
y2 ← read MAYBE read Level
y3 ← read MAYBE read Voice
return (y1 , y2 , y3)
-- |

show Editorial Voice :: Editorial Voice → [Content ()]
show Editorial Voice (a, b, c) =

show MAYBE show Footnote a ++
show MAYBE show Level b ++
show MAYBE show Voice c

Footnote and level are used to specify editorial information, while voice is used to distinguish between
multiple voices (what MuseData calls tracks) in individual parts. These elements are used throughout the
different MusicXML DTD modules. If the reference attribute for the level element is yes, this indicates
editorial information that is for display only and should not affect playback. For instance, a modern
edition of older music may set reference=”yes” on the attributes containing the music’s original clef, key,
and time signature. It is no by default.

-- * Elements
-- |

type Footnote = (Text Formatting ,PCDATA)
-- |

read Footnote :: STM Result [Content i] Footnote
read Footnote = do

y ← read ELEMENT "footnote"

y1 ← read 1 read Text Formatting (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Footnote :: Footnote → [Content ()]
show Footnote (a, b) =

show ELEMENT "footnote"

(show Text Formatting a)
(show PCDATA b)

-- |
type Level = ((Maybe Yes No,Level Display),PCDATA)

-- |
read Level :: STM Result [Content i] Level
read Level = do

y ← read ELEMENT "level"

y1 ← read 2 (read IMPLIED "reference" read Yes No)
read Level Display (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Level :: Level → [Content ()]

37

show Level ((a, b), c) =
show ELEMENT "level"

(show IMPLIED "reference" show Yes No a ++
show Level Display b)
(show PCDATA c)

-- |
type Voice = PCDATA

-- |
read Voice :: STM Result [Content i] Voice
read Voice = do

y ← read ELEMENT "voice"

read 1 read PCDATA (childs y)
-- |

show Voice :: Voice → [Content ()]
show Voice x = show ELEMENT "voice" [] (show PCDATA x)

Fermata and wavy-line elements can be applied both to notes and to measures, so they are defined
here. Wavy lines are one way to indicate trills; when used with a measure element, they should always
have type=”continue” set. The fermata text content represents the shape of the fermata sign and may be
normal, angled, or square. An empty fermata element represents a normal fermata. The fermata type is
upright if not specified.

-- |
type Fermata = ((Maybe Fermata ,Print Style),PCDATA)
data Fermata = Fermata 1 | Fermata 2

deriving (Eq ,Show)
-- |

read Fermata :: Data.Char .String → Result Fermata
read Fermata "upright" = return Fermata 1
read Fermata "inverted" = return Fermata 2
read Fermata =

fail "I expect type attribute"

-- |
show Fermata :: Fermata → Data.Char .String
show Fermata Fermata 1 = "upright"

show Fermata Fermata 2 = "inverted"

-- |
read Fermata :: STM Result [Content i] Fermata
read Fermata = do

y ← read ELEMENT "fermata"

y1 ← read 2 (read IMPLIED "type" read Fermata)
read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Fermata :: Fermata → [Content ()]
show Fermata ((a, b), c) =

show ELEMENT "fermata"

(show IMPLIED "type" show Fermata a ++
show Print Style b)

(show PCDATA c)
-- |

type Wavy Line = ((Start Stop Continue,Maybe Number Level ,
Position,Placement ,Color ,Trill Sound), ())

-- |
read Wavy Line :: STM Result [Content i] Wavy Line
read Wavy Line = do

y ← read ELEMENT "wavy-line"

y1 ← read 6 (read REQUIRED "type" read Start Stop Continue)

38

(read IMPLIED "number" read Number Level)
read Position read Placement read Color
read Trill Sound (attributes y)

return (y1 , ())
-- |

show Wavy Line :: Wavy Line → [Content ()]
show Wavy Line ((a, b, c, d , e, f), ()) =

show ELEMENT "wavy-line"

(show REQUIRED "type" show Start Stop Continue a ++
show IMPLIED "number" show Number Level b ++
show Position c ++
show Placement d ++
show Color e ++
show Trill Sound f

)
[]

Staff assignment is only needed for music notated on multiple staves. Used by both notes and directions.
Staff values are numbers, with 1 referring to the top-most staff in a part.

-- |
type Staff = PCDATA

-- |
read Staff :: STM Result [Content i] Staff
read Staff = do

y ← read ELEMENT "staff"

read 1 read PCDATA (childs y)
-- |

show Staff :: Staff → [Content ()]
show Staff x = show ELEMENT "staff" [] (show PCDATA x)

Segno and coda signs can be associated with a measure or a general musical direction. These are visual
indicators only; a sound element is needed to guide playback applications reliably.

-- |
type Segno = (Print Style, ())

-- |
read Segno :: STM Result [Content i] Segno
read Segno = do

y ← read ELEMENT "segno"

y1 ← read 1 read Print Style (attributes y)
return (y1 , ())
-- |

show Segno :: Segno → [Content ()]
show Segno (x ,) = show ELEMENT "segno" (show Print Style x) []

-- |
type Coda = (Print Style, ())

-- |
read Coda :: STM Result [Content i] Coda
read Coda = do

y ← read ELEMENT "coda"

y1 ← read 1 read Print Style (attributes y)
return (y1 , ())
-- |

show Coda :: Coda → [Content ()]
show Coda (x ,) = show ELEMENT "coda" (show Print Style x) []

These elements are used both in the time-modification and metronome-tuplet elements. The actual-
notes element describes how many notes are played in the time usually occupied by the number of normal-
notes. If the normal-notes type is different than the current note type (e.g., a quarter note within an

39

eighth note triplet), then the normal-notes type (e.g. eighth) is specified in the normal-type and normal-
dot elements.

-- |
type Actual Notes = PCDATA

-- |
read Actual Notes :: STM Result [Content i] Actual Notes
read Actual Notes = do

y ← read ELEMENT "actual-notes"

read 1 read PCDATA (childs y)
-- |

show Actual Notes :: Actual Notes → [Content ()]
show Actual Notes x = show ELEMENT "actual-notes" [] (show PCDATA x)

-- |
type Normal Notes = PCDATA

-- |
read Normal Notes :: STM Result [Content i] Normal Notes
read Normal Notes = do

y ← read ELEMENT "normal-notes"

read 1 read PCDATA (childs y)
-- |

show Normal Notes :: Normal Notes → [Content ()]
show Normal Notes x = show ELEMENT "normal-notes" [] (show PCDATA x)

-- |
type Normal Type = PCDATA

-- |
read Normal Type :: STM Result [Content i] Normal Type
read Normal Type = do

y ← read ELEMENT "normal-type"

read 1 read PCDATA (childs y)
-- |

show Normal Type :: Normal Type → [Content ()]
show Normal Type x = show ELEMENT "normal-type" [] (show PCDATA x)

-- |
type Normal Dot = ()

-- |
read Normal Dot :: STM Result [Content i] Normal Dot
read Normal Dot = read ELEMENT "normal-dot">> return ()

-- |
show Normal Dot :: Normal Dot → [Content ()]
show Normal Dot = show ELEMENT "normal-dot" [] []

Dynamics can be associated either with a note or a general musical direction. To avoid inconsistencies
between and amongst the letter abbreviations for dynamics (what is sf vs. sfz, standing alone or with
a trailing dynamic that is not always piano), we use the actual letters as the names of these dynamic
elements. The other-dynamics element allows other dynamic marks that are not covered here, but many
of those should perhaps be included in a more general musical direction element. Dynamics may also be
combined as in <sf/><mp/>.

These letter dynamic symbols are separated from crescendo, decrescendo, and wedge indications.
Dynamic representation is inconsistent in scores. Many things are assumed by the composer and left
out, such as returns to original dynamics. Systematic representations are quite complex: for example,
Humdrum has at least 3 representation formats related to dynamics. The MusicXML format captures
what is in the score, but does not try to be optimal for analysis or synthesis of dynamics.

-- |
type Dynamics = ((Print Style,Placement), [Dynamics])

-- |
read Dynamics :: Eq i ⇒ STM Result [Content i] Dynamics
read Dynamics = do

y ← read ELEMENT "dynamics"

40

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 (read LIST read Dynamics) (childs y)
return (y1 , y2)
-- |

show Dynamics :: Dynamics → [Content ()]
show Dynamics ((a, b), c) =

show ELEMENT "dynamics"

(show Print Style a ++ show Placement b)
(show LIST show Dynamics c)

-- |
data Dynamics = Dynamics 1 P
| Dynamics 2 PP
| Dynamics 3 PPP
| Dynamics 4 PPPP
| Dynamics 5 PPPPP
| Dynamics 6 PPPPPP
| Dynamics 7 F
| Dynamics 8 FF
| Dynamics 9 FFF
| Dynamics 10 FFFF
| Dynamics 11 FFFFF
| Dynamics 12 FFFFFF
| Dynamics 13 MP
| Dynamics 14 MF
| Dynamics 15 SF
| Dynamics 16 SFP
| Dynamics 17 SFPP
| Dynamics 18 FP
| Dynamics 19 RF
| Dynamics 20 RFZ
| Dynamics 21 SFZ
| Dynamics 22 SFFZ
| Dynamics 23 FZ
| Dynamics 24 Other Dynamics
deriving (Eq ,Show)

-- |
read Dynamics :: STM Result [Content i] Dynamics
read Dynamics =

(read P >>= return ·Dynamics 1) ‘mplus‘
(read PP >>= return ·Dynamics 2) ‘mplus‘
(read PPP >>= return ·Dynamics 3) ‘mplus‘
(read PPPP >>= return ·Dynamics 4) ‘mplus‘
(read PPPPP >>= return ·Dynamics 5) ‘mplus‘
(read PPPPPP >>= return ·Dynamics 6) ‘mplus‘
(read F >>= return ·Dynamics 7) ‘mplus‘
(read FF >>= return ·Dynamics 8) ‘mplus‘
(read FFF >>= return ·Dynamics 9) ‘mplus‘
(read FFFF >>= return ·Dynamics 10) ‘mplus‘
(read FFFFF >>= return ·Dynamics 11) ‘mplus‘
(read FFFFFF >>= return ·Dynamics 12) ‘mplus‘
(read MP >>= return ·Dynamics 13) ‘mplus‘
(read MF >>= return ·Dynamics 14) ‘mplus‘
(read SF >>= return ·Dynamics 15) ‘mplus‘
(read SFP >>= return ·Dynamics 16) ‘mplus‘
(read SFPP >>= return ·Dynamics 17) ‘mplus‘
(read FP >>= return ·Dynamics 18) ‘mplus‘
(read RF >>= return ·Dynamics 19) ‘mplus‘
(read RFZ >>= return ·Dynamics 20) ‘mplus‘

41

(read SFZ >>= return ·Dynamics 21) ‘mplus‘
(read SFFZ >>= return ·Dynamics 22) ‘mplus‘
(read FZ >>= return ·Dynamics 23) ‘mplus‘
(read Other Dynamics >>= return ·Dynamics 24)
-- |

show Dynamics :: Dynamics → [Content ()]
show Dynamics (Dynamics 1 x) = show P x
show Dynamics (Dynamics 2 x) = show PP x
show Dynamics (Dynamics 3 x) = show PPP x
show Dynamics (Dynamics 4 x) = show PPPP x
show Dynamics (Dynamics 5 x) = show PPPPP x
show Dynamics (Dynamics 6 x) = show PPPPPP x
show Dynamics (Dynamics 7 x) = show F x
show Dynamics (Dynamics 8 x) = show FF x
show Dynamics (Dynamics 9 x) = show FFF x
show Dynamics (Dynamics 10 x) = show FFFF x
show Dynamics (Dynamics 11 x) = show FFFFF x
show Dynamics (Dynamics 12 x) = show FFFFFF x
show Dynamics (Dynamics 13 x) = show MP x
show Dynamics (Dynamics 14 x) = show MF x
show Dynamics (Dynamics 15 x) = show SF x
show Dynamics (Dynamics 16 x) = show SFP x
show Dynamics (Dynamics 17 x) = show SFPP x
show Dynamics (Dynamics 18 x) = show FP x
show Dynamics (Dynamics 19 x) = show RF x
show Dynamics (Dynamics 20 x) = show RFZ x
show Dynamics (Dynamics 21 x) = show SFZ x
show Dynamics (Dynamics 22 x) = show SFFZ x
show Dynamics (Dynamics 23 x) = show FZ x
show Dynamics (Dynamics 24 x) = show Other Dynamics x

-- |
type P = ()

-- |
read P :: STM Result [Content i] P
read P = read ELEMENT "p">> return ()

-- |
show P :: P → [Content ()]
show P = show ELEMENT "p" [] []

-- |
type PP = ()

-- |
read PP :: STM Result [Content i] PP
read PP = read ELEMENT "pp">> return ()

-- |
show PP :: PP → [Content ()]
show PP = show ELEMENT "pp" [] []

-- |
type PPP = ()

-- |
read PPP :: STM Result [Content i] PPP
read PPP = read ELEMENT "ppp">> return ()

-- |
show PPP :: PPP → [Content ()]
show PPP = show ELEMENT "ppp" [] []

-- |
type PPPP = ()

-- |
read PPPP :: STM Result [Content i] PPPP

42

read PPPP = read ELEMENT "pppp">> return ()
-- |

show PPPP :: PPPP → [Content ()]
show PPPP = show ELEMENT "pppp" [] []

-- |
type PPPPP = ()

-- |
read PPPPP :: STM Result [Content i] PPPPP
read PPPPP = read ELEMENT "ppppp">> return ()

-- |
show PPPPP :: PPPPP → [Content ()]
show PPPPP = show ELEMENT "ppppp" [] []

-- |
type PPPPPP = ()

-- |
read PPPPPP :: STM Result [Content i] PPPPPP
read PPPPPP = read ELEMENT "pppppp">> return ()

-- |
show PPPPPP :: PPPPPP → [Content ()]
show PPPPPP = show ELEMENT "pppppp" [] []

-- |
type FFFFFF = ()

-- |
read FFFFFF :: STM Result [Content i] FFFFFF
read FFFFFF = read ELEMENT "ffffff">> return ()

-- |
show FFFFFF :: FFFFFF → [Content ()]
show FFFFFF = show ELEMENT "ffffff" [] []

-- |
type FFFFF = ()

-- |
read FFFFF :: STM Result [Content i] FFFFF
read FFFFF = read ELEMENT "fffff">> return ()

-- |
show FFFFF :: FFFFF → [Content ()]
show FFFFF = show ELEMENT "fffff" [] []

-- |
type FFFF = ()

-- |
read FFFF :: STM Result [Content i] FFFF
read FFFF = read ELEMENT "ffff">> return ()

-- |
show FFFF :: FFFF → [Content ()]
show FFFF = show ELEMENT "ffff" [] []

-- |
type FFF = ()

-- |
read FFF :: STM Result [Content i] FFF
read FFF = read ELEMENT "fff">> return ()

-- |
show FFF :: FFF → [Content ()]
show FFF = show ELEMENT "fff" [] []

-- |
type FF = ()

-- |
read FF :: STM Result [Content i] FF
read FF = read ELEMENT "ff">> return ()

-- |

43

show FF :: FF → [Content ()]
show FF = show ELEMENT "ff" [] []

-- |
type F = ()

-- |
read F :: STM Result [Content i] F
read F = read ELEMENT "f">> return ()

-- |
show F :: F → [Content ()]
show F = show ELEMENT "f" [] []

-- |
type MP = ()

-- |
read MP :: STM Result [Content i] MP
read MP = read ELEMENT "mp">> return ()

-- |
show MP :: MP → [Content ()]
show MP = show ELEMENT "mp" [] []

-- |
type MF = ()

-- |
read MF :: STM Result [Content i] MF
read MF = read ELEMENT "mf">> return ()

-- |
show MF :: MF → [Content ()]
show MF = show ELEMENT "mf" [] []

-- |
type SF = ()

-- |
read SF :: STM Result [Content i] SF
read SF = read ELEMENT "sf">> return ()

-- |
show SF :: SF → [Content ()]
show SF = show ELEMENT "sf" [] []

-- |
type SFP = ()

-- |
read SFP :: STM Result [Content i] SFP
read SFP = read ELEMENT "sfp">> return ()

-- |
show SFP :: SFP → [Content ()]
show SFP = show ELEMENT "sfp" [] []

-- |
type SFPP = ()

-- |
read SFPP :: STM Result [Content i] SFPP
read SFPP = read ELEMENT "sfpp">> return ()

-- |
show SFPP :: SFPP → [Content ()]
show SFPP = show ELEMENT "sfpp" [] []

-- |
type FP = ()

-- |
read FP :: STM Result [Content i] FP
read FP = read ELEMENT "fp">> return ()

-- |
show FP :: FP → [Content ()]
show FP = show ELEMENT "fp" [] []

44

-- |
type RF = ()

-- |
read RF :: STM Result [Content i] RF
read RF = read ELEMENT "rf">> return ()

-- |
show RF :: RF → [Content ()]
show RF = show ELEMENT "rf" [] []

-- |
type RFZ = ()

-- |
read RFZ :: STM Result [Content i] RFZ
read RFZ = read ELEMENT "rfz">> return ()

-- |
show RFZ :: RFZ → [Content ()]
show RFZ = show ELEMENT "rfz" [] []

-- |
type SFZ = ()

-- |
read SFZ :: STM Result [Content i] SFZ
read SFZ = read ELEMENT "sfz">> return ()

-- |
show SFZ :: SFZ → [Content ()]
show SFZ = show ELEMENT "sfz" [] []

-- |
type SFFZ = ()

-- |
read SFFZ :: STM Result [Content i] SFFZ
read SFFZ = read ELEMENT "sffz">> return ()

-- |
show SFFZ :: SFFZ → [Content ()]
show SFFZ = show ELEMENT "sffz" [] []

-- |
type FZ = ()

-- |
read FZ :: STM Result [Content i] FZ
read FZ = read ELEMENT "fz">> return ()

-- |
show FZ :: FZ → [Content ()]
show FZ = show ELEMENT "fz" [] []

-- |
type Other Dynamics = PCDATA

-- |
read Other Dynamics :: STM Result [Content i] Other Dynamics
read Other Dynamics = do

y ← read ELEMENT "other-dynamics"

read 1 read PCDATA (childs y)
-- |

show Other Dynamics :: Other Dynamics → [Content ()]
show Other Dynamics x = show ELEMENT "other-dynamics" [] (show PCDATA x)

The fret, string, and fingering elements can be used either in a technical element for a note or in a
frame element as part of a chord symbol.

Fingering is typically indicated 1,2,3,4,5. Multiple fingerings may be given, typically to substitute
fingerings in the middle of a note. The substitution and alternate values are ”no” if the attribute is not
present. For guitar and other fretted instruments, the fingering element represents the fretting finger; the
pluck element represents the plucking finger.

-- |
type Fingering = ((Maybe Yes No,Maybe Yes No,Print Style,Placement),PCDATA)

45

-- |
read Fingering :: STM Result [Content i] Fingering
read Fingering = do

y ← read ELEMENT "fingering"

y1 ← read 4 (read IMPLIED "substitution" read Yes No)
(read IMPLIED "alternate" read Yes No)
read Print Style read Placement (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Fingering :: Fingering → [Content ()]
show Fingering ((a, b, c, d), e) =

show ELEMENT "fingering"

(show IMPLIED "substitution" show Yes No a ++
show IMPLIED "alternate" show Yes No b ++
show Print Style c ++
show Placement d)

(show PCDATA e)

Fret and string are used with tablature notation and chord symbols. Fret numbers start with 0 for an
open string and 1 for the first fret. String numbers start with 1 for the highest string. The string element
can also be used in regular notation.

-- |
type Fret = ((Font ,Color),PCDATA)

-- |
read Fret :: STM Result [Content i] Fret
read Fret = do

y ← read ELEMENT "fret"

y1 ← read 2 read Font read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Fret :: Fret → [Content ()]
show Fret ((a, b), c) =

show ELEMENT "fret"

(show Font a ++ show Color b)
(show PCDATA c)

-- |
type String = ((Print Style,Placement),PCDATA)

-- |
read String :: STM Result [Content i] String
read String = do

y ← read ELEMENT "string"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show String :: String → [Content ()]
show String ((a, b), c) =

show ELEMENT "string"

(show Print Style a ++ show Placement b)
(show PCDATA c)

The tuning-step, tuning-alter, and tuning-octave elements are represented like the step, alter, and
octave elements, with different names to reflect their different function. They are used in the staff-tuning
and accord elements.

-- |
type Tuning Step = PCDATA

46

-- |
read Tuning Step :: STM Result [Content i] Tuning Step
read Tuning Step = do

y ← read ELEMENT "tuning-step"

read 1 read PCDATA (childs y)
-- |

show Tuning Step :: Tuning Step → [Content ()]
show Tuning Step x = show ELEMENT "tuning-step" [] (show PCDATA x)

-- |
type Tuning Alter = PCDATA

-- |
read Tuning Alter :: STM Result [Content i] Tuning Alter
read Tuning Alter = do

y ← read ELEMENT "tuning-alter"

read 1 read PCDATA (childs y)
-- |

show Tuning Alter :: Tuning Alter → [Content ()]
show Tuning Alter x = show ELEMENT "tuning-alter" [] (show PCDATA x)

-- |
type Tuning Octave = PCDATA

-- |
read Tuning Octave :: STM Result [Content i] Tuning Octave
read Tuning Octave = do

y ← read ELEMENT "tuning-octave"

read 1 read PCDATA (childs y)
-- |

show Tuning Octave :: Tuning Octave → [Content ()]
show Tuning Octave x = show ELEMENT "tuning-octave" [] (show PCDATA x)

The display-text element is used for exact formatting of multi-font text in element in display elements
such as part-name-display. Language is Italian (”it”) by default. Enclosure is none by default.

-- |
type Display Text = (Text Formatting ,PCDATA)

-- |
read Display Text :: STM Result [Content i] Display Text
read Display Text = do

y ← read ELEMENT "display-text"

y1 ← read 1 read Text Formatting (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Display Text :: Display Text → [Content ()]
show Display Text (a, b) =

show ELEMENT "display-text"

(show Text Formatting a)
(show PCDATA b)

The accidental-text element is used for exact formatting of accidentals in display elements such as
part-name-display. Values are the same as for the accidental element. Enclosure is none by default.

-- |
type Accidental Text = (Text Formatting ,PCDATA)

-- |
read Accidental Text :: STM Result [Content i] Accidental Text
read Accidental Text = do

y ← read ELEMENT "accidental-text"

y1 ← read 1 read Text Formatting (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)

47

-- |
show Accidental Text :: Accidental Text → [Content ()]
show Accidental Text (a, b) =

show ELEMENT "accidental-text"

(show Text Formatting a)
(show PCDATA b)

The part-name-display and part-abbreviation-display elements are used in both the score.mod and
direction.mod files. They allow more precise control of how part names and abbreviations appear through-
out a score. The print-object attributes can be used to determine what, if anything, is printed at the start
of each system. Formatting specified in the part-name-display and part-abbreviation-display elements
override the formatting specified in the part-name and part-abbreviation elements, respectively.

type Part Name Display = (Print Object , [Part Name Display])
-- |

read Part Name Display :: Eq i ⇒ STM Result [Content i] Part Name Display
read Part Name Display = do

y ← read ELEMENT "part-name-display"

y1 ← read 1 read Print Object (attributes y)
y2 ← read 1 (read LIST read Part Name Display) (childs y)
return (y1 , y2)
-- |

show Part Name Display :: Part Name Display → [Content ()]
show Part Name Display (a, b) =

show ELEMENT "part-name-display"

(show Print Object a)
(show LIST show Part Name Display b)

-- |
data Part Name Display = Part Name Display 1 Display Text
| Part Name Display 2 Accidental Text
deriving (Eq ,Show)
-- |

read Part Name Display :: STM Result [Content i] Part Name Display
read Part Name Display =

(read Display Text >>= (return · Part Name Display 1)) ‘mplus‘
(read Accidental Text >>= (return · Part Name Display 2)) ‘mplus‘
fail "part-name-display"
-- |

show Part Name Display :: Part Name Display → [Content ()]
show Part Name Display (Part Name Display 1 x) = show Display Text x
show Part Name Display (Part Name Display 2 x) = show Accidental Text x

-- |
type Part Abbreviation Display = (Print Object , [Part Abbreviation Display])

-- |
read Part Abbreviation Display :: Eq i ⇒

STM Result [Content i] Part Abbreviation Display
read Part Abbreviation Display = do

y ← read ELEMENT "part-abbreviation-display"

y1 ← read 1 read Print Object (attributes y)
y2 ← read 1 (read LIST read Part Abbreviation Display) (childs y)
return (y1 , y2)
-- |

show Part Abbreviation Display :: Part Abbreviation Display → [Content ()]
show Part Abbreviation Display (a, b) =

show ELEMENT "part-abbreviation-display"

(show Print Object a)
(show LIST show Part Abbreviation Display b)

-- |
data Part Abbreviation Display =

48

Part Abbreviation Display 1 Display Text
| Part Abbreviation Display 2 Accidental Text
deriving (Eq ,Show)

-- |
read Part Abbreviation Display ::

STM Result [Content i] Part Abbreviation Display
read Part Abbreviation Display =

(read Display Text >>= (return · Part Abbreviation Display 1)) ‘mplus‘
(read Accidental Text >>= (return · Part Abbreviation Display 2)) ‘mplus‘
fail "part-name-display"
-- |

show Part Abbreviation Display :: Part Abbreviation Display → [Content ()]
show Part Abbreviation Display

(Part Abbreviation Display 1 x) = show Display Text x
show Part Abbreviation Display

(Part Abbreviation Display 2 x) = show Accidental Text x
-- |

The midi-instrument element can be a part of either the score-instrument element at the start of a
part, or the sound element within a part. The id attribute refers to the score-instrument affected by the
change.

-- |
type Midi Instrument = (ID , (Maybe Midi Channel ,Maybe Midi Name,

Maybe Midi Bank ,Maybe Midi Program,Maybe Midi Unpitched ,
Maybe Volume,Maybe Pan,Maybe Elevation))
-- |

read Midi Instrument :: STM Result [Content i] Midi Instrument
read Midi Instrument = do

y ← read ELEMENT "midi-instrument"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
y2 ← read 8 (read MAYBE read Midi Channel) (read MAYBE read Midi Name)

(read MAYBE read Midi Bank) (read MAYBE read Midi Program)
(read MAYBE read Midi Unpitched) (read MAYBE read Volume)
(read MAYBE read Pan) (read MAYBE read Elevation)
(childs y)

return (y1 , y2)
-- |

show Midi Instrument :: Midi Instrument → [Content ()]
show Midi Instrument (a, (b, c, d , e, f , g , h, i)) =

show ELEMENT "midi-instrument"

(show REQUIRED "id" show ID a)
(show MAYBE show Midi Channel b ++ show MAYBE show Midi Name c ++

show MAYBE show Midi Bank d ++ show MAYBE show Midi Program e ++
show MAYBE show Midi Unpitched f ++ show MAYBE show Volume g ++
show MAYBE show Pan h ++ show MAYBE show Elevation i)

MIDI 1.0 channel numbers range from 1 to 16.

-- |
type Midi Channel = PCDATA

-- |
read Midi Channel :: STM Result [Content i] Midi Channel
read Midi Channel = do

y ← read ELEMENT "midi-channel"

read 1 read PCDATA (childs y)
-- |

show Midi Channel :: Midi Channel → [Content ()]
show Midi Channel x =

show ELEMENT "midi-channel" [] (show PCDATA x)

49

MIDI names correspond to ProgramName meta-events within a Standard MIDI File.

-- |
type Midi Name = PCDATA

-- |
read Midi Name :: STM Result [Content i] Midi Name
read Midi Name = do

y ← read ELEMENT "midi-name"

read 1 read PCDATA (childs y)
-- |

show Midi Name :: Midi Name → [Content ()]
show Midi Name x =

show ELEMENT "midi-name" [] (show PCDATA x)

MIDI 1.0 bank numbers range from 1 to 16,384.

-- |
type Midi Bank = PCDATA

-- |
read Midi Bank :: STM Result [Content i] Midi Bank
read Midi Bank = do

y ← read ELEMENT "midi-bank"

read 1 read PCDATA (childs y)
-- |

show Midi Bank :: Midi Bank → [Content ()]
show Midi Bank x =

show ELEMENT "midi-bank" [] (show PCDATA x)

MIDI 1.0 program numbers range from 1 to 128.

-- |
type Midi Program = PCDATA

-- |
read Midi Program :: STM Result [Content i] Midi Program
read Midi Program = do

y ← read ELEMENT "midi-program"

read 1 read PCDATA (childs y)
-- |

show Midi Program :: Midi Program → [Content ()]
show Midi Program x =

show ELEMENT "midi-program" [] (show PCDATA x)

For unpitched instruments, specify a MIDI 1.0 note number ranging from 1 to 128. Usually used with
MIDI banks for percussion.

-- |
type Midi Unpitched = PCDATA

-- |
read Midi Unpitched :: STM Result [Content i] Midi Unpitched
read Midi Unpitched = do

y ← read ELEMENT "midi-unpitched"

read 1 read PCDATA (childs y)
-- |

show Midi Unpitched :: Midi Unpitched → [Content ()]
show Midi Unpitched x =

show ELEMENT "midi-unpitched" [] (show PCDATA x)

The volume value is a percentage of the maximum ranging from 0 to 100, with decimal values allowed.
This corresponds to a scaling value for the MIDI 1.0 channel volume controller.

-- |
type Volume = PCDATA

50

-- |
read Volume :: STM Result [Content i] Volume
read Volume = do

y ← read ELEMENT "volume"

read 1 read PCDATA (childs y)
-- |

show Volume :: Volume → [Content ()]
show Volume x =

show ELEMENT "volume" [] (show PCDATA x)

Pan and elevation allow placing of sound in a 3-D space relative to the listener. Both are expressed in
degrees ranging from -180 to 180. For pan, 0 is straight ahead, -90 is hard left, 90 is hard right, and -180
and 180 are directly behind the listener. For elevation, 0 is level with the listener, 90 is directly above,
and -90 is directly below.

-- |
type Pan = PCDATA

-- |
read Pan :: STM Result [Content i] Pan
read Pan = do

y ← read ELEMENT "pan"

read 1 read PCDATA (childs y)
-- |

show Pan :: Pan → [Content ()]
show Pan x =

show ELEMENT "pan" [] (show PCDATA x)
-- |

type Elevation = PCDATA
-- |

read Elevation :: STM Result [Content i] Elevation
read Elevation = do

y ← read ELEMENT "elevation"

read 1 read PCDATA (childs y)
-- |

show Elevation :: Elevation → [Content ()]
show Elevation x =

show ELEMENT "elevation" [] (show PCDATA x)

2.4 Container

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Container where
import Text .XML.MusicXML.Common
import Text .XML.HaXml .Types (Content ,

DocTypeDecl (. .),ExternalID (. .),PubidLiteral (. .),SystemLiteral (. .))
import Prelude (FilePath,Maybe (. .),Eq ,Monad (. .), (++),map)

Starting with Version 2.0, the MusicXML format includes a standard zip compressed version. These
zip files can contain multiple MusicXML files as well as other media files for images and sound. The
container DTD describes the contents of the META-INF/container.xml file. The container describes the
starting point for the MusicXML version of the file, as well as alternate renditions such as PDF and audio
versions of the musical score.

51

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Container where
import Text.XML.MusicXML.Common
import Text.XML.HaXml.Types (Content,
 DocTypeDecl(..), ExternalID(..), PubidLiteral(..), SystemLiteral(..))
import Prelude (FilePath, Maybe(..), Eq, Monad(..), (++), map)
\end{code}

\begin{musicxml}
	Starting with Version 2.0, the MusicXML format includes a
	standard zip compressed version. These zip files can contain
	multiple MusicXML files as well as other media files for
	images and sound. The container DTD describes the contents
	of the META-INF/container.xml file. The container describes
	the starting point for the MusicXML version of the file, as
	well as alternate renditions such as PDF and audio versions
	of the musical score.

	The MusicXML 2.0 zip file format is compatible with the zip
	format used by the java.util.zip package and Java JAR files.
	It is based on the Info-ZIP format described at:

	ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

	The JAR file format is specified at:

	http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html

	Note that, compatible with JAR files, file names should be
	encoded in UTF-8 format.

	Files with the zip container are compressed the DEFLATE
	algorithm. The DEFLATE Compressed Data Format (RFC 1951)
	is specified at:

	http://www.ietf.org/rfc/rfc1951.txt

	The recommended file suffix for compressed MusicXML 2.0
	files is .mxl. The recommended media type for a compressed
	MusicXML file is:

		application/vnd.recordare.musicxml

	The recommended media type for an uncompressed MusicXML
	file is:

		application/vnd.recordare.musicxml+xml

	Suggested use:	
\begin{verbatim}
 <!DOCTYPE container PUBLIC
		"-//Recordare//DTD MusicXML 2.0 Container//EN"
		"http://www.musicxml.org/dtds/container.dtd">
\end{verbatim}
\end{musicxml}
\begin{code}
-- |
doctype :: DocTypeDecl
doctype = DTD "container"
 (Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Container//EN")
 (SystemLiteral "http://www.musicxml.org/dtds/container.dtd")))
 []
-- |
getFiles :: Container -> [FilePath]
getFiles = map (\((a,_),_) -> a)
\end{code}

\begin{musicxml}
	Container is the document element.
\end{musicxml}
\begin{code}
-- * Container
-- |
type Container = Rootfiles
-- |
read_Container :: Eq i => STM Result [Content i] Container
read_Container = do
 y <- read_ELEMENT "container"
 read_1 read_Rootfiles (childs y)
-- |
show_Container :: Container -> [Content ()]
show_Container a =
 show_ELEMENT "container" [] (show_Rootfiles a)
\end{code}

\begin{musicxml}
	Rootfiles include the starting points for the different
	representations of a MusicXML score. The MusicXML root
	must be described in the first rootfile element. Additional
	rootfile elements can describe alternate versions such as
	PDF and audio files.
\end{musicxml}
\begin{code}
-- |
type Rootfiles = [Rootfile]
-- |
read_Rootfiles :: Eq i => STM Result [Content i] Rootfiles
read_Rootfiles = do
 y <- read_ELEMENT "rootfiles"
 read_1 (read_LIST1 read_Rootfile) (childs y)
-- |
show_Rootfiles :: Rootfiles -> [Content ()]
show_Rootfiles a =
 show_ELEMENT "rootfiles" [] (show_LIST1 show_Rootfile a)
\end{code}

\begin{musicxml}
	The rootfile element describes each top-level file in
	the MusicXML container. The full-path attribute provides
	the path relative to the root folder of the zip file. The
	media-type identifies the type of different top-level
	root files. It is an error to have a non-MusicXML
	media-type value in the first rootfile in a rootfiles
	element. If no media-type value is present, a MusicXML
	file is assumed. A MusicXML file used as a rootfile may
	have score-partwise, score-timewise, or opus as its
	document element.
\end{musicxml}
\begin{code}
-- |
type Rootfile = ((CDATA, Maybe CDATA), ())
-- |
read_Rootfile :: Eq i => STM Result [Content i] Rootfile
read_Rootfile = do
 y <- read_ELEMENT "rootfile"
 y1 <- read_2 (read_REQUIRED "full-path" read_CDATA)
 (read_IMPLIED "media-type" read_CDATA) (attributes y)
 return (y1,())
-- |
show_Rootfile :: Rootfile -> [Content ()]
show_Rootfile ((a,b),_) =
 show_ELEMENT "rootfile"
 (show_REQUIRED "full-path" show_CDATA a ++
 show_IMPLIED "media-type" show_CDATA b) []
\end{code}

The MusicXML 2.0 zip file format is compatible with the zip format used by the java.util.zip package
and Java JAR files. It is based on the Info-ZIP format described at:

ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip
The JAR file format is specified at:
http://java.sun.com/javase/6/docs/technotes/guides/jar/jar.html
Note that, compatible with JAR files, file names should be encoded in UTF-8 format.
Files with the zip container are compressed the DEFLATE algorithm. The DEFLATE Compressed

Data Format (RFC 1951) is specified at:
http://www.ietf.org/rfc/rfc1951.txt
The recommended file suffix for compressed MusicXML 2.0 files is .mxl. The recommended media

type for a compressed MusicXML file is:
application/vnd.recordare.musicxml
The recommended media type for an uncompressed MusicXML file is:
application/vnd.recordare.musicxml+xml
Suggested use:

<!DOCTYPE container PUBLIC

"-//Recordare//DTD MusicXML 2.0 Container//EN"

"http://www.musicxml.org/dtds/container.dtd">

-- |
doctype :: DocTypeDecl
doctype = DTD "container"

(Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Container//EN")
(SystemLiteral "http://www.musicxml.org/dtds/container.dtd")))
[]

-- |
getFiles :: Container → [FilePath]
getFiles = map (λ((a,),)→ a)

Container is the document element.

-- * Container
-- |

type Container = Rootfiles
-- |

read Container :: Eq i ⇒ STM Result [Content i] Container
read Container = do

y ← read ELEMENT "container"

read 1 read Rootfiles (childs y)
-- |

show Container :: Container → [Content ()]
show Container a =

show ELEMENT "container" [] (show Rootfiles a)

Rootfiles include the starting points for the different representations of a MusicXML score. The
MusicXML root must be described in the first rootfile element. Additional rootfile elements can describe
alternate versions such as PDF and audio files.

-- |
type Rootfiles = [Rootfile]

-- |
read Rootfiles :: Eq i ⇒ STM Result [Content i] Rootfiles
read Rootfiles = do

y ← read ELEMENT "rootfiles"

read 1 (read LIST1 read Rootfile) (childs y)
-- |

show Rootfiles :: Rootfiles → [Content ()]
show Rootfiles a =

show ELEMENT "rootfiles" [] (show LIST1 show Rootfile a)

52

The rootfile element describes each top-level file in the MusicXML container. The full-path attribute
provides the path relative to the root folder of the zip file. The media-type identifies the type of different
top-level root files. It is an error to have a non-MusicXML media-type value in the first rootfile in a
rootfiles element. If no media-type value is present, a MusicXML file is assumed. A MusicXML file used
as a rootfile may have score-partwise, score-timewise, or opus as its document element.

-- |
type Rootfile = ((CDATA,Maybe CDATA), ())

-- |
read Rootfile :: Eq i ⇒ STM Result [Content i] Rootfile
read Rootfile = do

y ← read ELEMENT "rootfile"

y1 ← read 2 (read REQUIRED "full-path" read CDATA)
(read IMPLIED "media-type" read CDATA) (attributes y)

return (y1 , ())
-- |

show Rootfile :: Rootfile → [Content ()]
show Rootfile ((a, b),) =

show ELEMENT "rootfile"

(show REQUIRED "full-path" show CDATA a ++
show IMPLIED "media-type" show CDATA b) []

2.5 Direction

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Direction where
import Text .XML.MusicXML.Common
import Text .XML.MusicXML.Layout hiding (Tenths, read Tenths, show Tenths)
import Text .XML.HaXml .Types (Content)
import Control .Monad (MonadPlus (. .))
import Prelude (Maybe (. .),Show ,Eq ,Monad (. .), (++), (·))
import qualified Data.Char (String)

This direction DTD module contains the direction element and its children. Directions are not note-
specific, but instead are associated with a part or the overall score.

Harmony indications and general print and sound suggestions are likewise not necessarily attached to
particular note elements, and are included here as well.

A direction is a musical indication that is not attached to a specific note. Two or more may be
combined to indicate starts and stops of wedges, dashes, etc.

By default, a series of direction-type elements and a series of child elements of a direction-type within
a single direction element follow one another in sequence visually. For a series of direction-type children,
non- positional formatting attributes are carried over from the previous element by default.

-- * Direction
-- |

type Direction = ((Placement ,Directive),
([Direction Type],Maybe Offset ,Editorial Voice,
Maybe Staff ,Maybe Sound))
-- |

read Direction :: Eq i ⇒ STM Result [Content i] Direction
read Direction = do

y ← read ELEMENT "direction"

y1 ← read 2 read Placement read Directive (attributes y)

53

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Direction where
import Text.XML.MusicXML.Common
import Text.XML.MusicXML.Layout hiding (Tenths, read_Tenths, show_Tenths)
import Text.XML.HaXml.Types (Content)
import Control.Monad (MonadPlus(..))
import Prelude (Maybe(..), Show,Eq, Monad(..), (++), (.))
import qualified Data.Char (String)
\end{code}

\begin{musicxml}
	This direction DTD module contains the direction element
	and its children. Directions are not note-specific, but
	instead are associated with a part or the overall score.
	
	Harmony indications and general print and sound
	suggestions are likewise not necessarily attached to
	particular note elements, and are included here as well.

	A direction is a musical indication that is not attached
	to a specific note. Two or more may be combined to
	indicate starts and stops of wedges, dashes, etc.

	By default, a series of direction-type elements and a
	series of child elements of a direction-type within a
	single direction element follow one another in sequence
	visually. For a series of direction-type children, non-
	positional formatting attributes are carried over from
	the previous element by default.
\end{musicxml}
\begin{code}
-- * Direction
-- |
type Direction = ((Placement, Directive),
 ([Direction_Type], Maybe Offset, Editorial_Voice,
 Maybe Staff, Maybe Sound))
-- |
read_Direction :: Eq i => STM Result [Content i] Direction
read_Direction = do
 y <- read_ELEMENT "direction"
 y1 <- read_2 read_Placement read_Directive (attributes y)
 y2 <- read_5 (read_LIST1 read_Direction_Type) (read_MAYBE read_Offset)
 (read_Editorial_Voice) (read_MAYBE read_Staff)
 (read_MAYBE read_Sound) (childs y)
 return (y1,y2)
-- |
show_Direction :: Direction -> [Content ()]
show_Direction ((a,b),(c,d,e,f,g)) =
 show_ELEMENT "direction" (show_Placement a ++ show_Directive b)
 (show_LIST show_Direction_Type c ++
 show_MAYBE show_Offset d ++
 show_Editorial_Voice e ++
 show_MAYBE show_Staff f ++
 show_MAYBE show_Sound g)
\end{code}

\begin{musicxml}
	Textual direction types may have more than 1 component
	due to multiple fonts. The dynamics element may also be
	used in the notations element, and is defined in the
	common.mod file.
\end{musicxml}
\begin{code}
-- ** Direction_Type
-- |
type Direction_Type = Direction_Type_
-- |
read_Direction_Type :: Eq i => STM Result [Content i] Direction_Type
read_Direction_Type = do
 y <- read_ELEMENT "direction-type"
 read_1 read_Direction_Type_ (childs y)
-- |
show_Direction_Type :: Direction_Type -> [Content ()]
show_Direction_Type a =
 show_ELEMENT "direction-type" [] (show_Direction_Type_ a)
-- |
data Direction_Type_ = Direction_Type_1 [Rehearsal]
 | Direction_Type_2 [Segno]
 | Direction_Type_3 [Words]
 | Direction_Type_4 [Coda]
 | Direction_Type_5 Wedge
 | Direction_Type_6 [Dynamics]
 | Direction_Type_7 Dashes
 | Direction_Type_8 Bracket
 | Direction_Type_9 Pedal
 | Direction_Type_10 Metronome
 | Direction_Type_11 Octave_Shift
 | Direction_Type_12 Harp_Pedals
 | Direction_Type_13 Damp
 | Direction_Type_14 Damp_All
 | Direction_Type_15 Eyeglasses
 | Direction_Type_16 Scordatura
 | Direction_Type_17 Image
 | Direction_Type_18 Accordion_Registration
 | Direction_Type_19 Other_Direction
 deriving (Eq, Show)
-- |
read_Direction_Type_ :: Eq i => STM Result [Content i] Direction_Type_
read_Direction_Type_ =
 (read_LIST1 read_Rehearsal >>= return . Direction_Type_1) `mplus`
 (read_LIST1 read_Segno >>= return . Direction_Type_2) `mplus`
 (read_LIST1 read_Words >>= return . Direction_Type_3) `mplus`
 (read_LIST1 read_Coda >>= return . Direction_Type_4) `mplus`
 (read_Wedge >>= return . Direction_Type_5) `mplus`
 (read_LIST1 read_Dynamics >>= return . Direction_Type_6) `mplus`
 (read_Dashes >>= return . Direction_Type_7) `mplus`
 (read_Bracket >>= return . Direction_Type_8) `mplus`
 (read_Pedal >>= return . Direction_Type_9) `mplus`
 (read_Metronome >>= return . Direction_Type_10) `mplus`
 (read_Octave_Shift >>= return . Direction_Type_11) `mplus`
 (read_Harp_Pedals >>= return . Direction_Type_12) `mplus`
 (read_Damp >>= return . Direction_Type_13) `mplus`
 (read_Damp_All >>= return . Direction_Type_14) `mplus`
 (read_Eyeglasses >>= return . Direction_Type_15) `mplus`
 (read_Scordatura >>= return . Direction_Type_16) `mplus`
 (read_Image >>= return . Direction_Type_17) `mplus`
 (read_Accordion_Registration >>= return . Direction_Type_18) `mplus`
 (read_Other_Direction >>= return . Direction_Type_19)
-- |
show_Direction_Type_ :: Direction_Type_ -> [Content ()]
show_Direction_Type_ (Direction_Type_1 a) = show_LIST1 show_Rehearsal a
show_Direction_Type_ (Direction_Type_2 a) = show_LIST1 show_Segno a
show_Direction_Type_ (Direction_Type_3 a) = show_LIST1 show_Words a
show_Direction_Type_ (Direction_Type_4 a) = show_LIST1 show_Coda a
show_Direction_Type_ (Direction_Type_5 a) = show_Wedge a
show_Direction_Type_ (Direction_Type_6 a) = show_LIST1 show_Dynamics a
show_Direction_Type_ (Direction_Type_7 a) = show_Dashes a
show_Direction_Type_ (Direction_Type_8 a) = show_Bracket a
show_Direction_Type_ (Direction_Type_9 a) = show_Pedal a
show_Direction_Type_ (Direction_Type_10 a) = show_Metronome a
show_Direction_Type_ (Direction_Type_11 a) = show_Octave_Shift a
show_Direction_Type_ (Direction_Type_12 a) = show_Harp_Pedals a
show_Direction_Type_ (Direction_Type_13 a) = show_Damp a
show_Direction_Type_ (Direction_Type_14 a) = show_Damp_All a
show_Direction_Type_ (Direction_Type_15 a) = show_Eyeglasses a
show_Direction_Type_ (Direction_Type_16 a) = show_Scordatura a
show_Direction_Type_ (Direction_Type_17 a) = show_Image a
show_Direction_Type_ (Direction_Type_18 a) = show_Accordion_Registration a
show_Direction_Type_ (Direction_Type_19 a) = show_Other_Direction a
\end{code}

\begin{musicxml}
	Entities related to print suggestions apply to the
	individual direction-type, not to the overall direction.

	Language is Italian ("it") by default. Enclosure is
	square by default.
\end{musicxml}
\begin{code}
-- |
type Rehearsal = ((Print_Style, Text_Decoration,
 Maybe CDATA, Text_Direction, Text_Rotation,
 Maybe Rehearsal_), PCDATA)
-- |
read_Rehearsal :: STM Result [Content i] Rehearsal
read_Rehearsal = do
 y <- read_ELEMENT "rehearsal"
 y1 <- read_6 read_Print_Style read_Text_Decoration
 (read_IMPLIED "xml:lang" read_CDATA)
 read_Text_Direction read_Text_Rotation
 (read_IMPLIED "enclosure" read_Rehearsal_)
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Rehearsal :: Rehearsal -> [Content ()]
show_Rehearsal ((a,b,c,d,e,f),g) =
 show_ELEMENT "rehearsal" (show_Print_Style a ++ show_Text_Decoration b ++
 show_IMPLIED "xml:lang" show_CDATA c ++
 show_Text_Direction d ++ show_Text_Rotation e ++
 show_IMPLIED "enclosure" show_Rehearsal_ f)
 (show_PCDATA g)
-- |
data Rehearsal_ = Rehearsal_1 | Rehearsal_2 | Rehearsal_3
 deriving (Eq, Show)
-- |
read_Rehearsal_ :: Data.Char.String -> Result Rehearsal_
read_Rehearsal_ "square" = return Rehearsal_1
read_Rehearsal_ "circle" = return Rehearsal_2
read_Rehearsal_ "none" = return Rehearsal_3
read_Rehearsal_ x = fail x
-- |
show_Rehearsal_ :: Rehearsal_ -> Data.Char.String
show_Rehearsal_ Rehearsal_1 = "square"
show_Rehearsal_ Rehearsal_2 = "circle"
show_Rehearsal_ Rehearsal_3 = "none"
\end{code}

\begin{musicxml}
	Left justification is assumed if not specified.
	Language is Italian ("it") by default. Enclosure
	is none by default.
\end{musicxml}
\begin{code}
-- |
type Words = (Text_Formatting, PCDATA)
-- |
read_Words :: STM Result [Content i] Words
read_Words = do
 y <- read_ELEMENT "words"
 y1 <- read_1 read_Text_Formatting (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Words :: Words -> [Content ()]
show_Words (a,b) =
 show_ELEMENT "words" (show_Text_Formatting a) (show_PCDATA b)
\end{code}

\begin{musicxml}
	Wedge spread is measured in tenths of staff line space.
	The type is crescendo for the start of a wedge that is
	closed at the left side, and diminuendo for the start
	of a wedge that is closed on the right side. Spread
	values at the start of a crescendo wedge or end of a
	diminuendo wedge are ignored.
\end{musicxml}
\begin{code}
type Wedge = ((Wedge_, Maybe Number_Level, Maybe CDATA,
 Position, Color), ())
-- |
read_Wedge :: STM Result [Content i] Wedge
read_Wedge = do
 y <- read_ELEMENT "wedge"
 y1 <- read_5 (read_REQUIRED "type" read_Wedge_)
 (read_IMPLIED "number" read_Number_Level)
 (read_IMPLIED "spread" read_CDATA)
 read_Position read_Color (attributes y)
 return (y1,())
-- |
show_Wedge :: Wedge -> [Content ()]
show_Wedge ((a,b,c,d,e),_) =
 show_ELEMENT "wedge" (show_REQUIRED "type" show_Wedge_ a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_IMPLIED "spread" show_CDATA c ++
 show_Position d ++ show_Color e) []
-- |
data Wedge_ = Wedge_1 | Wedge_2 | Wedge_3
 deriving (Eq, Show)
-- |
read_Wedge_ :: Data.Char.String -> Result Wedge_
read_Wedge_ "crescendo" = return Wedge_1
read_Wedge_ "diminuendo" = return Wedge_2
read_Wedge_ "stop" = return Wedge_3
read_Wedge_ x = fail x
-- |
show_Wedge_ :: Wedge_ -> Data.Char.String
show_Wedge_ Wedge_1 = "crescendo"
show_Wedge_ Wedge_2 = "diminuendo"
show_Wedge_ Wedge_3 = "stop"
\end{code}

\begin{musicxml}
	Dashes, used for instance with cresc. and dim. marks.
\end{musicxml}
\begin{code}
-- |
type Dashes = ((Start_Stop, Maybe Number_Level,
 Position, Color), ())
-- |
read_Dashes :: STM Result [Content i] Dashes
read_Dashes = do
 y <- read_ELEMENT "dashes"
 y1 <- read_4 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "number" read_Number_Level)
 read_Position read_Color (attributes y)
 return (y1,())
-- |
show_Dashes :: Dashes -> [Content ()]
show_Dashes ((a,b,c,d),_) =
 show_ELEMENT "dashes" (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_Position c ++ show_Color d) []
\end{code}

\begin{musicxml}
	Brackets are combined with words in a variety of
	modern directions. The line-end attribute specifies
	if there is a jog up or down (or both), an arrow,
	or nothing at the start or end of the bracket. If
	the line-end is up or down, the length of the jog
	can be specified using the end-length attribute.
	The line-type is solid by default.
\end{musicxml}
\begin{code}
-- |
type Bracket = ((Start_Stop, Maybe Number_Level,
 Bracket_, Maybe Tenths, Line_Type, Position, Color), ())
-- |
read_Bracket :: STM Result [Content i] Bracket
read_Bracket = do
 y <- read_ELEMENT "bracket"
 y1 <- read_7 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "number" read_Number_Level)
 (read_REQUIRED "line-end" read_Bracket_)
 (read_IMPLIED "end-length" read_Tenths)
 read_Line_Type read_Position read_Color
 (attributes y)
 return (y1,())
-- |
show_Bracket :: Bracket -> [Content ()]
show_Bracket ((a,b,c,d,e,f,g),_) =
 show_ELEMENT "bracket" (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_REQUIRED "line-end" show_Bracket_ c ++
 show_IMPLIED "end-length" show_Tenths d ++
 show_Line_Type e ++ show_Position f ++
 show_Color g) []
-- |
data Bracket_ = Bracket_1 | Bracket_2 | Bracket_3 | Bracket_4 | Bracket_5
 deriving (Eq, Show)
-- |
read_Bracket_ :: Data.Char.String -> Result Bracket_
read_Bracket_ "up" = return Bracket_1
read_Bracket_ "down" = return Bracket_2
read_Bracket_ "both" = return Bracket_3
read_Bracket_ "arrow" = return Bracket_4
read_Bracket_ "none" = return Bracket_5
read_Bracket_ x = fail x
-- |
show_Bracket_ :: Bracket_ -> Data.Char.String
show_Bracket_ Bracket_1 = "up"
show_Bracket_ Bracket_2 = "down"
show_Bracket_ Bracket_3 = "both"
show_Bracket_ Bracket_4 = "arrow"
show_Bracket_ Bracket_5 = "none"
\end{code}

\begin{musicxml}
	Piano pedal marks. The line attribute is yes if pedal
	lines are used, no if Ped and * signs are used. The
	change type is used with line set to yes.
\end{musicxml}
\begin{code}
-- |
type Pedal = ((Pedal_, Maybe Yes_No, Print_Style), ())
-- |
read_Pedal :: STM Result [Content i] Pedal
read_Pedal = do
 y <- read_ELEMENT "pedal"
 y1 <- read_3 (read_REQUIRED "type" read_Pedal_)
 (read_IMPLIED "line" read_Yes_No)
 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Pedal :: Pedal -> [Content ()]
show_Pedal ((a,b,c),_) =
 show_ELEMENT "pedal" (show_REQUIRED "type" show_Pedal_ a ++
 show_IMPLIED "line" show_Yes_No b ++
 show_Print_Style c) []
-- |
data Pedal_ = Pedal_1 | Pedal_2 | Pedal_3
 deriving (Eq, Show)
read_Pedal_ :: Data.Char.String -> Result Pedal_
read_Pedal_ "start" = return Pedal_1
read_Pedal_ "stop" = return Pedal_2
read_Pedal_ "change" = return Pedal_3
read_Pedal_ x = fail x
-- |
show_Pedal_ :: Pedal_ -> Data.Char.String
show_Pedal_ Pedal_1 = "start"
show_Pedal_ Pedal_2 = "stop"
show_Pedal_ Pedal_3 = "change"
-- |
\end{code}

\begin{musicxml}
	Metronome marks and other metric relationships.
	
	The beat-unit values are the same as for a type element,
	and the beat-unit-dot works like the dot element. The
	per-minute element can be a number, or a text description
	including numbers. The parentheses attribute indicates
	whether or not to put the metronome mark in parentheses;
	its value is no if not specified. If a font is specified for
	the per-minute element, it overrides the font specified for
	the overall metronome element. This allows separate
	specification of a music font for beat-unit and a text
	font for the numeric value in cases where a single
	metronome font is not used.

	The metronome-note and metronome-relation elements
	allow for the specification of more complicated metric
	relationships, such as swing tempo marks where
	two eighths are equated to a quarter note / eighth note
	triplet. The metronome-type, metronome-beam, and
	metronome-dot elements work like the type, beam, and
	dot elements. The metronome-tuplet element uses the
	same element structure as the time-modification element
	along with some attributes from the tuplet element. The
	metronome-relation element describes the relationship
	symbol that goes between the two sets of metronome-note
	elements. The currently allowed value is equals, but this
	may expand in future versions. If the element is empty,
	the equals value is used. The metronome-relation and
	the following set of metronome-note elements are optional
	to allow display of an isolated Grundschlagnote.
\end{musicxml}
\begin{code}
-- |
type Metronome = ((Print_Style, Maybe Yes_No), Metronome_A)
-- |
read_Metronome :: Eq i => STM Result [Content i] Metronome
read_Metronome = do
 y <- read_ELEMENT "metronome"
 y1 <- read_2 read_Print_Style (read_IMPLIED "parentheses" read_Yes_No)
 (attributes y)
 y2 <- read_1 read_Metronome_A (childs y)
 return (y1,y2)
-- |
show_Metronome :: Metronome -> [Content ()]
show_Metronome ((a,b),c) =
 show_ELEMENT "metronome" (show_Print_Style a ++
 show_IMPLIED "parentheses" show_Yes_No b)
 (show_Metronome_A c)
-- |
data Metronome_A = Metronome_1 (Beat_Unit, [Beat_Unit_Dot], Metronome_B)
 | Metronome_2 ([Metronome_Note],
 Maybe (Metronome_Relation, [Metronome_Note]))
 deriving (Eq, Show)
-- |
read_Metronome_A :: Eq i => STM Result [Content i] Metronome_A
read_Metronome_A =
 (read_Metronome_A_aux1 >>= return . Metronome_1) `mplus`
 (read_Metronome_A_aux2 >>= return . Metronome_2)
-- |
show_Metronome_A :: Metronome_A -> [Content ()]
show_Metronome_A (Metronome_1 (a,b,c)) = show_Beat_Unit a ++
 show_LIST show_Beat_Unit_Dot b ++
 show_Metronome_B c
show_Metronome_A (Metronome_2 (a,b)) = show_LIST show_Metronome_Note a ++
 show_MAYBE show_Metronome_A_aux1 b
-- |
read_Metronome_A_aux1 :: Eq i =>
 STM Result [Content i] (Beat_Unit, [Beat_Unit_Dot], Metronome_B)
read_Metronome_A_aux1 = do
 y1 <- read_Beat_Unit
 y2 <- read_LIST read_Beat_Unit_Dot
 y3 <- read_Metronome_B
 return (y1,y2,y3)
-- |
read_Metronome_A_aux2 :: Eq i => STM Result [Content i]
 ([Metronome_Note], Maybe (Metronome_Relation, [Metronome_Note]))
read_Metronome_A_aux2 = do
 y1 <- read_LIST1 read_Metronome_Note
 y2 <- read_MAYBE read_Metronome_A_aux3
 return (y1,y2)
-- |
read_Metronome_A_aux3 :: Eq i =>
 STM Result [Content i] (Metronome_Relation, [Metronome_Note])
read_Metronome_A_aux3 = do
 y1 <- read_Metronome_Relation
 y2 <- read_LIST1 read_Metronome_Note
 return (y1,y2)
-- |
show_Metronome_A_aux1 :: (Metronome_Relation, [Metronome_Note]) -> [Content ()]
show_Metronome_A_aux1 (a,b) = show_Metronome_Relation a ++
 show_LIST show_Metronome_Note b
-- |
data Metronome_B = Metronome_3 Per_Minute
 | Metronome_4 (Beat_Unit, [Beat_Unit_Dot])
 deriving (Eq, Show)
-- |
read_Metronome_B :: Eq i => STM Result [Content i] Metronome_B
read_Metronome_B =
 (read_Per_Minute >>= return . Metronome_3) `mplus`
 (read_Metronome_B_aux1 >>= return . Metronome_4)
-- |
show_Metronome_B :: Metronome_B -> [Content ()]
show_Metronome_B (Metronome_3 a) = show_Per_Minute a
show_Metronome_B (Metronome_4 (a,b)) = show_Beat_Unit a ++
 show_LIST show_Beat_Unit_Dot b
-- |
read_Metronome_B_aux1 :: Eq i =>
 STM Result [Content i] (Beat_Unit, [Beat_Unit_Dot])
read_Metronome_B_aux1 = do
 y1 <- read_Beat_Unit
 y2 <- read_LIST read_Beat_Unit_Dot
 return (y1,y2)
-- |
type Beat_Unit = PCDATA
-- |
read_Beat_Unit :: STM Result [Content i] Beat_Unit
read_Beat_Unit = do
 y <- read_ELEMENT "beat-unit"
 read_1 read_PCDATA (childs y)
-- |
show_Beat_Unit :: Beat_Unit -> [Content ()]
show_Beat_Unit a = show_ELEMENT "beat-unit" [] (show_PCDATA a)
-- |
type Beat_Unit_Dot = ()
-- |
read_Beat_Unit_Dot :: STM Result [Content i] Beat_Unit_Dot
read_Beat_Unit_Dot = read_ELEMENT "beat-unit-dot" >> return ()
-- |
show_Beat_Unit_Dot :: Beat_Unit_Dot -> [Content ()]
show_Beat_Unit_Dot _ = show_ELEMENT "beat-unit-dot" [] []
-- |
type Per_Minute = (Font, PCDATA)
-- |
read_Per_Minute :: STM Result [Content i] Per_Minute
read_Per_Minute = do
 y <- read_ELEMENT "per-minute"
 y1 <- read_1 read_Font (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Per_Minute :: Per_Minute -> [Content ()]
show_Per_Minute (a,b) =
 show_ELEMENT "per-minute" (show_Font a) (show_PCDATA b)
-- |
type Metronome_Note = (Metronome_Type, [Metronome_Dot],
 [Metronome_Beam], Maybe Metronome_Tuplet)
-- |
read_Metronome_Note :: Eq i => STM Result [Content i] Metronome_Note
read_Metronome_Note = do
 y <- read_ELEMENT "metronome-note"
 read_4 read_Metronome_Type (read_LIST read_Metronome_Dot)
 (read_LIST read_Metronome_Beam)
 (read_MAYBE read_Metronome_Tuplet) (childs y)
-- |
show_Metronome_Note :: Metronome_Note -> [Content ()]
show_Metronome_Note (a,b,c,d) =
 show_ELEMENT "metronome-note" []
 (show_Metronome_Type a ++ show_LIST show_Metronome_Dot b ++
 show_LIST show_Metronome_Beam c ++ show_MAYBE show_Metronome_Tuplet d)
-- |
type Metronome_Relation = PCDATA
-- |
read_Metronome_Relation :: STM Result [Content i] Metronome_Relation
read_Metronome_Relation = do
 y <- read_ELEMENT "metronome-relation"
 read_1 read_PCDATA (childs y)
-- |
show_Metronome_Relation :: Metronome_Relation -> [Content ()]
show_Metronome_Relation a =
 show_ELEMENT "metronome-relation" [] (show_PCDATA a)
-- |
type Metronome_Type = PCDATA
-- |
read_Metronome_Type :: STM Result [Content i] Metronome_Type
read_Metronome_Type = do
 y <- read_ELEMENT "metronome-type"
 read_1 read_PCDATA (childs y)
-- |
show_Metronome_Type :: Metronome_Type -> [Content ()]
show_Metronome_Type a =
 show_ELEMENT "metronome-type" [] (show_PCDATA a)
-- |
type Metronome_Dot = ()
-- |
read_Metronome_Dot :: STM Result [Content i] Metronome_Dot
read_Metronome_Dot = read_ELEMENT "metronome-dot" >> return ()
-- |
show_Metronome_Dot :: Metronome_Dot -> [Content ()]
show_Metronome_Dot _ =
 show_ELEMENT "metronome-dot" [] []
-- |
type Metronome_Beam = (Beam_Level, PCDATA)
-- |
read_Metronome_Beam :: STM Result [Content i] Metronome_Beam
read_Metronome_Beam = do
 y <- read_ELEMENT "metronome-beam"
 y1 <- read_1 (read_DEFAULT "number" read_Beam_Level Beam_Level_1)
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Metronome_Beam :: Metronome_Beam -> [Content ()]
show_Metronome_Beam (a,b) =
 show_ELEMENT "metronome-beam" (show_DEFAULT "number" show_Beam_Level a)
 (show_PCDATA b)
-- |
type Metronome_Tuplet = ((Start_Stop, Maybe Yes_No, Maybe Metronome_Tuplet_),
 (Actual_Notes, Normal_Notes, Maybe (Normal_Type, [Normal_Dot])))
-- |
read_Metronome_Tuplet :: Eq i => STM Result [Content i] Metronome_Tuplet
read_Metronome_Tuplet = do
 y <- read_ELEMENT "metronome-tuplet"
 y1 <- read_3 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "bracket" read_Yes_No)
 (read_IMPLIED "show-number" read_Metronome_Tuplet_)
 (attributes y)
 y2 <- read_3 read_Actual_Notes read_Normal_Notes
 (read_MAYBE read_Metronome_Tuplet_aux1) (childs y)
 return (y1,y2)
-- |
show_Metronome_Tuplet :: Metronome_Tuplet -> [Content ()]
show_Metronome_Tuplet ((a,b,c),(d,e,f)) =
 show_ELEMENT "metronome-tuplet"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "bracket" show_Yes_No b ++
 show_IMPLIED "show-number" show_Metronome_Tuplet_ c)
 (show_Actual_Notes d ++ show_Normal_Notes e ++
 show_MAYBE show_Metronome_Tuplet_aux1 f)
-- |
read_Metronome_Tuplet_aux1 :: Eq i =>
 STM Result [Content i] (Normal_Type, [Normal_Dot])
read_Metronome_Tuplet_aux1 = do
 y1 <- read_Normal_Type
 y2 <- read_LIST read_Normal_Dot
 return (y1,y2)
-- |
show_Metronome_Tuplet_aux1 :: (Normal_Type, [Normal_Dot]) -> [Content ()]
show_Metronome_Tuplet_aux1 (a,b) =
 show_ELEMENT "metronome-tuplet" []
 (show_Normal_Type a ++ show_LIST show_Normal_Dot b)
-- |
data Metronome_Tuplet_ = Metronome_Tuplet_1
 | Metronome_Tuplet_2
 | Metronome_Tuplet_3
 deriving (Eq, Show)
-- |
read_Metronome_Tuplet_ :: Data.Char.String -> Result Metronome_Tuplet_
read_Metronome_Tuplet_ "actual" = return Metronome_Tuplet_1
read_Metronome_Tuplet_ "both" = return Metronome_Tuplet_2
read_Metronome_Tuplet_ "none" = return Metronome_Tuplet_3
read_Metronome_Tuplet_ x = fail x
-- |
show_Metronome_Tuplet_ :: Metronome_Tuplet_ -> Data.Char.String
show_Metronome_Tuplet_ Metronome_Tuplet_1 = "actual"
show_Metronome_Tuplet_ Metronome_Tuplet_2 = "both"
show_Metronome_Tuplet_ Metronome_Tuplet_3 = "none"
\end{code}

\begin{musicxml}
	Octave shifts indicate where notes are shifted up or down
	from their true pitched values because of printing
	difficulty. Thus a treble clef line noted with 8va will
	be indicated with an octave-shift down from the pitch
	data indicated in the notes. A size of 8 indicates one
	octave; a size of 15 indicates two octaves.
\end{musicxml}
\begin{code}
-- |
type Octave_Shift = ((Octave_Shift_, Maybe Number_Level,
 CDATA, Print_Style), ())
-- |
read_Octave_Shift :: STM Result [Content i] Octave_Shift
read_Octave_Shift = do
 y <- read_ELEMENT "octave-shift"
 y1 <- read_4 (read_REQUIRED "type" read_Octave_Shift_)
 (read_IMPLIED "number" read_Number_Level)
 (read_DEFAULT "size" read_CDATA "8")
 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Octave_Shift :: Octave_Shift -> [Content ()]
show_Octave_Shift ((a,b,c,d),_) =
 show_ELEMENT "octave-shift"
 (show_REQUIRED "type" show_Octave_Shift_ a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_DEFAULT "size" show_CDATA c ++ show_Print_Style d) []
-- |
data Octave_Shift_ = Octave_Shift_1 | Octave_Shift_2 | Octave_Shift_3
 deriving (Eq, Show)
-- |
read_Octave_Shift_ :: Data.Char.String -> Result Octave_Shift_
read_Octave_Shift_ "up" = return Octave_Shift_1
read_Octave_Shift_ "down" = return Octave_Shift_2
read_Octave_Shift_ "stop" = return Octave_Shift_3
read_Octave_Shift_ x = fail x
-- |
show_Octave_Shift_ :: Octave_Shift_ -> Data.Char.String
show_Octave_Shift_ Octave_Shift_1 = "up"
show_Octave_Shift_ Octave_Shift_2 = "down"
show_Octave_Shift_ Octave_Shift_3 = "stop"
\end{code}

\begin{musicxml}
	The harp-pedals element is used to create harp pedal
	diagrams. The pedal-step and pedal-alter elements use
	the same values as the step and alter elements. For
	easiest reading, the pedal-tuning elements should follow
	standard harp pedal order, with pedal-step values of
	D, C, B, E, F, G, and A.
\end{musicxml}
\begin{code}
-- |
type Harp_Pedals = (Print_Style, [Pedal_Tuning])
-- |
read_Harp_Pedals :: Eq i => STM Result [Content i] Harp_Pedals
read_Harp_Pedals = do
 y <- read_ELEMENT "harp-pedals"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 (read_LIST1 read_Pedal_Tuning) (childs y)
 return (y1,y2)
-- |
show_Harp_Pedals :: Harp_Pedals -> [Content ()]
show_Harp_Pedals (a,b) =
 show_ELEMENT "harp-pedals" (show_Print_Style a)
 (show_LIST show_Pedal_Tuning b)
-- |
type Pedal_Tuning = (Pedal_Step, Pedal_Alter)
-- |
read_Pedal_Tuning :: STM Result [Content i] Pedal_Tuning
read_Pedal_Tuning = do
 y <- read_ELEMENT "pedal-tuning"
 read_2 read_Pedal_Step read_Pedal_Alter (childs y)
-- |
show_Pedal_Tuning :: Pedal_Tuning -> [Content ()]
show_Pedal_Tuning (a,b) =
 show_ELEMENT "pedal-tuning" []
 (show_Pedal_Step a ++ show_Pedal_Alter b)
-- |
type Pedal_Step = PCDATA
-- |
read_Pedal_Step :: STM Result [Content i] Pedal_Step
read_Pedal_Step = do
 y <- read_ELEMENT "pedal-step"
 read_1 read_PCDATA (childs y)
-- |
show_Pedal_Step :: Pedal_Step -> [Content ()]
show_Pedal_Step a = show_ELEMENT "pedal-step" [] (show_Pedal_Step a)
-- |
type Pedal_Alter = PCDATA
-- |
read_Pedal_Alter :: STM Result [Content i] Pedal_Alter
read_Pedal_Alter = do
 y <- read_ELEMENT "pedal-alter"
 read_1 read_PCDATA (childs y)
-- |
show_Pedal_Alter :: Pedal_Alter -> [Content ()]
show_Pedal_Alter a = show_ELEMENT "pedal-alter" [] (show_Pedal_Alter a)
-- |
type Damp = (Print_Style, ())
-- |
read_Damp :: STM Result [Content i] Damp
read_Damp = do
 y <- read_ELEMENT "damp"
 y1 <- read_1 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Damp :: Damp -> [Content ()]
show_Damp (a,_) = show_ELEMENT "damp" (show_Print_Style a) []
-- |
type Damp_All = (Print_Style, ())
-- |
read_Damp_All :: STM Result [Content i] Damp_All
read_Damp_All = do
 y <- read_ELEMENT "damp-all"
 y1 <- read_1 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Damp_All :: Damp_All -> [Content ()]
show_Damp_All (a,_) = show_ELEMENT "damp-all" (show_Print_Style a) []
-- |
type Eyeglasses = (Print_Style, ())
-- |
read_Eyeglasses :: STM Result [Content i] Eyeglasses
read_Eyeglasses = do
 y <- read_ELEMENT "eyeglasses"
 y1 <- read_1 read_Print_Style (attributes y)
 return (y1,())
-- |
show_Eyeglasses :: Eyeglasses -> [Content ()]
show_Eyeglasses (a,_) = show_ELEMENT "eyeglasses" (show_Print_Style a) []
\end{code}

\begin{musicxml}
	Scordatura string tunings are represented by a series
	of accord elements. The tuning-step, tuning-alter,
	and tuning-octave elements are also used with the
	staff-tuning element, and are defined in the common.mod
	file. Strings are numbered from high to low.
\end{musicxml}
\begin{code}
-- |
type Scordatura = [Accord]
-- |
read_Scordatura :: Eq i => STM Result [Content i] Scordatura
read_Scordatura = do
 y <- read_ELEMENT "scordatura"
 read_1 (read_LIST read_Accord) (childs y)
-- |
show_Scordatura :: Scordatura -> [Content ()]
show_Scordatura a =
 show_ELEMENT "scordatura" [] (show_LIST show_Accord a)
-- |
type Accord = (CDATA, (Tuning_Step, Maybe Tuning_Alter, Tuning_Octave))
-- |
read_Accord :: STM Result [Content i] Accord
read_Accord = do
 y <- read_ELEMENT "accord"
 y1 <- read_1 (read_REQUIRED "string" read_CDATA) (attributes y)
 y2 <- read_3 read_Tuning_Step (read_MAYBE read_Tuning_Alter)
 read_Tuning_Octave (childs y)
 return (y1,y2)
-- |
show_Accord :: Accord -> [Content ()]
show_Accord (a,(b,c,d)) =
 show_ELEMENT "accord"
 (show_REQUIRED "string" show_CDATA a)
 (show_Tuning_Step b ++ show_MAYBE show_Tuning_Alter c ++
 show_Tuning_Octave d)
\end{code}

\begin{musicxml}
	The image element is used to include graphical images
	in a score. The required source attribute is the URL
	for the image file. The required type attribute is the
	MIME type for the image file format. Typical choices
	include application/postscript, image/gif, image/jpeg,
	image/png, and image/tiff.
\end{musicxml}
\begin{code}
-- |
type Image = ((CDATA, CDATA, Position, Halign, Valign_Image), ())
-- |
read_Image :: STM Result [Content i] Image
read_Image = do
 y <- read_ELEMENT "image"
 y1 <- read_5 (read_REQUIRED "source" read_CDATA)
 (read_REQUIRED "type" read_CDATA) read_Position
 read_Halign read_Valign_Image (attributes y)
 return (y1,())
-- |
show_Image :: Image -> [Content ()]
show_Image ((a,b,c,d,e),_) =
 show_ELEMENT "image"
 (show_REQUIRED "source" show_CDATA a ++
 show_REQUIRED "type" show_CDATA b ++
 show_Position c ++ show_Halign d ++ show_Valign_Image e) []
\end{code}

\begin{musicxml}
	The accordion-registration element is use for accordion
	registration symbols. These are circular symbols divided
	horizontally into high, middle, and low sections that
	correspond to 4', 8', and 16' pipes. Each accordion-high,
	accordion-middle, and accordion-low element represents
	the presence of one or more dots in the registration
	diagram. The accordion-middle element may have text
	values of 1, 2, or 3, corresponding to have 1 to 3 dots
	in the middle section. An accordion-registration element
	needs to have at least one of the child elements present.
\end{musicxml}
\begin{code}
-- |
type Accordion_Registration = (Print_Style,
 (Maybe Accordion_High, Maybe Accordion_Middle, Maybe Accordion_Low))
-- |
read_Accordion_Registration :: STM Result [Content i] Accordion_Registration
read_Accordion_Registration = do
 y <- read_ELEMENT "accordion-registration"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_3 (read_MAYBE read_Accordion_High)
 (read_MAYBE read_Accordion_Middle)
 (read_MAYBE read_Accordion_Low) (childs y)
 return (y1,y2)
-- |
show_Accordion_Registration :: Accordion_Registration -> [Content ()]
show_Accordion_Registration (a,(b,c,d)) =
 show_ELEMENT "accordion-registration"
 (show_Print_Style a)
 (show_MAYBE show_Accordion_High b ++
 show_MAYBE show_Accordion_Middle c ++
 show_MAYBE show_Accordion_Low d)
-- |
type Accordion_High = ()
-- |
read_Accordion_High :: STM Result [Content i] Accordion_High
read_Accordion_High = read_ELEMENT "accordion-high" >> return ()
-- |
show_Accordion_High :: Accordion_High -> [Content ()]
show_Accordion_High _ = show_ELEMENT "accordion-high" [] []
-- |
type Accordion_Middle = PCDATA
-- |
read_Accordion_Middle :: STM Result [Content i] Accordion_Middle
read_Accordion_Middle = do
 y <- read_ELEMENT "accordion-middle"
 read_1 read_PCDATA (childs y)
-- |
show_Accordion_Middle :: Accordion_Middle -> [Content ()]
show_Accordion_Middle a = show_ELEMENT "accordion-middle" [] (show_PCDATA a)
-- |
type Accordion_Low = ()
-- |
read_Accordion_Low :: STM Result [Content i] Accordion_Low
read_Accordion_Low = read_ELEMENT "accordion-low" >> return ()
-- |
show_Accordion_Low :: Accordion_Low -> [Content ()]
show_Accordion_Low _ = show_ELEMENT "accordion-low" [] []
\end{code}

\begin{musicxml}
	The other-direction element is used to define any direction
	symbols not yet in the current version of the MusicXML
	format. This allows extended representation, though without
	application interoperability.
\end{musicxml}
\begin{code}
-- |
type Other_Direction = ((Print_Object, Print_Style), PCDATA)
-- |
read_Other_Direction :: STM Result [Content i] Other_Direction
read_Other_Direction = do
 y <- read_ELEMENT "other-direction"
 y1 <- read_2 read_Print_Object read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Other_Direction :: Other_Direction -> [Content ()]
show_Other_Direction ((a,b),c) =
 show_ELEMENT "other-direction"
 (show_Print_Object a ++ show_Print_Style b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	An offset is represented in terms of divisions, and
	indicates where the direction will appear relative to
	the current musical location. This affects the visual
	appearance of the direction. If the sound attribute is
	"yes", then the offset affects playback too. If the sound
	attribute is "no", then any sound associated with the
	direction takes effect at the current location. The sound
	attribute is "no" by default for compatibility with earlier
	versions of the MusicXML format. If an element within a
	direction includes a default-x attribute, the offset value
	will be ignored when determining the appearance of that
	element.
\end{musicxml}
\begin{code}
-- |
type Offset = (Maybe Yes_No, PCDATA)
-- |
read_Offset :: STM Result [Content i] Offset
read_Offset = do
 y <- read_ELEMENT "offset"
 y1 <- read_1 (read_IMPLIED "sound" read_Yes_No) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Offset :: Offset -> [Content ()]
show_Offset (a,b) =
 show_ELEMENT "offset" (show_IMPLIED "sound" show_Yes_No a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
 The harmony elements are based on Humdrum's **harm
	encoding, extended to support chord symbols in popular
	music as well as functional harmony analysis in classical
	music.
	
	If there are alternate harmonies possible, this can be
	specified using multiple harmony elements differentiated
	by type. Explicit harmonies have all note present in the
	music; implied have some notes missing but implied;
	alternate represents alternate analyses.
	
	The harmony object may be used for analysis or for
	chord symbols. The print-object attribute controls
	whether or not anything is printed due to the harmony
	element. The print-frame attribute controls printing
	of a frame or fretboard diagram. The print-style entity
	sets the default for the harmony, but individual elements
	can override this with their own print-style values.
	
	A harmony element can contain many stacked chords (e.g.
	V of II). A sequence of harmony-chord entities is used
	for this type of secondary function, where V of II would
	be represented by a harmony-chord with a V function
	followed by a harmony-chord with a II function.
\end{musicxml}
\begin{code}
-- |
type Harmony_Chord = (Harmony_Chord_, Kind, Maybe Inversion,
 Maybe Bass, [Degree])
-- |
read_Harmony_Chord :: Eq i => STM Result [Content i] Harmony_Chord
read_Harmony_Chord = do
 y1 <- read_Harmony_Chord_
 y2 <- read_Kind
 y3 <- read_MAYBE read_Inversion
 y4 <- read_MAYBE read_Bass
 y5 <- read_LIST read_Degree
 return (y1,y2,y3,y4,y5)
-- |
show_Harmony_Chord :: Harmony_Chord -> [Content ()]
show_Harmony_Chord (a,b,c,d,e) =
 (show_Harmony_Chord_ a ++ show_Kind b ++
 show_MAYBE show_Inversion c ++ show_MAYBE show_Bass d ++
 show_LIST show_Degree e)
-- |
data Harmony_Chord_ = Harmony_Chord_1 Root
 | Harmony_Chord_2 Function
 deriving (Eq, Show)
-- |
read_Harmony_Chord_ :: STM Result [Content i] Harmony_Chord_
read_Harmony_Chord_ =
 (read_Root >>= return . Harmony_Chord_1) `mplus`
 (read_Function >>= return . Harmony_Chord_2)
-- |
show_Harmony_Chord_ :: Harmony_Chord_ -> [Content ()]
show_Harmony_Chord_ (Harmony_Chord_1 a) = show_Root a
show_Harmony_Chord_ (Harmony_Chord_2 a) = show_Function a
-- |
type Harmony = ((Maybe Harmony_, Print_Object, Maybe Yes_No,
 Print_Style, Placement),
 ([Harmony_Chord], Maybe Frame,
 Maybe Offset, Editorial, Maybe Staff))
-- |
read_Harmony :: Eq i => STM Result [Content i] Harmony
read_Harmony = do
 y <- read_ELEMENT "harmony"
 y1 <- read_5 (read_IMPLIED "type" read_Harmony_) read_Print_Object
 (read_IMPLIED "print-frame" read_Yes_No)
 read_Print_Style read_Placement (attributes y)
 y2 <- read_5 (read_LIST read_Harmony_Chord) (read_MAYBE read_Frame)
 (read_MAYBE read_Offset) read_Editorial
 (read_MAYBE read_Staff) (childs y)
 return (y1,y2)
-- fail "harmony"
show_Harmony :: Harmony -> [Content ()]
show_Harmony ((a,b,c,d,e),(f,g,h,i,j)) =
 show_ELEMENT "harmony"
 (show_IMPLIED "type" show_Harmony_ a ++ show_Print_Object b ++
 show_IMPLIED "print-frame" show_Yes_No c ++ show_Print_Style d ++
 show_Placement e)
 (show_LIST show_Harmony_Chord f ++ show_MAYBE show_Frame g ++
 show_MAYBE show_Offset h ++ show_Editorial i ++
 show_MAYBE show_Staff j)
-- |
data Harmony_ = Harmony_1 | Harmony_2 | Harmony_3
 deriving (Eq, Show)
-- |
read_Harmony_ :: Data.Char.String -> Result Harmony_
read_Harmony_ "explicit" = return Harmony_1
read_Harmony_ "implied" = return Harmony_2
read_Harmony_ "alternate" = return Harmony_3
read_Harmony_ x = fail x
-- |
show_Harmony_ :: Harmony_ -> Data.Char.String
show_Harmony_ Harmony_1 = "explicit"
show_Harmony_ Harmony_2 = "implied"
show_Harmony_ Harmony_3 = "alternate"
\end{code}

\begin{musicxml}
	A root is a pitch name like C, D, E, where a function
	is an indication like I, II, III. Root is generally
	used with pop chord symbols, function with classical
	functional harmony. It is an either/or choice to avoid
	data inconsistency. Function requires that the key be
	specified in the encoding.

	The root element has a root-step and optional root-alter
	similar to the step and alter elements in a pitch, but
	renamed to distinguish the different musical meanings.
	The root-step text element indicates how the root should
	appear on the page if not using the element contents.
	In some chord styles, this will include the root-alter
	information as well. In that case, the print-object
	attribute of the root-alter element can be set to no.
	The root-alter location attribute indicates whether
	the alteration should appear to the left or the right
	of the root-step; it is right by default.
\end{musicxml}
\begin{code}
-- |
type Root = (Root_Step, Maybe Root_Alter)
-- |
read_Root :: STM Result [Content i] Root
read_Root = do
 y <- read_ELEMENT "root"
 read_2 read_Root_Step (read_MAYBE read_Root_Alter) (childs y)
-- |
show_Root :: Root -> [Content ()]
show_Root (a,b) =
 show_ELEMENT "root" []
 (show_Root_Step a ++ show_MAYBE show_Root_Alter b)
-- |
type Root_Step = ((Maybe CDATA, Print_Style), PCDATA)
-- |
read_Root_Step :: STM Result [Content i] Root_Step
read_Root_Step = do
 y <- read_ELEMENT "root-step"
 y1 <- read_2 (read_IMPLIED "text" read_CDATA)
 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Root_Step :: Root_Step -> [Content ()]
show_Root_Step ((a,b),c) =
 show_ELEMENT "root-step"
 (show_IMPLIED "text" show_CDATA a ++ show_Print_Style b)
 (show_PCDATA c)
-- |
type Root_Alter = ((Print_Object, Print_Style, Maybe Left_Right), PCDATA)
-- |
read_Root_Alter :: STM Result [Content i] Root_Alter
read_Root_Alter = do
 y <- read_ELEMENT "root-alter"
 y1 <- read_3 read_Print_Object read_Print_Style
 (read_IMPLIED "location" read_Left_Right)
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Root_Alter :: Root_Alter -> [Content ()]
show_Root_Alter ((a,b,c),d) =
 show_ELEMENT "root-alter"
 (show_Print_Object a ++ show_Print_Style b ++
 show_IMPLIED "location" show_Left_Right c)
 (show_PCDATA d)
-- |
type Function = (Print_Style, PCDATA)
-- |
read_Function :: STM Result [Content i] Function
read_Function = do
 y <- read_ELEMENT "function"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Function :: Function -> [Content ()]
show_Function (a,b) =
 show_ELEMENT "function" (show_Print_Style a) (show_PCDATA b)
\end{code}

\begin{musicxml}
	Kind indicates the type of chord. Degree elements
	can then add, subtract, or alter from these
	starting points. Values include:
	
 \begin{itemize}
	\item Triads:
	 major (major third, perfect fifth)
	 minor (minor third, perfect fifth)
	 augmented (major third, augmented fifth)
	 diminished (minor third, diminished fifth)
	\item Sevenths:
	 dominant (major triad, minor seventh)
	 major-seventh (major triad, major seventh)
	 minor-seventh (minor triad, minor seventh)
	 diminished-seventh
	 (diminished triad, diminished seventh)
	 augmented-seventh
	 (augmented triad, minor seventh)
	 half-diminished
	 (diminished triad, minor seventh)
	 major-minor
	 (minor triad, major seventh)
	\item Sixths:
	 major-sixth (major triad, added sixth)
	 minor-sixth (minor triad, added sixth)
	\item Ninths:
	 dominant-ninth (dominant-seventh, major ninth)
	 major-ninth (major-seventh, major ninth)
	 minor-ninth (minor-seventh, major ninth)
	\item 11ths (usually as the basis for alteration):
	 dominant-11th (dominant-ninth, perfect 11th)
	 major-11th (major-ninth, perfect 11th)
	 minor-11th (minor-ninth, perfect 11th)
	\item 13ths (usually as the basis for alteration):
	 dominant-13th (dominant-11th, major 13th)
	 major-13th (major-11th, major 13th)
	 minor-13th (minor-11th, major 13th)
	\item Suspended:
	 suspended-second (major second, perfect fifth)
	 suspended-fourth (perfect fourth, perfect fifth)
	\item Functional sixths:
	 Neapolitan
	 Italian
	 French
	 German
	\item Other:
	 pedal (pedal-point bass)
	 power (perfect fifth)
	 Tristan
 \end{itemize}
	
	The \ "other" \ kind is used when the harmony is entirely
	composed of add elements. The "none" kind is used to
	explicitly encode absence of chords or functional
	harmony.

	The attributes are used to indicate the formatting
	of the symbol. Since the kind element is the constant
	in all the harmony-chord entities that can make up
	a polychord, many formatting attributes are here.

	The use-symbols attribute is yes if the kind should be
	represented when possible with harmony symbols rather
	than letters and numbers. These symbols include:

	 major: a triangle, like Unicode 25B3
	 minor: -, like Unicode 002D
	 augmented: +, like Unicode 002B
	 diminished: Â°, like Unicode 00B0
	 half-diminished: Ã¸, like Unicode 00F8

	The text attribute describes how the kind should be
	spelled if not using symbols; it is ignored if use-symbols
	is yes. The stack-degrees attribute is yes if the degree
	elements should be stacked above each other. The
	parentheses-degrees attribute is yes if all the degrees
	should be in parentheses. The bracket-degrees attribute
	is yes if all the degrees should be in a bracket. If not
	specified, these values are implementation-specific.
	The alignment attributes are for the entire harmony-chord
	entity of which this kind element is a part.
\end{musicxml}
\begin{code}
type Kind = ((Maybe Yes_No, Maybe CDATA,
 Maybe Yes_No, Maybe Yes_No, Maybe Yes_No,
 Print_Style, Halign, Valign), PCDATA)
-- |
read_Kind :: STM Result [Content i] Kind
read_Kind = do
 y <- read_ELEMENT "kind"
 y1 <- read_8 (read_IMPLIED "use-symbols" read_Yes_No)
 (read_IMPLIED "text" read_CDATA)
 (read_IMPLIED "stack-degrees" read_Yes_No)
 (read_IMPLIED "parentheses-degrees" read_Yes_No)
 (read_IMPLIED "bracket-degrees" read_Yes_No)
 read_Print_Style read_Halign read_Valign (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Kind :: Kind -> [Content ()]
show_Kind ((a,b,c,d,e,f,g,h),i) =
 show_ELEMENT "kind"
 (show_IMPLIED "use-symbols" show_Yes_No a ++
 show_IMPLIED "text" show_CDATA b ++
 show_IMPLIED "stack-degrees" show_Yes_No c ++
 show_IMPLIED "parentheses-degrees" show_Yes_No d ++
 show_IMPLIED "bracket-degrees" show_Yes_No e ++
 show_Print_Style f ++ show_Halign g ++ show_Valign h) (show_PCDATA i)
\end{code}

\begin{musicxml}
	Inversion is a number indicating which inversion is used:
	0 for root position, 1 for first inversion, etc.
\end{musicxml}
\begin{code}
type Inversion = (Print_Style, PCDATA)
-- |
read_Inversion :: STM Result [Content i] Inversion
read_Inversion = do
 y <- read_ELEMENT "inversion"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Inversion :: Inversion -> [Content ()]
show_Inversion (a,b) =
 show_ELEMENT "inversion" (show_Print_Style a) (show_PCDATA b)
\end{code}

\begin{musicxml}
	Bass is used to indicate a bass note in popular music
	chord symbols, e.g. G/C. It is generally not used in
	functional harmony, as inversion is generally not used
	in pop chord symbols. As with root, it is divided into
	step and alter elements, similar to pitches. The attributes
	for bass-step and bass-alter work the same way as
	the corresponding root-step and root-alter attributes.
\end{musicxml}
\begin{code}
-- |
type Bass = (Bass_Step, Maybe Bass_Alter)
-- |
read_Bass :: STM Result [Content i] Bass
read_Bass = do
 y <- read_ELEMENT "bass"
 read_2 read_Bass_Step (read_MAYBE read_Bass_Alter) (childs y)
-- |
show_Bass :: Bass -> [Content ()]
show_Bass (a,b) =
 show_ELEMENT "bass" []
 (show_Bass_Step a ++ show_MAYBE show_Bass_Alter b)
-- |
type Bass_Step = ((Maybe CDATA, Print_Style), PCDATA)
-- |
read_Bass_Step :: STM Result [Content i] Bass_Step
read_Bass_Step = do
 y <- read_ELEMENT "bass-step"
 y1 <- read_2 (read_IMPLIED "text" read_CDATA)
 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Bass_Step :: Bass_Step -> [Content ()]
show_Bass_Step ((a,b),c) =
 show_ELEMENT "bass-step"
 (show_IMPLIED "text" show_CDATA a ++ show_Print_Style b)
 (show_PCDATA c)
-- |
type Bass_Alter = ((Print_Object, Print_Style, Maybe Bass_Alter_), PCDATA)
-- |
read_Bass_Alter :: STM Result [Content i] Bass_Alter
read_Bass_Alter = do
 y <- read_ELEMENT "bass-alter"
 y1 <- read_3 read_Print_Object read_Print_Style
 (read_IMPLIED "location" read_Bass_Alter_) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Bass_Alter :: Bass_Alter -> [Content ()]
show_Bass_Alter ((a,b,c),d) =
 show_ELEMENT "bass-alter"
 (show_Print_Object a ++ show_Print_Style b ++
 show_IMPLIED "location" show_Bass_Alter_ c)
 (show_PCDATA d)
-- | This is equivalent to left-right entity
data Bass_Alter_ = Bass_Alter_1 | Bass_Alter_2
 deriving (Eq, Show)
-- |
read_Bass_Alter_ :: Data.Char.String -> Result Bass_Alter_
read_Bass_Alter_ "left" = return Bass_Alter_1
read_Bass_Alter_ "right" = return Bass_Alter_2
read_Bass_Alter_ x = fail x
-- |
show_Bass_Alter_ :: Bass_Alter_ -> Data.Char.String
show_Bass_Alter_ Bass_Alter_1 = "left"
show_Bass_Alter_ Bass_Alter_2 = "right"
\end{code}

\begin{musicxml}
	The degree element is used to add, alter, or subtract
	individual notes in the chord. The degree-value element
	is a number indicating the degree of the chord (1 for
	the root, 3 for third, etc). The degree-alter element
	is like the alter element in notes: 1 for sharp, -1 for
	flat, etc. The degree-type element can be add, alter, or
	subtract. If the degree-type is alter or subtract, the
	degree-alter is relative to the degree already in the
	chord based on its kind element. If the degree-type is
	add, the degree-alter is relative to a dominant chord
	(major and perfect intervals except for a minor
	seventh). The print-object attribute can be used to
	keep the degree from printing separately when it has
	already taken into account in the text attribute of
	the kind element. The plus-minus attribute is used to
	indicate if plus and minus symbols should be used
	instead of sharp and flat symbols to display the degree
	alteration; it is no by default. The degree-value and
	degree-type text attributes specify how the value and
	type of the degree should be displayed.
	
	A harmony of kind "other" can be spelled explicitly by
	using a series of degree elements together with a root.
\end{musicxml}
\begin{code}
-- |
type Degree = (Print_Object, (Degree_Value, Degree_Alter, Degree_Type))
-- |
read_Degree :: STM Result [Content i] Degree
read_Degree = do
 y <- read_ELEMENT "degree"
 y1 <- read_1 read_Print_Object (attributes y)
 y2 <- read_3 read_Degree_Value read_Degree_Alter
 read_Degree_Type (childs y)
 return (y1,y2)
-- |
show_Degree :: Degree -> [Content ()]
show_Degree (a,(b,c,d)) =
 show_ELEMENT "degree"
 (show_Print_Object a)
 (show_Degree_Value b ++ show_Degree_Alter c ++
 show_Degree_Type d)
-- |
type Degree_Value = ((Maybe CDATA, Print_Style), PCDATA)
-- |
read_Degree_Value :: STM Result [Content i] Degree_Value
read_Degree_Value = do
 y <- read_ELEMENT "degree-value"
 y1 <- read_2 (read_IMPLIED "text" read_CDATA)
 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Degree_Value :: Degree_Value -> [Content ()]
show_Degree_Value ((a,b),c) =
 show_ELEMENT "degree-value"
 (show_IMPLIED "type" show_CDATA a ++ show_Print_Style b)
 (show_PCDATA c)
-- |
type Degree_Alter = ((Print_Style, Maybe Yes_No), PCDATA)
-- |
read_Degree_Alter :: STM Result [Content i] Degree_Alter
read_Degree_Alter = do
 y <- read_ELEMENT "degree-alter"
 y1 <- read_2 read_Print_Style
 (read_IMPLIED "plus-minus" read_Yes_No) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Degree_Alter :: Degree_Alter -> [Content ()]
show_Degree_Alter ((a,b),c) =
 show_ELEMENT "degree-alter"
 (show_Print_Style a ++ show_IMPLIED "plus-minus" show_Yes_No b)
 (show_PCDATA c)
-- |
type Degree_Type = ((Maybe CDATA, Print_Style), PCDATA)
-- |
read_Degree_Type :: STM Result [Content i] Degree_Type
read_Degree_Type = do
 y <- read_ELEMENT "degree-type"
 y1 <- read_2 (read_IMPLIED "text" read_CDATA)
 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Degree_Type :: Degree_Type -> [Content ()]
show_Degree_Type ((a,b),c) =
 show_ELEMENT "degree-type"
 (show_IMPLIED "type" show_CDATA a ++ show_Print_Style b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The frame element represents a frame or fretboard diagram
	used together with a chord symbol. The representation is
	based on the NIFF guitar grid with additional information.
	The frame-strings and frame-frets elements give the overall
	size of the frame in vertical lines (strings) and horizontal
	spaces (frets). The first-fret indicates which fret is shown
	in the top space of the frame; it is fret 1 if the element
	is not present. The optional text attribute indicates how
	this is represented in the fret diagram, while the location
	attribute indicates whether the text appears to the left or
	right of the frame. The frame-note element represents each
	note included in the frame. The definitions for string,
	fret, and fingering are found in the common.mod file. An
	open string will have a fret value of 0, while a muted
	string will not be associated with a frame-note element.
\end{musicxml}
\begin{code}
-- |
type Frame =
 ((Position, Color, Halign, Valign, Maybe Tenths, Maybe Tenths),
 (Frame_Strings, Frame_Frets, Maybe First_Fret, [Frame_Note]))
-- |
read_Frame :: Eq i => STM Result [Content i] Frame
read_Frame = do
 y <- read_ELEMENT "frame"
 y1 <- read_6 read_Position read_Color read_Halign read_Valign
 (read_IMPLIED "height" read_Tenths)
 (read_IMPLIED "width" read_Tenths) (attributes y)
 y2 <- read_4 read_Frame_Strings read_Frame_Frets
 (read_MAYBE read_First_Fret)
 (read_LIST read_Frame_Note) (childs y)
 return (y1,y2)
-- |
show_Frame :: Frame -> [Content ()]
show_Frame ((a,b,c,d,e,f),(g,h,i,j)) =
 show_ELEMENT "frame"
 (show_Position a ++ show_Color b ++ show_Halign c ++
 show_Valign d ++ show_IMPLIED "height" show_Tenths e ++
 show_IMPLIED "width" show_Tenths f)
 (show_Frame_Strings g ++ show_Frame_Frets h ++
 show_MAYBE show_First_Fret i ++ show_LIST show_Frame_Note j)
-- |
type Frame_Strings = PCDATA
-- |
read_Frame_Strings :: STM Result [Content i] Frame_Strings
read_Frame_Strings = do
 y <- read_ELEMENT "frame-strings"
 read_1 read_PCDATA (childs y)
-- |
show_Frame_Strings :: Frame_Strings -> [Content ()]
show_Frame_Strings a = show_ELEMENT "frame-strings" [] (show_PCDATA a)
-- |
type Frame_Frets = PCDATA
-- |
read_Frame_Frets :: STM Result [Content i] Frame_Frets
read_Frame_Frets = do
 y <- read_ELEMENT "frame-frets"
 read_1 read_PCDATA (childs y)
-- |
show_Frame_Frets :: Frame_Frets -> [Content ()]
show_Frame_Frets a = show_ELEMENT "frame-frets" [] (show_PCDATA a)
-- |
type First_Fret = ((Maybe CDATA, Maybe Left_Right), PCDATA)
-- |
read_First_Fret :: STM Result [Content i] First_Fret
read_First_Fret = do
 y <- read_ELEMENT "first-fret"
 y1 <- read_2 (read_IMPLIED "text" read_CDATA)
 (read_IMPLIED "location" read_Left_Right) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_First_Fret :: First_Fret -> [Content ()]
show_First_Fret ((a,b),c) =
 show_ELEMENT "first-fret"
 (show_IMPLIED "text" show_CDATA a ++
 show_IMPLIED "location" show_Left_Right b)
 (show_PCDATA c)
-- |
type Frame_Note = (String, Fret, Maybe Fingering, Maybe Barre)
-- |
read_Frame_Note :: STM Result [Content i] Frame_Note
read_Frame_Note = do
 y <- read_ELEMENT "frame-note"
 read_4 read_String read_Fret (read_MAYBE read_Fingering)
 (read_MAYBE read_Barre) (childs y)
-- |
show_Frame_Note :: Frame_Note -> [Content ()]
show_Frame_Note (a,b,c,d) =
 show_ELEMENT "frame-note" []
 (show_String a ++ show_Fret b ++
 show_MAYBE show_Fingering c ++ show_MAYBE show_Barre d)
\end{code}

\begin{musicxml}
	The barre element indicates placing a finger over
	multiple strings on a single fret. The type is "start"
	for the lowest pitched string (e.g., the string with
	the highest MusicXML number) and is "stop" for the
	highest pitched string.
\end{musicxml}
\begin{code}
-- |
type Barre = ((Start_Stop, Color), ())
-- |
read_Barre :: STM Result [Content i] Barre
read_Barre = do
 y <- read_ELEMENT "barre"
 y1 <- read_2 (read_REQUIRED "type" read_Start_Stop)
 read_Color (attributes y)
 return (y1,())
-- |
show_Barre :: Barre -> [Content ()]
show_Barre ((a,b),_) =
 show_ELEMENT "barre"
 (show_REQUIRED "type" show_Start_Stop a ++ show_Color b) []
\end{code}

\begin{musicxml}
	The grouping element is used for musical analysis. When
	the element type is "start" or "single", it usually contains
	one or more feature elements. The number attribute is used
	for distinguishing between overlapping and hierarchical
	groupings. The member-of attribute allows for easy
	distinguishing of what grouping elements are in what
	hierarchy. Feature elements contained within a "stop"
	type of grouping may be ignored.
	
	This element is flexible to allow for non-standard analyses.
	Future versions of the MusicXML format may add elements
	that can represent more standardized categories of analysis
	data, allowing for easier data sharing.
\end{musicxml}
\begin{code}
-- |
type Grouping = ((Start_Stop_Single, CDATA, Maybe CDATA), [Feature])
-- |
read_Grouping :: Eq i => STM Result [Content i] Grouping
read_Grouping = do
 y <- read_ELEMENT "grouping"
 y1 <- read_3 (read_REQUIRED "type" read_Start_Stop_Single)
 (read_DEFAULT "number" read_CDATA "1")
 (read_IMPLIED "member-of" read_CDATA)
 (attributes y)
 y2 <- read_1 (read_LIST read_Feature) (childs y)
 return (y1,y2)
-- |
show_Grouping :: Grouping -> [Content ()]
show_Grouping ((a,b,c),d) =
 show_ELEMENT "grouping" (show_REQUIRED "type" show_Start_Stop_Single a ++
 show_DEFAULT "number" show_CDATA b ++
 show_IMPLIED "member-of" show_CDATA c)
 (show_LIST show_Feature d)
-- |
type Feature = (Maybe CDATA, PCDATA)
-- |
read_Feature :: STM Result [Content i] Feature
read_Feature = do
 y <- read_ELEMENT "feature"
 y1 <- read_1 (read_IMPLIED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Feature :: Feature -> [Content ()]
show_Feature (a,b) =
 show_ELEMENT "feature" (show_IMPLIED "type" show_CDATA a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The print element contains general printing parameters,
	including the layout elements defined in the layout.mod
	file. The part-name-display and part-abbreviation-display
	elements used in the score.mod file may also be used here
	to change how a part name or abbreviation is displayed over
	the course of a piece. They take effect when the current
	measure or a succeeding measure starts a new system.
	
	The new-system and new-page attributes indicate whether
	to force a system or page break, or to force the current
	music onto the same system or page as the preceding music.
	Normally this is the first music data within a measure.
	If used in multi-part music, they should be placed in the
	same positions within each part, or the results are
	undefined. The page-number attribute sets the number of a
	new page; it is ignored if new-page is not "yes". Version
	2.0 adds a blank-page attribute. This is a positive integer
	value that specifies the number of blank pages to insert
	before the current measure. It is ignored if new-page is
	not "yes". These blank pages have no music, but may have
	text or images specified by the credit element. This is
	used to allow a combination of pages that are all text,
	or all text and images, together with pages of music.

	Staff spacing between multiple staves is measured in
	tenths of staff lines (e.g. 100 = 10 staff lines). This is
	deprecated as of Version 1.1; the staff-layout element
	should be used instead. If both are present, the
	staff-layout values take priority.

	Layout elements in a print statement only apply to the
	current page, system, staff, or measure. Music that
	follows continues to take the default values from the
	layout included in the defaults element.
\end{musicxml}
\begin{code}
-- |
type Print = ((Maybe Tenths, Maybe Yes_No, Maybe Yes_No,
 Maybe CDATA, Maybe CDATA),
 (Maybe Page_Layout, Maybe System_Layout, [Staff_Layout],
 Maybe Measure_Layout, Maybe Measure_Numbering, Maybe Part_Name_Display,
 Maybe Part_Abbreviation_Display))
-- |
read_Print :: Eq i => STM Result [Content i] Print
read_Print = do
 y <- read_ELEMENT "print"
 y1 <- read_5 (read_IMPLIED "staff-spacing" read_Tenths)
 (read_IMPLIED "new-system" read_Yes_No)
 (read_IMPLIED "new-page" read_Yes_No)
 (read_IMPLIED "blank-page" read_CDATA)
 (read_IMPLIED "page-number" read_CDATA) (attributes y)
 y2 <- read_7 (read_MAYBE read_Page_Layout) (read_MAYBE read_System_Layout)
 (read_LIST read_Staff_Layout) (read_MAYBE read_Measure_Layout)
 (read_MAYBE read_Measure_Numbering)
 (read_MAYBE read_Part_Name_Display)
 (read_MAYBE read_Part_Abbreviation_Display) (childs y)
 return (y1,y2)
-- |
show_Print :: Print -> [Content ()]
show_Print ((a,b,c,d,e),(f,g,h,i,j,k,l)) =
 show_ELEMENT "print"
 (show_IMPLIED "staff-spacing" show_Tenths a ++
 show_IMPLIED "new-system" show_Yes_No b ++
 show_IMPLIED "new-page" show_Yes_No c ++
 show_IMPLIED "blank-page" show_CDATA d ++
 show_IMPLIED "page-number" show_CDATA e)
 (show_MAYBE show_Page_Layout f ++ show_MAYBE show_System_Layout g ++
 show_LIST show_Staff_Layout h ++ show_MAYBE show_Measure_Layout i ++
 show_MAYBE show_Measure_Numbering j ++
 show_MAYBE show_Part_Name_Display k ++
 show_MAYBE show_Part_Abbreviation_Display l)
\end{code}

\begin{musicxml}
	The measure-numbering element describes how measure
	numbers are displayed on this part. Values may be none,
	measure, or system. The number attribute from the measure
	element is used for printing. Measures with an implicit
	attribute set to "yes" never display a measure number,
	regardless of the measure-numbering setting.
\end{musicxml}
\begin{code}
-- |
type Measure_Numbering = (Print_Style, PCDATA)
-- |
read_Measure_Numbering :: Eq i => STM Result [Content i] Measure_Numbering
read_Measure_Numbering = do
 y <- read_ELEMENT "measure-numbering"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Measure_Numbering :: Measure_Numbering -> [Content ()]
show_Measure_Numbering (a,b) =
 show_ELEMENT "measure-numbering"
 (show_Print_Style a) (show_PCDATA b)
\end{code}

\begin{musicxml}
	The sound element contains general playback parameters.
	They can stand alone within a part/measure, or be a
	component element within a direction.
	
	Tempo is expressed in quarter notes per minute. If 0,
	the sound-generating program should prompt the user at the
	time of compiling a sound (MIDI) file.
	
	Dynamics (or MIDI velocity) are expressed as a percentage
	of the default forte value (90 for MIDI 1.0).
	
	Dacapo indicates to go back to the beginning of the
	movement. When used it always has the value "yes".
	
	Segno and dalsegno are used for backwards jumps to a
	segno sign; coda and tocoda are used for forward jumps
	to a coda sign. If there are multiple jumps, the value
	of these parameters can be used to name and distinguish
	them. If segno or coda is used, the divisions attribute
	can also be used to indicate the number of divisions
	per quarter note. Otherwise sound and MIDI generating
	programs may have to recompute this.
	
	By default, a dalsegno or dacapo attribute indicates that
	the jump should occur the first time through, while a
	tocoda attribute indicates the jump should occur the second
	time through. The time that jumps occur can be changed by
	using the time-only attribute.
	
	Forward-repeat is used when a forward repeat sign is
	implied, and usually follows a bar line. When used it
	always has the value of "yes".
	
	The fine attribute follows the final note or rest in a
	movement with a da capo or dal segno direction. If numeric,
	the value represents the actual duration of the final note or
	rest, which can be ambiguous in written notation and
	different among parts and voices. The value may also be
	"yes" to indicate no change to the final duration.
	
	If the sound element applies only one time through a
	repeat, the time-only attribute indicates which time
	to apply the sound element.
	
	Pizzicato in a sound element effects all following notes.
	Yes indicates pizzicato, no indicates arco.

	The pan and elevation attributes are deprecated in
	Version 2.0. The pan and elevation elements in
	the midi-instrument element should be used instead.
	The meaning of the pan and elevation attributes is
	the same as for the pan and elevation elements. If
	both are present, the mid-instrument elements take
	priority.
	
	The damper-pedal, soft-pedal, and sostenuto-pedal
	attributes effect playback of the three common piano
	pedals and their MIDI controller equivalents. The yes
	value indicates the pedal is depressed; no indicates
	the pedal is released. A numeric value from 0 to 100
	may also be used for half pedaling. This value is the
	percentage that the pedal is depressed. A value of 0 is
	equivalent to no, and a value of 100 is equivalent to yes.
	
	MIDI instruments are changed using the midi-instrument
	element defined in the common.mod file.

	The offset element is used to indicate that the sound takes
	place offset from the current score position. If the sound
	element is a child of a direction element, the sound offset
	element overrides the direction offset element if both
	elements are present. Note that the offset reflects the
	intended musical position for the change in sound. It
	should not be used to compensate for latency issues in
	particular hardware configurations.
\end{musicxml}
\begin{code}
-- ** Sound
-- |
type Sound = ((Maybe CDATA, Maybe CDATA, Maybe Yes_No,
 Maybe CDATA, Maybe CDATA, Maybe CDATA,
 Maybe CDATA, Maybe CDATA, Maybe Yes_No,
 Maybe CDATA, Maybe CDATA, Maybe Yes_No,
 Maybe CDATA, Maybe CDATA, Maybe Yes_No_Number,
 Maybe Yes_No_Number, Maybe Yes_No_Number),
 ([Midi_Instrument], Maybe Offset))
-- |
read_Sound :: Eq i => STM Result [Content i] Sound
read_Sound = do
 y <- read_ELEMENT "sound"
 y1 <- read_17 (read_IMPLIED "tempo" read_CDATA)
 (read_IMPLIED "dynamics" read_CDATA)
 (read_IMPLIED "dacapo" read_Yes_No)
 (read_IMPLIED "segno" read_CDATA)
 (read_IMPLIED "dalsegno" read_CDATA)
 (read_IMPLIED "coda" read_CDATA)
 (read_IMPLIED "tocoda" read_CDATA)
 (read_IMPLIED "divisions" read_CDATA)
 (read_IMPLIED "forward-repeat" read_Yes_No)
 (read_IMPLIED "fine" read_CDATA)
 (read_IMPLIED "time-only" read_CDATA)
 (read_IMPLIED "pizzicato" read_Yes_No)
 (read_IMPLIED "pan" read_CDATA)
 (read_IMPLIED "elevation" read_CDATA)
 (read_IMPLIED "damper-pedal" read_Yes_No_Number)
 (read_IMPLIED "soft-pedal" read_Yes_No_Number)
 (read_IMPLIED "sostenuto-pedal" read_Yes_No_Number)
 (attributes y)
 y2 <- read_2 (read_LIST read_Midi_Instrument)
 (read_MAYBE read_Offset) (childs y)
 return (y1,y2)
-- |
show_Sound :: Sound -> [Content ()]
show_Sound ((a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q),(r,s)) =
 show_ELEMENT "sound" (show_IMPLIED "tempo" show_CDATA a ++
 show_IMPLIED "dynamics" show_CDATA b ++
 show_IMPLIED "dacapo" show_Yes_No c ++
 show_IMPLIED "segno" show_CDATA d ++
 show_IMPLIED "dalsegno" show_CDATA e ++
 show_IMPLIED "coda" show_CDATA f ++
 show_IMPLIED "tocoda" show_CDATA g ++
 show_IMPLIED "divisions" show_CDATA h ++
 show_IMPLIED "forward-repeat" show_Yes_No i ++
 show_IMPLIED "fine" show_CDATA j ++
 show_IMPLIED "time-only" show_CDATA k ++
 show_IMPLIED "pizzicato" show_Yes_No l ++
 show_IMPLIED "pan" show_CDATA m ++
 show_IMPLIED "elevation" show_CDATA n ++
 show_IMPLIED "damper-pedal" show_Yes_No_Number o ++
 show_IMPLIED "soft-pedal" show_Yes_No_Number p ++
 show_IMPLIED "sostenuto-pedal" show_Yes_No_Number q)
 (show_LIST show_Midi_Instrument r ++
 show_MAYBE show_Offset s)
\end{code}

y2 ← read 5 (read LIST1 read Direction Type) (read MAYBE read Offset)
(read Editorial Voice) (read MAYBE read Staff)
(read MAYBE read Sound) (childs y)

return (y1 , y2)
-- |

show Direction :: Direction → [Content ()]
show Direction ((a, b), (c, d , e, f , g)) =

show ELEMENT "direction" (show Placement a ++ show Directive b)
(show LIST show Direction Type c ++
show MAYBE show Offset d ++
show Editorial Voice e ++
show MAYBE show Staff f ++
show MAYBE show Sound g)

Textual direction types may have more than 1 component due to multiple fonts. The dynamics element
may also be used in the notations element, and is defined in the common.mod file.

-- ** Direction Type
-- |

type Direction Type = Direction Type
-- |

read Direction Type :: Eq i ⇒ STM Result [Content i] Direction Type
read Direction Type = do

y ← read ELEMENT "direction-type"

read 1 read Direction Type (childs y)
-- |

show Direction Type :: Direction Type → [Content ()]
show Direction Type a =

show ELEMENT "direction-type" [] (show Direction Type a)
-- |

data Direction Type = Direction Type 1 [Rehearsal]
| Direction Type 2 [Segno]
| Direction Type 3 [Words]
| Direction Type 4 [Coda]
| Direction Type 5 Wedge
| Direction Type 6 [Dynamics]
| Direction Type 7 Dashes
| Direction Type 8 Bracket
| Direction Type 9 Pedal
| Direction Type 10 Metronome
| Direction Type 11 Octave Shift
| Direction Type 12 Harp Pedals
| Direction Type 13 Damp
| Direction Type 14 Damp All
| Direction Type 15 Eyeglasses
| Direction Type 16 Scordatura
| Direction Type 17 Image
| Direction Type 18 Accordion Registration
| Direction Type 19 Other Direction
deriving (Eq ,Show)

-- |
read Direction Type :: Eq i ⇒ STM Result [Content i] Direction Type
read Direction Type =

(read LIST1 read Rehearsal >>= return ·Direction Type 1) ‘mplus‘
(read LIST1 read Segno >>= return ·Direction Type 2) ‘mplus‘
(read LIST1 read Words >>= return ·Direction Type 3) ‘mplus‘
(read LIST1 read Coda >>= return ·Direction Type 4) ‘mplus‘
(read Wedge >>= return ·Direction Type 5) ‘mplus‘
(read LIST1 read Dynamics >>= return ·Direction Type 6) ‘mplus‘

54

(read Dashes >>= return ·Direction Type 7) ‘mplus‘
(read Bracket >>= return ·Direction Type 8) ‘mplus‘
(read Pedal >>= return ·Direction Type 9) ‘mplus‘
(read Metronome >>= return ·Direction Type 10) ‘mplus‘
(read Octave Shift >>= return ·Direction Type 11) ‘mplus‘
(read Harp Pedals >>= return ·Direction Type 12) ‘mplus‘
(read Damp >>= return ·Direction Type 13) ‘mplus‘
(read Damp All >>= return ·Direction Type 14) ‘mplus‘
(read Eyeglasses >>= return ·Direction Type 15) ‘mplus‘
(read Scordatura >>= return ·Direction Type 16) ‘mplus‘
(read Image >>= return ·Direction Type 17) ‘mplus‘
(read Accordion Registration >>= return ·Direction Type 18) ‘mplus‘
(read Other Direction >>= return ·Direction Type 19)
-- |

show Direction Type :: Direction Type → [Content ()]
show Direction Type (Direction Type 1 a) = show LIST1 show Rehearsal a
show Direction Type (Direction Type 2 a) = show LIST1 show Segno a
show Direction Type (Direction Type 3 a) = show LIST1 show Words a
show Direction Type (Direction Type 4 a) = show LIST1 show Coda a
show Direction Type (Direction Type 5 a) = show Wedge a
show Direction Type (Direction Type 6 a) = show LIST1 show Dynamics a
show Direction Type (Direction Type 7 a) = show Dashes a
show Direction Type (Direction Type 8 a) = show Bracket a
show Direction Type (Direction Type 9 a) = show Pedal a
show Direction Type (Direction Type 10 a) = show Metronome a
show Direction Type (Direction Type 11 a) = show Octave Shift a
show Direction Type (Direction Type 12 a) = show Harp Pedals a
show Direction Type (Direction Type 13 a) = show Damp a
show Direction Type (Direction Type 14 a) = show Damp All a
show Direction Type (Direction Type 15 a) = show Eyeglasses a
show Direction Type (Direction Type 16 a) = show Scordatura a
show Direction Type (Direction Type 17 a) = show Image a
show Direction Type (Direction Type 18 a) = show Accordion Registration a
show Direction Type (Direction Type 19 a) = show Other Direction a

Entities related to print suggestions apply to the individual direction-type, not to the overall direction.
Language is Italian (”it”) by default. Enclosure is square by default.

-- |
type Rehearsal = ((Print Style,Text Decoration,

Maybe CDATA,Text Direction,Text Rotation,
Maybe Rehearsal),PCDATA)
-- |

read Rehearsal :: STM Result [Content i] Rehearsal
read Rehearsal = do

y ← read ELEMENT "rehearsal"

y1 ← read 6 read Print Style read Text Decoration
(read IMPLIED "xml:lang" read CDATA)
read Text Direction read Text Rotation
(read IMPLIED "enclosure" read Rehearsal)
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Rehearsal :: Rehearsal → [Content ()]
show Rehearsal ((a, b, c, d , e, f), g) =

show ELEMENT "rehearsal" (show Print Style a ++ show Text Decoration b ++
show IMPLIED "xml:lang" show CDATA c ++
show Text Direction d ++ show Text Rotation e ++

55

show IMPLIED "enclosure" show Rehearsal f)
(show PCDATA g)

-- |
data Rehearsal = Rehearsal 1 | Rehearsal 2 | Rehearsal 3

deriving (Eq ,Show)
-- |

read Rehearsal :: Data.Char .String → Result Rehearsal
read Rehearsal "square" = return Rehearsal 1
read Rehearsal "circle" = return Rehearsal 2
read Rehearsal "none" = return Rehearsal 3
read Rehearsal x = fail x

-- |
show Rehearsal :: Rehearsal → Data.Char .String
show Rehearsal Rehearsal 1 = "square"

show Rehearsal Rehearsal 2 = "circle"

show Rehearsal Rehearsal 3 = "none"

Left justification is assumed if not specified. Language is Italian (”it”) by default. Enclosure is none
by default.

-- |
type Words = (Text Formatting ,PCDATA)

-- |
read Words :: STM Result [Content i] Words
read Words = do

y ← read ELEMENT "words"

y1 ← read 1 read Text Formatting (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Words :: Words → [Content ()]
show Words (a, b) =

show ELEMENT "words" (show Text Formatting a) (show PCDATA b)

Wedge spread is measured in tenths of staff line space. The type is crescendo for the start of a wedge
that is closed at the left side, and diminuendo for the start of a wedge that is closed on the right side.
Spread values at the start of a crescendo wedge or end of a diminuendo wedge are ignored.

type Wedge = ((Wedge ,Maybe Number Level ,Maybe CDATA,
Position,Color), ())
-- |

read Wedge :: STM Result [Content i] Wedge
read Wedge = do

y ← read ELEMENT "wedge"

y1 ← read 5 (read REQUIRED "type" read Wedge)
(read IMPLIED "number" read Number Level)
(read IMPLIED "spread" read CDATA)
read Position read Color (attributes y)

return (y1 , ())
-- |

show Wedge :: Wedge → [Content ()]
show Wedge ((a, b, c, d , e),) =

show ELEMENT "wedge" (show REQUIRED "type" show Wedge a ++
show IMPLIED "number" show Number Level b ++
show IMPLIED "spread" show CDATA c ++
show Position d ++ show Color e) []

-- |
data Wedge = Wedge 1 |Wedge 2 |Wedge 3

deriving (Eq ,Show)
-- |

56

read Wedge :: Data.Char .String → Result Wedge
read Wedge "crescendo" = return Wedge 1
read Wedge "diminuendo" = return Wedge 2
read Wedge "stop" = return Wedge 3
read Wedge x = fail x

-- |
show Wedge :: Wedge → Data.Char .String
show Wedge Wedge 1 = "crescendo"

show Wedge Wedge 2 = "diminuendo"

show Wedge Wedge 3 = "stop"

Dashes, used for instance with cresc. and dim. marks.

-- |
type Dashes = ((Start Stop,Maybe Number Level ,

Position,Color), ())
-- |

read Dashes :: STM Result [Content i] Dashes
read Dashes = do

y ← read ELEMENT "dashes"

y1 ← read 4 (read REQUIRED "type" read Start Stop)
(read IMPLIED "number" read Number Level)
read Position read Color (attributes y)

return (y1 , ())
-- |

show Dashes :: Dashes → [Content ()]
show Dashes ((a, b, c, d),) =

show ELEMENT "dashes" (show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level b ++
show Position c ++ show Color d) []

Brackets are combined with words in a variety of modern directions. The line-end attribute specifies if
there is a jog up or down (or both), an arrow, or nothing at the start or end of the bracket. If the line-end
is up or down, the length of the jog can be specified using the end-length attribute. The line-type is solid
by default.

-- |
type Bracket = ((Start Stop,Maybe Number Level ,

Bracket ,Maybe Tenths,Line Type,Position,Color), ())
-- |

read Bracket :: STM Result [Content i] Bracket
read Bracket = do

y ← read ELEMENT "bracket"

y1 ← read 7 (read REQUIRED "type" read Start Stop)
(read IMPLIED "number" read Number Level)
(read REQUIRED "line-end" read Bracket)
(read IMPLIED "end-length" read Tenths)
read Line Type read Position read Color
(attributes y)

return (y1 , ())
-- |

show Bracket :: Bracket → [Content ()]
show Bracket ((a, b, c, d , e, f , g),) =

show ELEMENT "bracket" (show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level b ++
show REQUIRED "line-end" show Bracket c ++
show IMPLIED "end-length" show Tenths d ++
show Line Type e ++ show Position f ++
show Color g) []

-- |

57

data Bracket = Bracket 1 | Bracket 2 | Bracket 3 | Bracket 4 | Bracket 5
deriving (Eq ,Show)
-- |

read Bracket :: Data.Char .String → Result Bracket
read Bracket "up" = return Bracket 1
read Bracket "down" = return Bracket 2
read Bracket "both" = return Bracket 3
read Bracket "arrow" = return Bracket 4
read Bracket "none" = return Bracket 5
read Bracket x = fail x

-- |
show Bracket :: Bracket → Data.Char .String
show Bracket Bracket 1 = "up"

show Bracket Bracket 2 = "down"

show Bracket Bracket 3 = "both"

show Bracket Bracket 4 = "arrow"

show Bracket Bracket 5 = "none"

Piano pedal marks. The line attribute is yes if pedal lines are used, no if Ped and * signs are used.
The change type is used with line set to yes.

-- |
type Pedal = ((Pedal ,Maybe Yes No,Print Style), ())

-- |
read Pedal :: STM Result [Content i] Pedal
read Pedal = do

y ← read ELEMENT "pedal"

y1 ← read 3 (read REQUIRED "type" read Pedal)
(read IMPLIED "line" read Yes No)
read Print Style (attributes y)

return (y1 , ())
-- |

show Pedal :: Pedal → [Content ()]
show Pedal ((a, b, c),) =

show ELEMENT "pedal" (show REQUIRED "type" show Pedal a ++
show IMPLIED "line" show Yes No b ++
show Print Style c) []

-- |
data Pedal = Pedal 1 | Pedal 2 | Pedal 3

deriving (Eq ,Show)
read Pedal :: Data.Char .String → Result Pedal
read Pedal "start" = return Pedal 1
read Pedal "stop" = return Pedal 2
read Pedal "change" = return Pedal 3
read Pedal x = fail x

-- |
show Pedal :: Pedal → Data.Char .String
show Pedal Pedal 1 = "start"

show Pedal Pedal 2 = "stop"

show Pedal Pedal 3 = "change"

-- |

Metronome marks and other metric relationships.
The beat-unit values are the same as for a type element, and the beat-unit-dot works like the dot

element. The per-minute element can be a number, or a text description including numbers. The paren-
theses attribute indicates whether or not to put the metronome mark in parentheses; its value is no if not
specified. If a font is specified for the per-minute element, it overrides the font specified for the overall
metronome element. This allows separate specification of a music font for beat-unit and a text font for
the numeric value in cases where a single metronome font is not used.

58

The metronome-note and metronome-relation elements allow for the specification of more complicated
metric relationships, such as swing tempo marks where two eighths are equated to a quarter note /
eighth note triplet. The metronome-type, metronome-beam, and metronome-dot elements work like the
type, beam, and dot elements. The metronome-tuplet element uses the same element structure as the
time-modification element along with some attributes from the tuplet element. The metronome-relation
element describes the relationship symbol that goes between the two sets of metronome-note elements.
The currently allowed value is equals, but this may expand in future versions. If the element is empty,
the equals value is used. The metronome-relation and the following set of metronome-note elements are
optional to allow display of an isolated Grundschlagnote.

-- |
type Metronome = ((Print Style,Maybe Yes No),Metronome A)

-- |
read Metronome :: Eq i ⇒ STM Result [Content i] Metronome
read Metronome = do

y ← read ELEMENT "metronome"

y1 ← read 2 read Print Style (read IMPLIED "parentheses" read Yes No)
(attributes y)

y2 ← read 1 read Metronome A (childs y)
return (y1 , y2)
-- |

show Metronome :: Metronome → [Content ()]
show Metronome ((a, b), c) =

show ELEMENT "metronome" (show Print Style a ++
show IMPLIED "parentheses" show Yes No b)
(show Metronome A c)

-- |
data Metronome A = Metronome 1 (Beat Unit , [Beat Unit Dot],Metronome B)

| Metronome 2 ([Metronome Note],
Maybe (Metronome Relation, [Metronome Note]))

deriving (Eq ,Show)
-- |

read Metronome A :: Eq i ⇒ STM Result [Content i] Metronome A
read Metronome A =

(read Metronome A aux1 >>= return ·Metronome 1) ‘mplus‘
(read Metronome A aux2 >>= return ·Metronome 2)
-- |

show Metronome A :: Metronome A→ [Content ()]
show Metronome A (Metronome 1 (a, b, c)) = show Beat Unit a ++

show LIST show Beat Unit Dot b ++
show Metronome B c

show Metronome A (Metronome 2 (a, b)) = show LIST show Metronome Note a ++
show MAYBE show Metronome A aux1 b
-- |

read Metronome A aux1 :: Eq i ⇒
STM Result [Content i] (Beat Unit , [Beat Unit Dot],Metronome B)

read Metronome A aux1 = do
y1 ← read Beat Unit
y2 ← read LIST read Beat Unit Dot
y3 ← read Metronome B
return (y1 , y2 , y3)
-- |

read Metronome A aux2 :: Eq i ⇒ STM Result [Content i]
([Metronome Note],Maybe (Metronome Relation, [Metronome Note]))

read Metronome A aux2 = do
y1 ← read LIST1 read Metronome Note
y2 ← read MAYBE read Metronome A aux3
return (y1 , y2)
-- |

59

read Metronome A aux3 :: Eq i ⇒
STM Result [Content i] (Metronome Relation, [Metronome Note])

read Metronome A aux3 = do
y1 ← read Metronome Relation
y2 ← read LIST1 read Metronome Note
return (y1 , y2)
-- |

show Metronome A aux1 :: (Metronome Relation, [Metronome Note])→ [Content ()]
show Metronome A aux1 (a, b) = show Metronome Relation a ++

show LIST show Metronome Note b
-- |

data Metronome B = Metronome 3 Per Minute
| Metronome 4 (Beat Unit , [Beat Unit Dot])
deriving (Eq ,Show)

-- |
read Metronome B :: Eq i ⇒ STM Result [Content i] Metronome B
read Metronome B =

(read Per Minute >>= return ·Metronome 3) ‘mplus‘
(read Metronome B aux1 >>= return ·Metronome 4)
-- |

show Metronome B :: Metronome B → [Content ()]
show Metronome B (Metronome 3 a) = show Per Minute a
show Metronome B (Metronome 4 (a, b)) = show Beat Unit a ++

show LIST show Beat Unit Dot b
-- |

read Metronome B aux1 :: Eq i ⇒
STM Result [Content i] (Beat Unit , [Beat Unit Dot])

read Metronome B aux1 = do
y1 ← read Beat Unit
y2 ← read LIST read Beat Unit Dot
return (y1 , y2)
-- |

type Beat Unit = PCDATA
-- |

read Beat Unit :: STM Result [Content i] Beat Unit
read Beat Unit = do

y ← read ELEMENT "beat-unit"

read 1 read PCDATA (childs y)
-- |

show Beat Unit :: Beat Unit → [Content ()]
show Beat Unit a = show ELEMENT "beat-unit" [] (show PCDATA a)

-- |
type Beat Unit Dot = ()

-- |
read Beat Unit Dot :: STM Result [Content i] Beat Unit Dot
read Beat Unit Dot = read ELEMENT "beat-unit-dot">> return ()

-- |
show Beat Unit Dot :: Beat Unit Dot → [Content ()]
show Beat Unit Dot = show ELEMENT "beat-unit-dot" [] []

-- |
type Per Minute = (Font ,PCDATA)

-- |
read Per Minute :: STM Result [Content i] Per Minute
read Per Minute = do

y ← read ELEMENT "per-minute"

y1 ← read 1 read Font (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)

60

-- |
show Per Minute :: Per Minute → [Content ()]
show Per Minute (a, b) =

show ELEMENT "per-minute" (show Font a) (show PCDATA b)
-- |

type Metronome Note = (Metronome Type, [Metronome Dot],
[Metronome Beam],Maybe Metronome Tuplet)
-- |

read Metronome Note :: Eq i ⇒ STM Result [Content i] Metronome Note
read Metronome Note = do

y ← read ELEMENT "metronome-note"

read 4 read Metronome Type (read LIST read Metronome Dot)
(read LIST read Metronome Beam)
(read MAYBE read Metronome Tuplet) (childs y)

-- |
show Metronome Note :: Metronome Note → [Content ()]
show Metronome Note (a, b, c, d) =

show ELEMENT "metronome-note" []
(show Metronome Type a ++ show LIST show Metronome Dot b ++

show LIST show Metronome Beam c ++ show MAYBE show Metronome Tuplet d)
-- |

type Metronome Relation = PCDATA
-- |

read Metronome Relation :: STM Result [Content i] Metronome Relation
read Metronome Relation = do

y ← read ELEMENT "metronome-relation"

read 1 read PCDATA (childs y)
-- |

show Metronome Relation :: Metronome Relation → [Content ()]
show Metronome Relation a =

show ELEMENT "metronome-relation" [] (show PCDATA a)
-- |

type Metronome Type = PCDATA
-- |

read Metronome Type :: STM Result [Content i] Metronome Type
read Metronome Type = do

y ← read ELEMENT "metronome-type"

read 1 read PCDATA (childs y)
-- |

show Metronome Type :: Metronome Type → [Content ()]
show Metronome Type a =

show ELEMENT "metronome-type" [] (show PCDATA a)
-- |

type Metronome Dot = ()
-- |

read Metronome Dot :: STM Result [Content i] Metronome Dot
read Metronome Dot = read ELEMENT "metronome-dot">> return ()

-- |
show Metronome Dot :: Metronome Dot → [Content ()]
show Metronome Dot =

show ELEMENT "metronome-dot" [] []
-- |

type Metronome Beam = (Beam Level ,PCDATA)
-- |

read Metronome Beam :: STM Result [Content i] Metronome Beam
read Metronome Beam = do

y ← read ELEMENT "metronome-beam"

y1 ← read 1 (read DEFAULT "number" read Beam Level Beam Level 1)

61

(attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Metronome Beam :: Metronome Beam → [Content ()]
show Metronome Beam (a, b) =

show ELEMENT "metronome-beam" (show DEFAULT "number" show Beam Level a)
(show PCDATA b)

-- |
type Metronome Tuplet = ((Start Stop,Maybe Yes No,Maybe Metronome Tuplet),

(Actual Notes,Normal Notes,Maybe (Normal Type, [Normal Dot])))
-- |

read Metronome Tuplet :: Eq i ⇒ STM Result [Content i] Metronome Tuplet
read Metronome Tuplet = do

y ← read ELEMENT "metronome-tuplet"

y1 ← read 3 (read REQUIRED "type" read Start Stop)
(read IMPLIED "bracket" read Yes No)
(read IMPLIED "show-number" read Metronome Tuplet)
(attributes y)

y2 ← read 3 read Actual Notes read Normal Notes
(read MAYBE read Metronome Tuplet aux1) (childs y)

return (y1 , y2)
-- |

show Metronome Tuplet :: Metronome Tuplet → [Content ()]
show Metronome Tuplet ((a, b, c), (d , e, f)) =

show ELEMENT "metronome-tuplet"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "bracket" show Yes No b ++
show IMPLIED "show-number" show Metronome Tuplet c)

(show Actual Notes d ++ show Normal Notes e ++
show MAYBE show Metronome Tuplet aux1 f)

-- |
read Metronome Tuplet aux1 :: Eq i ⇒

STM Result [Content i] (Normal Type, [Normal Dot])
read Metronome Tuplet aux1 = do

y1 ← read Normal Type
y2 ← read LIST read Normal Dot
return (y1 , y2)
-- |

show Metronome Tuplet aux1 :: (Normal Type, [Normal Dot])→ [Content ()]
show Metronome Tuplet aux1 (a, b) =

show ELEMENT "metronome-tuplet" []
(show Normal Type a ++ show LIST show Normal Dot b)

-- |
data Metronome Tuplet = Metronome Tuplet 1
| Metronome Tuplet 2
| Metronome Tuplet 3
deriving (Eq ,Show)

-- |
read Metronome Tuplet :: Data.Char .String → Result Metronome Tuplet
read Metronome Tuplet "actual" = return Metronome Tuplet 1
read Metronome Tuplet "both" = return Metronome Tuplet 2
read Metronome Tuplet "none" = return Metronome Tuplet 3
read Metronome Tuplet x = fail x

-- |
show Metronome Tuplet :: Metronome Tuplet → Data.Char .String
show Metronome Tuplet Metronome Tuplet 1 = "actual"

show Metronome Tuplet Metronome Tuplet 2 = "both"

62

show Metronome Tuplet Metronome Tuplet 3 = "none"

Octave shifts indicate where notes are shifted up or down from their true pitched values because of
printing difficulty. Thus a treble clef line noted with 8va will be indicated with an octave-shift down from
the pitch data indicated in the notes. A size of 8 indicates one octave; a size of 15 indicates two octaves.

-- |
type Octave Shift = ((Octave Shift ,Maybe Number Level ,

CDATA,Print Style), ())
-- |

read Octave Shift :: STM Result [Content i] Octave Shift
read Octave Shift = do

y ← read ELEMENT "octave-shift"

y1 ← read 4 (read REQUIRED "type" read Octave Shift)
(read IMPLIED "number" read Number Level)
(read DEFAULT "size" read CDATA "8")
read Print Style (attributes y)

return (y1 , ())
-- |

show Octave Shift :: Octave Shift → [Content ()]
show Octave Shift ((a, b, c, d),) =

show ELEMENT "octave-shift"

(show REQUIRED "type" show Octave Shift a ++
show IMPLIED "number" show Number Level b ++
show DEFAULT "size" show CDATA c ++ show Print Style d) []

-- |
data Octave Shift = Octave Shift 1 | Octave Shift 2 | Octave Shift 3

deriving (Eq ,Show)
-- |

read Octave Shift :: Data.Char .String → Result Octave Shift
read Octave Shift "up" = return Octave Shift 1
read Octave Shift "down" = return Octave Shift 2
read Octave Shift "stop" = return Octave Shift 3
read Octave Shift x = fail x

-- |
show Octave Shift :: Octave Shift → Data.Char .String
show Octave Shift Octave Shift 1 = "up"

show Octave Shift Octave Shift 2 = "down"

show Octave Shift Octave Shift 3 = "stop"

The harp-pedals element is used to create harp pedal diagrams. The pedal-step and pedal-alter
elements use the same values as the step and alter elements. For easiest reading, the pedal-tuning elements
should follow standard harp pedal order, with pedal-step values of D, C, B, E, F, G, and A.

-- |
type Harp Pedals = (Print Style, [Pedal Tuning])

-- |
read Harp Pedals :: Eq i ⇒ STM Result [Content i] Harp Pedals
read Harp Pedals = do

y ← read ELEMENT "harp-pedals"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 (read LIST1 read Pedal Tuning) (childs y)
return (y1 , y2)
-- |

show Harp Pedals :: Harp Pedals → [Content ()]
show Harp Pedals (a, b) =

show ELEMENT "harp-pedals" (show Print Style a)
(show LIST show Pedal Tuning b)

-- |
type Pedal Tuning = (Pedal Step,Pedal Alter)

63

-- |
read Pedal Tuning :: STM Result [Content i] Pedal Tuning
read Pedal Tuning = do

y ← read ELEMENT "pedal-tuning"

read 2 read Pedal Step read Pedal Alter (childs y)
-- |

show Pedal Tuning :: Pedal Tuning → [Content ()]
show Pedal Tuning (a, b) =

show ELEMENT "pedal-tuning" []
(show Pedal Step a ++ show Pedal Alter b)

-- |
type Pedal Step = PCDATA

-- |
read Pedal Step :: STM Result [Content i] Pedal Step
read Pedal Step = do

y ← read ELEMENT "pedal-step"

read 1 read PCDATA (childs y)
-- |

show Pedal Step :: Pedal Step → [Content ()]
show Pedal Step a = show ELEMENT "pedal-step" [] (show Pedal Step a)

-- |
type Pedal Alter = PCDATA

-- |
read Pedal Alter :: STM Result [Content i] Pedal Alter
read Pedal Alter = do

y ← read ELEMENT "pedal-alter"

read 1 read PCDATA (childs y)
-- |

show Pedal Alter :: Pedal Alter → [Content ()]
show Pedal Alter a = show ELEMENT "pedal-alter" [] (show Pedal Alter a)

-- |
type Damp = (Print Style, ())

-- |
read Damp :: STM Result [Content i] Damp
read Damp = do

y ← read ELEMENT "damp"

y1 ← read 1 read Print Style (attributes y)
return (y1 , ())
-- |

show Damp :: Damp → [Content ()]
show Damp (a,) = show ELEMENT "damp" (show Print Style a) []

-- |
type Damp All = (Print Style, ())

-- |
read Damp All :: STM Result [Content i] Damp All
read Damp All = do

y ← read ELEMENT "damp-all"

y1 ← read 1 read Print Style (attributes y)
return (y1 , ())
-- |

show Damp All :: Damp All → [Content ()]
show Damp All (a,) = show ELEMENT "damp-all" (show Print Style a) []

-- |
type Eyeglasses = (Print Style, ())

-- |
read Eyeglasses :: STM Result [Content i] Eyeglasses
read Eyeglasses = do

y ← read ELEMENT "eyeglasses"

64

y1 ← read 1 read Print Style (attributes y)
return (y1 , ())
-- |

show Eyeglasses :: Eyeglasses → [Content ()]
show Eyeglasses (a,) = show ELEMENT "eyeglasses" (show Print Style a) []

Scordatura string tunings are represented by a series of accord elements. The tuning-step, tuning-
alter, and tuning-octave elements are also used with the staff-tuning element, and are defined in the
common.mod file. Strings are numbered from high to low.

-- |
type Scordatura = [Accord]

-- |
read Scordatura :: Eq i ⇒ STM Result [Content i] Scordatura
read Scordatura = do

y ← read ELEMENT "scordatura"

read 1 (read LIST read Accord) (childs y)
-- |

show Scordatura :: Scordatura → [Content ()]
show Scordatura a =

show ELEMENT "scordatura" [] (show LIST show Accord a)
-- |

type Accord = (CDATA, (Tuning Step,Maybe Tuning Alter ,Tuning Octave))
-- |

read Accord :: STM Result [Content i] Accord
read Accord = do

y ← read ELEMENT "accord"

y1 ← read 1 (read REQUIRED "string" read CDATA) (attributes y)
y2 ← read 3 read Tuning Step (read MAYBE read Tuning Alter)

read Tuning Octave (childs y)
return (y1 , y2)
-- |

show Accord :: Accord → [Content ()]
show Accord (a, (b, c, d)) =

show ELEMENT "accord"

(show REQUIRED "string" show CDATA a)
(show Tuning Step b ++ show MAYBE show Tuning Alter c ++

show Tuning Octave d)

The image element is used to include graphical images in a score. The required source attribute is the
URL for the image file. The required type attribute is the MIME type for the image file format. Typical
choices include application/postscript, image/gif, image/jpeg, image/png, and image/tiff.

-- |
type Image = ((CDATA,CDATA,Position,Halign,Valign Image), ())

-- |
read Image :: STM Result [Content i] Image
read Image = do

y ← read ELEMENT "image"

y1 ← read 5 (read REQUIRED "source" read CDATA)
(read REQUIRED "type" read CDATA) read Position
read Halign read Valign Image (attributes y)

return (y1 , ())
-- |

show Image :: Image → [Content ()]
show Image ((a, b, c, d , e),) =

show ELEMENT "image"

(show REQUIRED "source" show CDATA a ++
show REQUIRED "type" show CDATA b ++
show Position c ++ show Halign d ++ show Valign Image e) []

65

The accordion-registration element is use for accordion registration symbols. These are circular symbols
divided horizontally into high, middle, and low sections that correspond to 4’, 8’, and 16’ pipes. Each
accordion-high, accordion-middle, and accordion-low element represents the presence of one or more dots in
the registration diagram. The accordion-middle element may have text values of 1, 2, or 3, corresponding
to have 1 to 3 dots in the middle section. An accordion-registration element needs to have at least one of
the child elements present.

-- |
type Accordion Registration = (Print Style,

(Maybe Accordion High,Maybe Accordion Middle,Maybe Accordion Low))
-- |

read Accordion Registration :: STM Result [Content i] Accordion Registration
read Accordion Registration = do

y ← read ELEMENT "accordion-registration"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 3 (read MAYBE read Accordion High)

(read MAYBE read Accordion Middle)
(read MAYBE read Accordion Low) (childs y)

return (y1 , y2)
-- |

show Accordion Registration :: Accordion Registration → [Content ()]
show Accordion Registration (a, (b, c, d)) =

show ELEMENT "accordion-registration"

(show Print Style a)
(show MAYBE show Accordion High b ++

show MAYBE show Accordion Middle c ++
show MAYBE show Accordion Low d)

-- |
type Accordion High = ()

-- |
read Accordion High :: STM Result [Content i] Accordion High
read Accordion High = read ELEMENT "accordion-high">> return ()

-- |
show Accordion High :: Accordion High → [Content ()]
show Accordion High = show ELEMENT "accordion-high" [] []

-- |
type Accordion Middle = PCDATA

-- |
read Accordion Middle :: STM Result [Content i] Accordion Middle
read Accordion Middle = do

y ← read ELEMENT "accordion-middle"

read 1 read PCDATA (childs y)
-- |

show Accordion Middle :: Accordion Middle → [Content ()]
show Accordion Middle a = show ELEMENT "accordion-middle" [] (show PCDATA a)

-- |
type Accordion Low = ()

-- |
read Accordion Low :: STM Result [Content i] Accordion Low
read Accordion Low = read ELEMENT "accordion-low">> return ()

-- |
show Accordion Low :: Accordion Low → [Content ()]
show Accordion Low = show ELEMENT "accordion-low" [] []

The other-direction element is used to define any direction symbols not yet in the current version of the
MusicXML format. This allows extended representation, though without application interoperability.

-- |
type Other Direction = ((Print Object ,Print Style),PCDATA)

-- |

66

read Other Direction :: STM Result [Content i] Other Direction
read Other Direction = do

y ← read ELEMENT "other-direction"

y1 ← read 2 read Print Object read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Other Direction :: Other Direction → [Content ()]
show Other Direction ((a, b), c) =

show ELEMENT "other-direction"

(show Print Object a ++ show Print Style b)
(show PCDATA c)

An offset is represented in terms of divisions, and indicates where the direction will appear relative to
the current musical location. This affects the visual appearance of the direction. If the sound attribute is
”yes”, then the offset affects playback too. If the sound attribute is ”no”, then any sound associated with the
direction takes effect at the current location. The sound attribute is ”no” by default for compatibility with
earlier versions of the MusicXML format. If an element within a direction includes a default-x attribute,
the offset value will be ignored when determining the appearance of that element.

-- |
type Offset = (Maybe Yes No,PCDATA)

-- |
read Offset :: STM Result [Content i] Offset
read Offset = do

y ← read ELEMENT "offset"

y1 ← read 1 (read IMPLIED "sound" read Yes No) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Offset :: Offset → [Content ()]
show Offset (a, b) =

show ELEMENT "offset" (show IMPLIED "sound" show Yes No a)
(show PCDATA b)

The harmony elements are based on Humdrum’s **harm encoding, extended to support chord symbols
in popular music as well as functional harmony analysis in classical music.

If there are alternate harmonies possible, this can be specified using multiple harmony elements differ-
entiated by type. Explicit harmonies have all note present in the music; implied have some notes missing
but implied; alternate represents alternate analyses.

The harmony object may be used for analysis or for chord symbols. The print-object attribute controls
whether or not anything is printed due to the harmony element. The print-frame attribute controls printing
of a frame or fretboard diagram. The print-style entity sets the default for the harmony, but individual
elements can override this with their own print-style values.

A harmony element can contain many stacked chords (e.g. V of II). A sequence of harmony-chord
entities is used for this type of secondary function, where V of II would be represented by a harmony-chord
with a V function followed by a harmony-chord with a II function.

-- |
type Harmony Chord = (Harmony Chord ,Kind ,Maybe Inversion,

Maybe Bass, [Degree])
-- |

read Harmony Chord :: Eq i ⇒ STM Result [Content i] Harmony Chord
read Harmony Chord = do

y1 ← read Harmony Chord
y2 ← read Kind
y3 ← read MAYBE read Inversion
y4 ← read MAYBE read Bass
y5 ← read LIST read Degree
return (y1 , y2 , y3 , y4 , y5)

67

-- |
show Harmony Chord :: Harmony Chord → [Content ()]
show Harmony Chord (a, b, c, d , e) =

(show Harmony Chord a ++ show Kind b ++
show MAYBE show Inversion c ++ show MAYBE show Bass d ++
show LIST show Degree e)

-- |
data Harmony Chord = Harmony Chord 1 Root
| Harmony Chord 2 Function
deriving (Eq ,Show)

-- |
read Harmony Chord :: STM Result [Content i] Harmony Chord
read Harmony Chord =

(read Root >>= return ·Harmony Chord 1) ‘mplus‘
(read Function >>= return ·Harmony Chord 2)
-- |

show Harmony Chord :: Harmony Chord → [Content ()]
show Harmony Chord (Harmony Chord 1 a) = show Root a
show Harmony Chord (Harmony Chord 2 a) = show Function a

-- |
type Harmony = ((Maybe Harmony ,Print Object ,Maybe Yes No,

Print Style,Placement),
([Harmony Chord],Maybe Frame,
Maybe Offset ,Editorial ,Maybe Staff))
-- |

read Harmony :: Eq i ⇒ STM Result [Content i] Harmony
read Harmony = do

y ← read ELEMENT "harmony"

y1 ← read 5 (read IMPLIED "type" read Harmony) read Print Object
(read IMPLIED "print-frame" read Yes No)
read Print Style read Placement (attributes y)

y2 ← read 5 (read LIST read Harmony Chord) (read MAYBE read Frame)
(read MAYBE read Offset) read Editorial
(read MAYBE read Staff) (childs y)

return (y1 , y2)
-- fail ’harmony’

show Harmony :: Harmony → [Content ()]
show Harmony ((a, b, c, d , e), (f , g , h, i , j)) =

show ELEMENT "harmony"

(show IMPLIED "type" show Harmony a ++ show Print Object b ++
show IMPLIED "print-frame" show Yes No c ++ show Print Style d ++
show Placement e)

(show LIST show Harmony Chord f ++ show MAYBE show Frame g ++
show MAYBE show Offset h ++ show Editorial i ++
show MAYBE show Staff j)

-- |
data Harmony = Harmony 1 | Harmony 2 | Harmony 3

deriving (Eq ,Show)
-- |

read Harmony :: Data.Char .String → Result Harmony
read Harmony "explicit" = return Harmony 1
read Harmony "implied" = return Harmony 2
read Harmony "alternate" = return Harmony 3
read Harmony x = fail x

-- |
show Harmony :: Harmony → Data.Char .String
show Harmony Harmony 1 = "explicit"

show Harmony Harmony 2 = "implied"

68

show Harmony Harmony 3 = "alternate"

A root is a pitch name like C, D, E, where a function is an indication like I, II, III. Root is generally
used with pop chord symbols, function with classical functional harmony. It is an either/or choice to avoid
data inconsistency. Function requires that the key be specified in the encoding.

The root element has a root-step and optional root-alter similar to the step and alter elements in a
pitch, but renamed to distinguish the different musical meanings. The root-step text element indicates
how the root should appear on the page if not using the element contents. In some chord styles, this will
include the root-alter information as well. In that case, the print-object attribute of the root-alter element
can be set to no. The root-alter location attribute indicates whether the alteration should appear to the
left or the right of the root-step; it is right by default.

-- |
type Root = (Root Step,Maybe Root Alter)

-- |
read Root :: STM Result [Content i] Root
read Root = do

y ← read ELEMENT "root"

read 2 read Root Step (read MAYBE read Root Alter) (childs y)
-- |

show Root :: Root → [Content ()]
show Root (a, b) =

show ELEMENT "root" []
(show Root Step a ++ show MAYBE show Root Alter b)

-- |
type Root Step = ((Maybe CDATA,Print Style),PCDATA)

-- |
read Root Step :: STM Result [Content i] Root Step
read Root Step = do

y ← read ELEMENT "root-step"

y1 ← read 2 (read IMPLIED "text" read CDATA)
read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Root Step :: Root Step → [Content ()]
show Root Step ((a, b), c) =

show ELEMENT "root-step"

(show IMPLIED "text" show CDATA a ++ show Print Style b)
(show PCDATA c)

-- |
type Root Alter = ((Print Object ,Print Style,Maybe Left Right),PCDATA)

-- |
read Root Alter :: STM Result [Content i] Root Alter
read Root Alter = do

y ← read ELEMENT "root-alter"

y1 ← read 3 read Print Object read Print Style
(read IMPLIED "location" read Left Right)
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Root Alter :: Root Alter → [Content ()]
show Root Alter ((a, b, c), d) =

show ELEMENT "root-alter"

(show Print Object a ++ show Print Style b ++
show IMPLIED "location" show Left Right c)

(show PCDATA d)
-- |

69

type Function = (Print Style,PCDATA)
-- |

read Function :: STM Result [Content i] Function
read Function = do

y ← read ELEMENT "function"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Function :: Function → [Content ()]
show Function (a, b) =

show ELEMENT "function" (show Print Style a) (show PCDATA b)

Kind indicates the type of chord. Degree elements can then add, subtract, or alter from these starting
points. Values include:

• Triads: major (major third, perfect fifth) minor (minor third, perfect fifth) augmented (major third,
augmented fifth) diminished (minor third, diminished fifth)

• Sevenths: dominant (major triad, minor seventh) major-seventh (major triad, major seventh) minor-
seventh (minor triad, minor seventh) diminished-seventh (diminished triad, diminished seventh)
augmented-seventh (augmented triad, minor seventh) half-diminished (diminished triad, minor sev-
enth) major-minor (minor triad, major seventh)

• Sixths: major-sixth (major triad, added sixth) minor-sixth (minor triad, added sixth)

• Ninths: dominant-ninth (dominant-seventh, major ninth) major-ninth (major-seventh, major ninth)
minor-ninth (minor-seventh, major ninth)

• 11ths (usually as the basis for alteration): dominant-11th (dominant-ninth, perfect 11th) major-11th
(major-ninth, perfect 11th) minor-11th (minor-ninth, perfect 11th)

• 13ths (usually as the basis for alteration): dominant-13th (dominant-11th, major 13th) major-13th
(major-11th, major 13th) minor-13th (minor-11th, major 13th)

• Suspended: suspended-second (major second, perfect fifth) suspended-fourth (perfect fourth, perfect
fifth)

• Functional sixths: Neapolitan Italian French German

• Other: pedal (pedal-point bass) power (perfect fifth) Tristan

The ”other” kind is used when the harmony is entirely composed of add elements. The ”none” kind
is used to explicitly encode absence of chords or functional harmony.

The attributes are used to indicate the formatting of the symbol. Since the kind element is the constant
in all the harmony-chord entities that can make up a polychord, many formatting attributes are here.

The use-symbols attribute is yes if the kind should be represented when possible with harmony symbols
rather than letters and numbers. These symbols include:

major: a triangle, like Unicode 25B3 minor: -, like Unicode 002D augmented: +, like Unicode 002B
diminished: Â◦, like Unicode 00B0 half-diminished: Ã ,̧ like Unicode 00F8

The text attribute describes how the kind should be spelled if not using symbols; it is ignored if
use-symbols is yes. The stack-degrees attribute is yes if the degree elements should be stacked above
each other. The parentheses-degrees attribute is yes if all the degrees should be in parentheses. The
bracket-degrees attribute is yes if all the degrees should be in a bracket. If not specified, these values are
implementation-specific. The alignment attributes are for the entire harmony-chord entity of which this
kind element is a part.

type Kind = ((Maybe Yes No,Maybe CDATA,
Maybe Yes No,Maybe Yes No,Maybe Yes No,
Print Style,Halign,Valign),PCDATA)

-- |
read Kind :: STM Result [Content i] Kind
read Kind = do

y ← read ELEMENT "kind"

y1 ← read 8 (read IMPLIED "use-symbols" read Yes No)

70

(read IMPLIED "text" read CDATA)
(read IMPLIED "stack-degrees" read Yes No)
(read IMPLIED "parentheses-degrees" read Yes No)
(read IMPLIED "bracket-degrees" read Yes No)
read Print Style read Halign read Valign (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Kind :: Kind → [Content ()]
show Kind ((a, b, c, d , e, f , g , h), i) =

show ELEMENT "kind"

(show IMPLIED "use-symbols" show Yes No a ++
show IMPLIED "text" show CDATA b ++
show IMPLIED "stack-degrees" show Yes No c ++
show IMPLIED "parentheses-degrees" show Yes No d ++
show IMPLIED "bracket-degrees" show Yes No e ++
show Print Style f ++ show Halign g ++ show Valign h) (show PCDATA i)

Inversion is a number indicating which inversion is used: 0 for root position, 1 for first inversion, etc.

type Inversion = (Print Style,PCDATA)
-- |

read Inversion :: STM Result [Content i] Inversion
read Inversion = do

y ← read ELEMENT "inversion"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Inversion :: Inversion → [Content ()]
show Inversion (a, b) =

show ELEMENT "inversion" (show Print Style a) (show PCDATA b)

Bass is used to indicate a bass note in popular music chord symbols, e.g. G/C. It is generally not used
in functional harmony, as inversion is generally not used in pop chord symbols. As with root, it is divided
into step and alter elements, similar to pitches. The attributes for bass-step and bass-alter work the same
way as the corresponding root-step and root-alter attributes.

-- |
type Bass = (Bass Step,Maybe Bass Alter)

-- |
read Bass :: STM Result [Content i] Bass
read Bass = do

y ← read ELEMENT "bass"

read 2 read Bass Step (read MAYBE read Bass Alter) (childs y)
-- |

show Bass :: Bass → [Content ()]
show Bass (a, b) =

show ELEMENT "bass" []
(show Bass Step a ++ show MAYBE show Bass Alter b)

-- |
type Bass Step = ((Maybe CDATA,Print Style),PCDATA)

-- |
read Bass Step :: STM Result [Content i] Bass Step
read Bass Step = do

y ← read ELEMENT "bass-step"

y1 ← read 2 (read IMPLIED "text" read CDATA)
read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)

71

-- |
show Bass Step :: Bass Step → [Content ()]
show Bass Step ((a, b), c) =

show ELEMENT "bass-step"

(show IMPLIED "text" show CDATA a ++ show Print Style b)
(show PCDATA c)

-- |
type Bass Alter = ((Print Object ,Print Style,Maybe Bass Alter),PCDATA)

-- |
read Bass Alter :: STM Result [Content i] Bass Alter
read Bass Alter = do

y ← read ELEMENT "bass-alter"

y1 ← read 3 read Print Object read Print Style
(read IMPLIED "location" read Bass Alter) (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Bass Alter :: Bass Alter → [Content ()]
show Bass Alter ((a, b, c), d) =

show ELEMENT "bass-alter"

(show Print Object a ++ show Print Style b ++
show IMPLIED "location" show Bass Alter c)

(show PCDATA d)
-- | This is equivalent to left-right entity

data Bass Alter = Bass Alter 1 | Bass Alter 2
deriving (Eq ,Show)

-- |
read Bass Alter :: Data.Char .String → Result Bass Alter
read Bass Alter "left" = return Bass Alter 1
read Bass Alter "right" = return Bass Alter 2
read Bass Alter x = fail x

-- |
show Bass Alter :: Bass Alter → Data.Char .String
show Bass Alter Bass Alter 1 = "left"

show Bass Alter Bass Alter 2 = "right"

The degree element is used to add, alter, or subtract individual notes in the chord. The degree-value
element is a number indicating the degree of the chord (1 for the root, 3 for third, etc). The degree-alter
element is like the alter element in notes: 1 for sharp, -1 for flat, etc. The degree-type element can be add,
alter, or subtract. If the degree-type is alter or subtract, the degree-alter is relative to the degree already
in the chord based on its kind element. If the degree-type is add, the degree-alter is relative to a dominant
chord (major and perfect intervals except for a minor seventh). The print-object attribute can be used to
keep the degree from printing separately when it has already taken into account in the text attribute of
the kind element. The plus-minus attribute is used to indicate if plus and minus symbols should be used
instead of sharp and flat symbols to display the degree alteration; it is no by default. The degree-value
and degree-type text attributes specify how the value and type of the degree should be displayed.

A harmony of kind ”other” can be spelled explicitly by using a series of degree elements together with
a root.

-- |
type Degree = (Print Object , (Degree Value,Degree Alter ,Degree Type))

-- |
read Degree :: STM Result [Content i] Degree
read Degree = do

y ← read ELEMENT "degree"

y1 ← read 1 read Print Object (attributes y)
y2 ← read 3 read Degree Value read Degree Alter

read Degree Type (childs y)
return (y1 , y2)

72

-- |
show Degree :: Degree → [Content ()]
show Degree (a, (b, c, d)) =

show ELEMENT "degree"

(show Print Object a)
(show Degree Value b ++ show Degree Alter c ++

show Degree Type d)
-- |

type Degree Value = ((Maybe CDATA,Print Style),PCDATA)
-- |

read Degree Value :: STM Result [Content i] Degree Value
read Degree Value = do

y ← read ELEMENT "degree-value"

y1 ← read 2 (read IMPLIED "text" read CDATA)
read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Degree Value :: Degree Value → [Content ()]
show Degree Value ((a, b), c) =

show ELEMENT "degree-value"

(show IMPLIED "type" show CDATA a ++ show Print Style b)
(show PCDATA c)

-- |
type Degree Alter = ((Print Style,Maybe Yes No),PCDATA)

-- |
read Degree Alter :: STM Result [Content i] Degree Alter
read Degree Alter = do

y ← read ELEMENT "degree-alter"

y1 ← read 2 read Print Style
(read IMPLIED "plus-minus" read Yes No) (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Degree Alter :: Degree Alter → [Content ()]
show Degree Alter ((a, b), c) =

show ELEMENT "degree-alter"

(show Print Style a ++ show IMPLIED "plus-minus" show Yes No b)
(show PCDATA c)

-- |
type Degree Type = ((Maybe CDATA,Print Style),PCDATA)

-- |
read Degree Type :: STM Result [Content i] Degree Type
read Degree Type = do

y ← read ELEMENT "degree-type"

y1 ← read 2 (read IMPLIED "text" read CDATA)
read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Degree Type :: Degree Type → [Content ()]
show Degree Type ((a, b), c) =

show ELEMENT "degree-type"

(show IMPLIED "type" show CDATA a ++ show Print Style b)
(show PCDATA c)

The frame element represents a frame or fretboard diagram used together with a chord symbol. The
representation is based on the NIFF guitar grid with additional information. The frame-strings and
frame-frets elements give the overall size of the frame in vertical lines (strings) and horizontal spaces

73

(frets). The first-fret indicates which fret is shown in the top space of the frame; it is fret 1 if the element
is not present. The optional text attribute indicates how this is represented in the fret diagram, while the
location attribute indicates whether the text appears to the left or right of the frame. The frame-note
element represents each note included in the frame. The definitions for string, fret, and fingering are
found in the common.mod file. An open string will have a fret value of 0, while a muted string will not
be associated with a frame-note element.

-- |
type Frame =

((Position,Color ,Halign,Valign,Maybe Tenths,Maybe Tenths),
(Frame Strings,Frame Frets,Maybe First Fret , [Frame Note]))
-- |

read Frame :: Eq i ⇒ STM Result [Content i] Frame
read Frame = do

y ← read ELEMENT "frame"

y1 ← read 6 read Position read Color read Halign read Valign
(read IMPLIED "height" read Tenths)
(read IMPLIED "width" read Tenths) (attributes y)

y2 ← read 4 read Frame Strings read Frame Frets
(read MAYBE read First Fret)
(read LIST read Frame Note) (childs y)

return (y1 , y2)
-- |

show Frame :: Frame → [Content ()]
show Frame ((a, b, c, d , e, f), (g , h, i , j)) =

show ELEMENT "frame"

(show Position a ++ show Color b ++ show Halign c ++
show Valign d ++ show IMPLIED "height" show Tenths e ++
show IMPLIED "width" show Tenths f)

(show Frame Strings g ++ show Frame Frets h ++
show MAYBE show First Fret i ++ show LIST show Frame Note j)

-- |
type Frame Strings = PCDATA

-- |
read Frame Strings :: STM Result [Content i] Frame Strings
read Frame Strings = do

y ← read ELEMENT "frame-strings"

read 1 read PCDATA (childs y)
-- |

show Frame Strings :: Frame Strings → [Content ()]
show Frame Strings a = show ELEMENT "frame-strings" [] (show PCDATA a)

-- |
type Frame Frets = PCDATA

-- |
read Frame Frets :: STM Result [Content i] Frame Frets
read Frame Frets = do

y ← read ELEMENT "frame-frets"

read 1 read PCDATA (childs y)
-- |

show Frame Frets :: Frame Frets → [Content ()]
show Frame Frets a = show ELEMENT "frame-frets" [] (show PCDATA a)

-- |
type First Fret = ((Maybe CDATA,Maybe Left Right),PCDATA)

-- |
read First Fret :: STM Result [Content i] First Fret
read First Fret = do

y ← read ELEMENT "first-fret"

y1 ← read 2 (read IMPLIED "text" read CDATA)
(read IMPLIED "location" read Left Right) (attributes y)

74

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show First Fret :: First Fret → [Content ()]
show First Fret ((a, b), c) =

show ELEMENT "first-fret"

(show IMPLIED "text" show CDATA a ++
show IMPLIED "location" show Left Right b)

(show PCDATA c)
-- |

type Frame Note = (String ,Fret ,Maybe Fingering ,Maybe Barre)
-- |

read Frame Note :: STM Result [Content i] Frame Note
read Frame Note = do

y ← read ELEMENT "frame-note"

read 4 read String read Fret (read MAYBE read Fingering)
(read MAYBE read Barre) (childs y)

-- |
show Frame Note :: Frame Note → [Content ()]
show Frame Note (a, b, c, d) =

show ELEMENT "frame-note" []
(show String a ++ show Fret b ++

show MAYBE show Fingering c ++ show MAYBE show Barre d)

The barre element indicates placing a finger over multiple strings on a single fret. The type is ”start”
for the lowest pitched string (e.g., the string with the highest MusicXML number) and is ”stop” for the
highest pitched string.

-- |
type Barre = ((Start Stop,Color), ())

-- |
read Barre :: STM Result [Content i] Barre
read Barre = do

y ← read ELEMENT "barre"

y1 ← read 2 (read REQUIRED "type" read Start Stop)
read Color (attributes y)

return (y1 , ())
-- |

show Barre :: Barre → [Content ()]
show Barre ((a, b),) =

show ELEMENT "barre"

(show REQUIRED "type" show Start Stop a ++ show Color b) []

The grouping element is used for musical analysis. When the element type is ”start” or ”single”, it
usually contains one or more feature elements. The number attribute is used for distinguishing between
overlapping and hierarchical groupings. The member-of attribute allows for easy distinguishing of what
grouping elements are in what hierarchy. Feature elements contained within a ”stop” type of grouping may
be ignored.

This element is flexible to allow for non-standard analyses. Future versions of the MusicXML format
may add elements that can represent more standardized categories of analysis data, allowing for easier
data sharing.

-- |
type Grouping = ((Start Stop Single,CDATA,Maybe CDATA), [Feature])

-- |
read Grouping :: Eq i ⇒ STM Result [Content i] Grouping
read Grouping = do

y ← read ELEMENT "grouping"

y1 ← read 3 (read REQUIRED "type" read Start Stop Single)
(read DEFAULT "number" read CDATA "1")

75

(read IMPLIED "member-of" read CDATA)
(attributes y)

y2 ← read 1 (read LIST read Feature) (childs y)
return (y1 , y2)
-- |

show Grouping :: Grouping → [Content ()]
show Grouping ((a, b, c), d) =

show ELEMENT "grouping" (show REQUIRED "type" show Start Stop Single a ++
show DEFAULT "number" show CDATA b ++
show IMPLIED "member-of" show CDATA c)
(show LIST show Feature d)

-- |
type Feature = (Maybe CDATA,PCDATA)

-- |
read Feature :: STM Result [Content i] Feature
read Feature = do

y ← read ELEMENT "feature"

y1 ← read 1 (read IMPLIED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Feature :: Feature → [Content ()]
show Feature (a, b) =

show ELEMENT "feature" (show IMPLIED "type" show CDATA a)
(show PCDATA b)

The print element contains general printing parameters, including the layout elements defined in the
layout.mod file. The part-name-display and part-abbreviation-display elements used in the score.mod file
may also be used here to change how a part name or abbreviation is displayed over the course of a piece.
They take effect when the current measure or a succeeding measure starts a new system.

The new-system and new-page attributes indicate whether to force a system or page break, or to force
the current music onto the same system or page as the preceding music. Normally this is the first music
data within a measure. If used in multi-part music, they should be placed in the same positions within
each part, or the results are undefined. The page-number attribute sets the number of a new page; it is
ignored if new-page is not ”yes”. Version 2.0 adds a blank-page attribute. This is a positive integer value
that specifies the number of blank pages to insert before the current measure. It is ignored if new-page is
not ”yes”. These blank pages have no music, but may have text or images specified by the credit element.
This is used to allow a combination of pages that are all text, or all text and images, together with pages
of music.

Staff spacing between multiple staves is measured in tenths of staff lines (e.g. 100 = 10 staff lines).
This is deprecated as of Version 1.1; the staff-layout element should be used instead. If both are present,
the staff-layout values take priority.

Layout elements in a print statement only apply to the current page, system, staff, or measure. Music
that follows continues to take the default values from the layout included in the defaults element.

-- |
type Print = ((Maybe Tenths,Maybe Yes No,Maybe Yes No,

Maybe CDATA,Maybe CDATA),
(Maybe Page Layout ,Maybe System Layout , [Staff Layout],
Maybe Measure Layout ,Maybe Measure Numbering ,Maybe Part Name Display ,
Maybe Part Abbreviation Display))
-- |

read Print :: Eq i ⇒ STM Result [Content i] Print
read Print = do

y ← read ELEMENT "print"

y1 ← read 5 (read IMPLIED "staff-spacing" read Tenths)
(read IMPLIED "new-system" read Yes No)
(read IMPLIED "new-page" read Yes No)
(read IMPLIED "blank-page" read CDATA)

76

(read IMPLIED "page-number" read CDATA) (attributes y)
y2 ← read 7 (read MAYBE read Page Layout) (read MAYBE read System Layout)

(read LIST read Staff Layout) (read MAYBE read Measure Layout)
(read MAYBE read Measure Numbering)
(read MAYBE read Part Name Display)
(read MAYBE read Part Abbreviation Display) (childs y)

return (y1 , y2)
-- |

show Print :: Print → [Content ()]
show Print ((a, b, c, d , e), (f , g , h, i , j , k , l)) =

show ELEMENT "print"

(show IMPLIED "staff-spacing" show Tenths a ++
show IMPLIED "new-system" show Yes No b ++
show IMPLIED "new-page" show Yes No c ++
show IMPLIED "blank-page" show CDATA d ++
show IMPLIED "page-number" show CDATA e)

(show MAYBE show Page Layout f ++ show MAYBE show System Layout g ++
show LIST show Staff Layout h ++ show MAYBE show Measure Layout i ++
show MAYBE show Measure Numbering j ++
show MAYBE show Part Name Display k ++
show MAYBE show Part Abbreviation Display l)

The measure-numbering element describes how measure numbers are displayed on this part. Values
may be none, measure, or system. The number attribute from the measure element is used for printing.
Measures with an implicit attribute set to ”yes”never display a measure number, regardless of the measure-
numbering setting.

-- |
type Measure Numbering = (Print Style,PCDATA)

-- |
read Measure Numbering :: Eq i ⇒ STM Result [Content i] Measure Numbering
read Measure Numbering = do

y ← read ELEMENT "measure-numbering"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Measure Numbering :: Measure Numbering → [Content ()]
show Measure Numbering (a, b) =

show ELEMENT "measure-numbering"

(show Print Style a) (show PCDATA b)

The sound element contains general playback parameters. They can stand alone within a part/measure,
or be a component element within a direction.

Tempo is expressed in quarter notes per minute. If 0, the sound-generating program should prompt
the user at the time of compiling a sound (MIDI) file.

Dynamics (or MIDI velocity) are expressed as a percentage of the default forte value (90 for MIDI
1.0).

Dacapo indicates to go back to the beginning of the movement. When used it always has the value
”yes”.

Segno and dalsegno are used for backwards jumps to a segno sign; coda and tocoda are used for forward
jumps to a coda sign. If there are multiple jumps, the value of these parameters can be used to name and
distinguish them. If segno or coda is used, the divisions attribute can also be used to indicate the number
of divisions per quarter note. Otherwise sound and MIDI generating programs may have to recompute
this.

By default, a dalsegno or dacapo attribute indicates that the jump should occur the first time through,
while a tocoda attribute indicates the jump should occur the second time through. The time that jumps
occur can be changed by using the time-only attribute.

Forward-repeat is used when a forward repeat sign is implied, and usually follows a bar line. When
used it always has the value of ”yes”.

77

The fine attribute follows the final note or rest in a movement with a da capo or dal segno direction.
If numeric, the value represents the actual duration of the final note or rest, which can be ambiguous in
written notation and different among parts and voices. The value may also be ”yes” to indicate no change
to the final duration.

If the sound element applies only one time through a repeat, the time-only attribute indicates which
time to apply the sound element.

Pizzicato in a sound element effects all following notes. Yes indicates pizzicato, no indicates arco.
The pan and elevation attributes are deprecated in Version 2.0. The pan and elevation elements in

the midi-instrument element should be used instead. The meaning of the pan and elevation attributes is
the same as for the pan and elevation elements. If both are present, the mid-instrument elements take
priority.

The damper-pedal, soft-pedal, and sostenuto-pedal attributes effect playback of the three common
piano pedals and their MIDI controller equivalents. The yes value indicates the pedal is depressed; no
indicates the pedal is released. A numeric value from 0 to 100 may also be used for half pedaling. This
value is the percentage that the pedal is depressed. A value of 0 is equivalent to no, and a value of 100 is
equivalent to yes.

MIDI instruments are changed using the midi-instrument element defined in the common.mod file.
The offset element is used to indicate that the sound takes place offset from the current score position.

If the sound element is a child of a direction element, the sound offset element overrides the direction
offset element if both elements are present. Note that the offset reflects the intended musical position
for the change in sound. It should not be used to compensate for latency issues in particular hardware
configurations.

-- ** Sound
-- |

type Sound = ((Maybe CDATA,Maybe CDATA,Maybe Yes No,
Maybe CDATA,Maybe CDATA,Maybe CDATA,
Maybe CDATA,Maybe CDATA,Maybe Yes No,
Maybe CDATA,Maybe CDATA,Maybe Yes No,
Maybe CDATA,Maybe CDATA,Maybe Yes No Number ,
Maybe Yes No Number ,Maybe Yes No Number),
([Midi Instrument],Maybe Offset))
-- |

read Sound :: Eq i ⇒ STM Result [Content i] Sound
read Sound = do

y ← read ELEMENT "sound"

y1 ← read 17 (read IMPLIED "tempo" read CDATA)
(read IMPLIED "dynamics" read CDATA)
(read IMPLIED "dacapo" read Yes No)
(read IMPLIED "segno" read CDATA)
(read IMPLIED "dalsegno" read CDATA)
(read IMPLIED "coda" read CDATA)
(read IMPLIED "tocoda" read CDATA)
(read IMPLIED "divisions" read CDATA)
(read IMPLIED "forward-repeat" read Yes No)
(read IMPLIED "fine" read CDATA)
(read IMPLIED "time-only" read CDATA)
(read IMPLIED "pizzicato" read Yes No)
(read IMPLIED "pan" read CDATA)
(read IMPLIED "elevation" read CDATA)
(read IMPLIED "damper-pedal" read Yes No Number)
(read IMPLIED "soft-pedal" read Yes No Number)
(read IMPLIED "sostenuto-pedal" read Yes No Number)
(attributes y)

y2 ← read 2 (read LIST read Midi Instrument)
(read MAYBE read Offset) (childs y)

return (y1 , y2)
-- |

show Sound :: Sound → [Content ()]

78

show Sound ((a, b, c, d , e, f , g , h, i , j , k , l ,m,n, o, p, q), (r , s)) =
show ELEMENT "sound" (show IMPLIED "tempo" show CDATA a ++

show IMPLIED "dynamics" show CDATA b ++
show IMPLIED "dacapo" show Yes No c ++
show IMPLIED "segno" show CDATA d ++
show IMPLIED "dalsegno" show CDATA e ++
show IMPLIED "coda" show CDATA f ++
show IMPLIED "tocoda" show CDATA g ++
show IMPLIED "divisions" show CDATA h ++
show IMPLIED "forward-repeat" show Yes No i ++
show IMPLIED "fine" show CDATA j ++
show IMPLIED "time-only" show CDATA k ++
show IMPLIED "pizzicato" show Yes No l ++
show IMPLIED "pan" show CDATA m ++
show IMPLIED "elevation" show CDATA n ++
show IMPLIED "damper-pedal" show Yes No Number o ++
show IMPLIED "soft-pedal" show Yes No Number p ++
show IMPLIED "sostenuto-pedal" show Yes No Number q)

(show LIST show Midi Instrument r ++
show MAYBE show Offset s)

2.6 Identity

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Identity where
import Text .XML.MusicXML.Common
import Text .XML.HaXml .Types (Content)
import Control .Monad (MonadPlus (. .))
import Prelude (Maybe,Monad (. .),Functor (. .),Show ,Eq , (·), (++))

The identify DTD module contains the identification element and its children, containing metadata
about a score.

Identification contains basic metadata about the score. It includes the information in MuseData
headers that may apply at a score-wide, movement-wide, or part-wide level. The creator, rights, source,
and relation elements are based on Dublin Core.

-- * Identification
-- |

type Identification = ([Creator], [Rights],Maybe Encoding ,
Maybe Source, [Relation],Maybe Miscellaneous)
-- |

read Identification :: Eq i ⇒ STM Result [Content i] Identification
read Identification = do

y ← read ELEMENT "identification"

read 6 (read LIST read Creator) (read LIST read Rights)
(read MAYBE read Encoding) (read MAYBE read Source)
(read LIST read Relation) (read MAYBE read Miscellaneous)
(childs y)

-- |
show Identification :: Identification → [Content ()]
show Identification (a, b, c, d , e, f) =

79

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Identity where
import Text.XML.MusicXML.Common
import Text.XML.HaXml.Types (Content)
import Control.Monad (MonadPlus(..))
import Prelude (Maybe, Monad(..), Functor(..), Show, Eq, (.), (++))
\end{code}

\begin{musicxml}
	The identify DTD module contains the identification
	element and its children, containing metadata about a
	score.

	Identification contains basic metadata about the score.
	It includes the information in MuseData headers that
	may apply at a score-wide, movement-wide, or part-wide
	level. The creator, rights, source, and relation elements
	are based on Dublin Core.
\end{musicxml}
\begin{code}
-- * Identification
-- |
type Identification = ([Creator], [Rights], Maybe Encoding,
 Maybe Source, [Relation], Maybe Miscellaneous)
-- |
read_Identification :: Eq i => STM Result [Content i] Identification
read_Identification = do
 y <- read_ELEMENT "identification"
 read_6 (read_LIST read_Creator) (read_LIST read_Rights)
 (read_MAYBE read_Encoding) (read_MAYBE read_Source)
 (read_LIST read_Relation) (read_MAYBE read_Miscellaneous)
 (childs y)
-- |
show_Identification :: Identification -> [Content ()]
show_Identification (a,b,c,d,e,f) =
 show_ELEMENT "identification" []
 (show_LIST show_Creator a ++ show_LIST show_Rights b ++
 show_MAYBE show_Encoding c ++ show_MAYBE show_Source d ++
 show_LIST show_Relation e ++ show_MAYBE show_Miscellaneous f)
-- |
update_Identification :: ([Software], Encoding_Date) -> Identification -> Identification
update_Identification x (a,b,c,d,e,f) = (a, b, fmap (update_Encoding x) c, d, e, f)
\end{code}

\begin{musicxml}
	The creator element is borrowed from Dublin Core. It is
	used for the creators of the score. The type attribute is
	used to distinguish different creative contributions. Thus,
	there can be multiple creators within an identification.
	Standard type values are composer, lyricist, and arranger.
	Other type values may be used for different types of
	creative roles. The type attribute should usually be used
	even if there is just a single creator element. The MusicXML
	format does not use the creator / contributor distinction
	from Dublin Core.
\end{musicxml}
\begin{code}
-- ** Creator
-- |
type Creator = (Maybe CDATA, PCDATA)
-- |
read_Creator :: Eq i => STM Result [Content i] Creator
read_Creator = do
 y <- read_ELEMENT "creator"
 y1 <- read_1 (read_IMPLIED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Creator :: Creator -> [Content ()]
show_Creator (a,b) =
 show_ELEMENT "creator" (show_IMPLIED "type" show_CDATA a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	Rights is borrowed from Dublin Core. It contains
	copyright and other intellectual property notices.
	Words, music, and derivatives can have different types,
	so multiple rights tags with different type attributes
	are supported. Standard type values are music, words,
	and arrangement, but other types may be used. The
	type attribute is only needed when there are multiple
	rights elements.
\end{musicxml}
\begin{code}
-- ** Rights
-- |
type Rights = (Maybe CDATA, CDATA)
-- |
read_Rights :: Eq i => STM Result [Content i] Rights
read_Rights = do
 y <- read_ELEMENT "rights"
 y1 <- read_1 (read_IMPLIED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Rights :: Rights -> [Content ()]
show_Rights (a,b) =
 show_ELEMENT "rights" (show_IMPLIED "type" show_CDATA a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	Encoding contains information about who did the digital
	encoding, when, with what software, and in what aspects.
	Standard type values for the encoder element are music,
	words, and arrangement, but other types may be used. The
	type attribute is only needed when there are multiple
	encoder elements.

	The supports element indicates if the encoding supports
	a particular MusicXML element. This is recommended for
	elements like beam, stem, and accidental, where the
	absence of an element is ambiguous if you do not know
	if the encoding supports that element. For Version 2.0,
	the supports element is expanded to allow programs to
	indicate support for particular attributes or particular
	values. This lets applications communicate, for example,
	that all system and/or page breaks are contained in the
	MusicXML file.
\end{musicxml}
\begin{code}
-- ** Encoding
-- |
type Encoding = [Encoding_]
-- |
read_Encoding :: Eq i => STM Result [Content i] Encoding
read_Encoding = do
 y <- read_ELEMENT "encoding"
 read_1 (read_LIST read_Encoding_) (childs y)
-- |
show_Encoding :: Encoding -> [Content ()]
show_Encoding a = show_ELEMENT "encoding" [] (show_LIST show_Encoding_ a)
-- |
update_Encoding :: ([Software], Encoding_Date) -> Encoding -> Encoding
update_Encoding (s,d) _ = (Encoding_1 d) : (fmap Encoding_3 s)
-- |
data Encoding_ = Encoding_1 Encoding_Date
 | Encoding_2 Encoder
 | Encoding_3 Software
 | Encoding_4 Encoding_Description
 | Encoding_5 Supports
 deriving (Eq, Show)
-- |
read_Encoding_ :: Eq i => STM Result [Content i] Encoding_
read_Encoding_ =
 (read_Encoding_Date >>= return . Encoding_1) `mplus`
 (read_Encoder >>= return . Encoding_2) `mplus`
 (read_Software >>= return . Encoding_3) `mplus`
 (read_Encoding_Description >>= return . Encoding_4) `mplus`
 (read_Supports >>= return . Encoding_5)
-- |
show_Encoding_ :: Encoding_ -> [Content ()]
show_Encoding_ (Encoding_1 a) = show_Encoding_Date a
show_Encoding_ (Encoding_2 a) = show_Encoder a
show_Encoding_ (Encoding_3 a) = show_Software a
show_Encoding_ (Encoding_4 a) = show_Encoding_Description a
show_Encoding_ (Encoding_5 a) = show_Supports a
-- |
type Encoding_Date = YYYY_MM_DD
-- |
read_Encoding_Date :: Eq i => STM Result [Content i] Encoding_Date
read_Encoding_Date = do
 y <- read_ELEMENT "encoding-date"
 read_1 (read_YYYY_MM_DD) (childs y)
-- |
show_Encoding_Date :: Encoding_Date -> [Content ()]
show_Encoding_Date a =
 show_ELEMENT "encoding-date" [] (show_YYYY_MM_DD a)
-- |
type Encoder = (Maybe CDATA, PCDATA)
-- |
read_Encoder :: Eq i => STM Result [Content i] Encoder
read_Encoder = do
 y <- read_ELEMENT "encoder"
 y1 <- read_1 (read_IMPLIED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Encoder :: Encoder -> [Content ()]
show_Encoder (a,b) =
 show_ELEMENT "encoder" (show_IMPLIED "type" show_CDATA a)
 (show_PCDATA b)
-- |
type Software = PCDATA
-- |
read_Software :: Eq i => STM Result [Content i] Software
read_Software = do
 y <- read_ELEMENT "software"
 read_1 read_PCDATA (childs y)
-- |
show_Software :: Software -> [Content ()]
show_Software a = show_ELEMENT "software" [] (show_PCDATA a)
-- |
type Encoding_Description = PCDATA
-- |
read_Encoding_Description :: STM Result [Content i] Encoding_Description
read_Encoding_Description = do
 y <- read_ELEMENT "encoding-description"
 read_1 read_PCDATA (childs y)
-- |
show_Encoding_Description :: Encoding_Description -> [Content ()]
show_Encoding_Description a =
 show_ELEMENT "encoding-description" [] (show_PCDATA a)
-- |
type Supports = ((Yes_No, CDATA, Maybe CDATA, Maybe CDATA), ())
-- |
read_Supports :: Eq i => STM Result [Content i] Supports
read_Supports = do
 y <- read_ELEMENT "supports"
 y1 <- read_4 (read_REQUIRED "type" read_Yes_No)
 (read_REQUIRED "element" read_CDATA)
 (read_IMPLIED "attribute" read_CDATA)
 (read_IMPLIED "value" read_CDATA) (attributes y)
 return (y1,())
-- |
show_Supports :: Supports -> [Content ()]
show_Supports ((a,b,c,d),_) =
 show_ELEMENT "supports" (show_REQUIRED "type" show_Yes_No a ++
 show_REQUIRED "element" show_CDATA b ++
 show_IMPLIED "attribute" show_CDATA c ++
 show_IMPLIED "value" show_CDATA d) []
\end{code}

\begin{musicxml}
	The source for the music that is encoded. This is similar
	to the Dublin Core source element.
\end{musicxml}
\begin{code}
-- ** Source
-- |
type Source = PCDATA
-- |
read_Source :: STM Result [Content i] Source
read_Source = do
 y <- read_ELEMENT "source"
 read_1 read_PCDATA (childs y)
-- |
show_Source :: Source -> [Content ()]
show_Source a = show_ELEMENT "source" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	A related resource for the music that is encoded. This is
	similar to the Dublin Core relation element. Standard type
	values are music, words, and arrangement, but other
	types may be used.
\end{musicxml}
\begin{code}
-- ** Relation
-- |
type Relation = (Maybe CDATA, CDATA)
-- |
read_Relation :: STM Result [Content i] Relation
read_Relation = do
 y <- read_ELEMENT "relation"
 y1 <- read_1 (read_IMPLIED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Relation :: Relation -> [Content ()]
show_Relation (a,b) =
 show_ELEMENT "relation" (show_IMPLIED "type" show_CDATA a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	If a program has other metadata not yet supported in the
	MusicXML format, it can go in the miscellaneous area.
\end{musicxml}
\begin{code}
-- ** Miscellaneous
-- |
type Miscellaneous = [Miscellaneous_Field]
-- |
read_Miscellaneous :: Eq i => STM Result [Content i] Miscellaneous
read_Miscellaneous = do
 y <- read_ELEMENT "miscellaneous"
 read_1 (read_LIST read_Miscellaneous_Field) (childs y)
-- |
show_Miscellaneous :: Miscellaneous -> [Content ()]
show_Miscellaneous a =
 show_ELEMENT "miscellaneous" []
 (show_LIST show_Miscellaneous_Field a)
-- |
type Miscellaneous_Field = (CDATA, PCDATA)
-- |
read_Miscellaneous_Field :: STM Result [Content i] Miscellaneous_Field
read_Miscellaneous_Field = do
 y <- read_ELEMENT "miscellaneous-field"
 y1 <- read_1 (read_REQUIRED "name" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Miscellaneous_Field :: Miscellaneous_Field -> [Content ()]
show_Miscellaneous_Field (a,b) =
 show_ELEMENT "miscellaneous-field"
 (show_REQUIRED "name" show_CDATA a)
 (show_PCDATA b)
\end{code}

show ELEMENT "identification" []
(show LIST show Creator a ++ show LIST show Rights b ++

show MAYBE show Encoding c ++ show MAYBE show Source d ++
show LIST show Relation e ++ show MAYBE show Miscellaneous f)

-- |
update Identification :: ([Software],Encoding Date)→ Identification → Identification
update Identification x (a, b, c, d , e, f) = (a, b, fmap (update Encoding x) c, d , e, f)

The creator element is borrowed from Dublin Core. It is used for the creators of the score. The type
attribute is used to distinguish different creative contributions. Thus, there can be multiple creators within
an identification. Standard type values are composer, lyricist, and arranger. Other type values may be
used for different types of creative roles. The type attribute should usually be used even if there is just
a single creator element. The MusicXML format does not use the creator / contributor distinction from
Dublin Core.

-- ** Creator
-- |

type Creator = (Maybe CDATA,PCDATA)
-- |

read Creator :: Eq i ⇒ STM Result [Content i] Creator
read Creator = do

y ← read ELEMENT "creator"

y1 ← read 1 (read IMPLIED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Creator :: Creator → [Content ()]
show Creator (a, b) =

show ELEMENT "creator" (show IMPLIED "type" show CDATA a)
(show PCDATA b)

Rights is borrowed from Dublin Core. It contains copyright and other intellectual property notices.
Words, music, and derivatives can have different types, so multiple rights tags with different type attributes
are supported. Standard type values are music, words, and arrangement, but other types may be used.
The type attribute is only needed when there are multiple rights elements.

-- ** Rights
-- |

type Rights = (Maybe CDATA,CDATA)
-- |

read Rights :: Eq i ⇒ STM Result [Content i] Rights
read Rights = do

y ← read ELEMENT "rights"

y1 ← read 1 (read IMPLIED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Rights :: Rights → [Content ()]
show Rights (a, b) =

show ELEMENT "rights" (show IMPLIED "type" show CDATA a)
(show PCDATA b)

Encoding contains information about who did the digital encoding, when, with what software, and in
what aspects. Standard type values for the encoder element are music, words, and arrangement, but other
types may be used. The type attribute is only needed when there are multiple encoder elements.

The supports element indicates if the encoding supports a particular MusicXML element. This is
recommended for elements like beam, stem, and accidental, where the absence of an element is ambiguous
if you do not know if the encoding supports that element. For Version 2.0, the supports element is expanded
to allow programs to indicate support for particular attributes or particular values. This lets applications
communicate, for example, that all system and/or page breaks are contained in the MusicXML file.

80

-- ** Encoding
-- |

type Encoding = [Encoding]
-- |

read Encoding :: Eq i ⇒ STM Result [Content i] Encoding
read Encoding = do

y ← read ELEMENT "encoding"

read 1 (read LIST read Encoding) (childs y)
-- |

show Encoding :: Encoding → [Content ()]
show Encoding a = show ELEMENT "encoding" [] (show LIST show Encoding a)

-- |
update Encoding :: ([Software],Encoding Date)→ Encoding → Encoding
update Encoding (s, d) = (Encoding 1 d) : (fmap Encoding 3 s)

-- |
data Encoding = Encoding 1 Encoding Date
| Encoding 2 Encoder
| Encoding 3 Software
| Encoding 4 Encoding Description
| Encoding 5 Supports
deriving (Eq ,Show)

-- |
read Encoding :: Eq i ⇒ STM Result [Content i] Encoding
read Encoding =

(read Encoding Date >>= return · Encoding 1) ‘mplus‘
(read Encoder >>= return · Encoding 2) ‘mplus‘
(read Software >>= return · Encoding 3) ‘mplus‘
(read Encoding Description >>= return · Encoding 4) ‘mplus‘
(read Supports >>= return · Encoding 5)
-- |

show Encoding :: Encoding → [Content ()]
show Encoding (Encoding 1 a) = show Encoding Date a
show Encoding (Encoding 2 a) = show Encoder a
show Encoding (Encoding 3 a) = show Software a
show Encoding (Encoding 4 a) = show Encoding Description a
show Encoding (Encoding 5 a) = show Supports a

-- |
type Encoding Date = YYYY MM DD

-- |
read Encoding Date :: Eq i ⇒ STM Result [Content i] Encoding Date
read Encoding Date = do

y ← read ELEMENT "encoding-date"

read 1 (read YYYY MM DD) (childs y)
-- |

show Encoding Date :: Encoding Date → [Content ()]
show Encoding Date a =

show ELEMENT "encoding-date" [] (show YYYY MM DD a)
-- |

type Encoder = (Maybe CDATA,PCDATA)
-- |

read Encoder :: Eq i ⇒ STM Result [Content i] Encoder
read Encoder = do

y ← read ELEMENT "encoder"

y1 ← read 1 (read IMPLIED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Encoder :: Encoder → [Content ()]

81

show Encoder (a, b) =
show ELEMENT "encoder" (show IMPLIED "type" show CDATA a)

(show PCDATA b)
-- |

type Software = PCDATA
-- |

read Software :: Eq i ⇒ STM Result [Content i] Software
read Software = do

y ← read ELEMENT "software"

read 1 read PCDATA (childs y)
-- |

show Software :: Software → [Content ()]
show Software a = show ELEMENT "software" [] (show PCDATA a)

-- |
type Encoding Description = PCDATA

-- |
read Encoding Description :: STM Result [Content i] Encoding Description
read Encoding Description = do

y ← read ELEMENT "encoding-description"

read 1 read PCDATA (childs y)
-- |

show Encoding Description :: Encoding Description → [Content ()]
show Encoding Description a =

show ELEMENT "encoding-description" [] (show PCDATA a)
-- |

type Supports = ((Yes No,CDATA,Maybe CDATA,Maybe CDATA), ())
-- |

read Supports :: Eq i ⇒ STM Result [Content i] Supports
read Supports = do

y ← read ELEMENT "supports"

y1 ← read 4 (read REQUIRED "type" read Yes No)
(read REQUIRED "element" read CDATA)
(read IMPLIED "attribute" read CDATA)
(read IMPLIED "value" read CDATA) (attributes y)

return (y1 , ())
-- |

show Supports :: Supports → [Content ()]
show Supports ((a, b, c, d),) =

show ELEMENT "supports" (show REQUIRED "type" show Yes No a ++
show REQUIRED "element" show CDATA b ++
show IMPLIED "attribute" show CDATA c ++
show IMPLIED "value" show CDATA d) []

The source for the music that is encoded. This is similar to the Dublin Core source element.

-- ** Source
-- |

type Source = PCDATA
-- |

read Source :: STM Result [Content i] Source
read Source = do

y ← read ELEMENT "source"

read 1 read PCDATA (childs y)
-- |

show Source :: Source → [Content ()]
show Source a = show ELEMENT "source" [] (show PCDATA a)

A related resource for the music that is encoded. This is similar to the Dublin Core relation element.
Standard type values are music, words, and arrangement, but other types may be used.

82

-- ** Relation
-- |

type Relation = (Maybe CDATA,CDATA)
-- |

read Relation :: STM Result [Content i] Relation
read Relation = do

y ← read ELEMENT "relation"

y1 ← read 1 (read IMPLIED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Relation :: Relation → [Content ()]
show Relation (a, b) =

show ELEMENT "relation" (show IMPLIED "type" show CDATA a)
(show PCDATA b)

If a program has other metadata not yet supported in the MusicXML format, it can go in the miscel-
laneous area.

-- ** Miscellaneous
-- |

type Miscellaneous = [Miscellaneous Field]
-- |

read Miscellaneous :: Eq i ⇒ STM Result [Content i] Miscellaneous
read Miscellaneous = do

y ← read ELEMENT "miscellaneous"

read 1 (read LIST read Miscellaneous Field) (childs y)
-- |

show Miscellaneous :: Miscellaneous → [Content ()]
show Miscellaneous a =

show ELEMENT "miscellaneous" []
(show LIST show Miscellaneous Field a)

-- |
type Miscellaneous Field = (CDATA,PCDATA)

-- |
read Miscellaneous Field :: STM Result [Content i] Miscellaneous Field
read Miscellaneous Field = do

y ← read ELEMENT "miscellaneous-field"

y1 ← read 1 (read REQUIRED "name" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Miscellaneous Field :: Miscellaneous Field → [Content ()]
show Miscellaneous Field (a, b) =

show ELEMENT "miscellaneous-field"

(show REQUIRED "name" show CDATA a)
(show PCDATA b)

2.7 Layout

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Layout where

83

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Layout where
import Text.XML.MusicXML.Common hiding (Tenths, read_Tenths, show_Tenths)
import Text.XML.HaXml.Types (Content)
import Prelude (Maybe(..), Show, Eq, String, Monad(..),(++))
\end{code}

\begin{musicxml}
	Version 1.1 of the MusicXML format added layout information
	for pages, systems, staffs, and measures. These layout
	elements joined the print and sound elements in providing
	formatting data as elements rather than attributes.

	Everything is measured in tenths of staff space. Tenths are
	then scaled to millimeters within the scaling element, used
	in the defaults element at the start of a score. Individual
	staves can apply a scaling factor to adjust staff size.
	When a MusicXML element or attribute refers to tenths,
	it means the global tenths defined by the scaling element,
	not the local tenths as adjusted by the staff-size element.

	Margins, page sizes, and distances are all measured in
	tenths to keep MusicXML data in a consistent coordinate
	system as much as possible. The translation to absolute
	units is done in the scaling element, which specifies
	how many millimeters are equal to how many tenths. For
	a staff height of 7 mm, millimeters would be set to 7
	while tenths is set to 40. The ability to set a formula
	rather than a single scaling factor helps avoid roundoff
	errors.
\end{musicxml}
\begin{code}
-- |
type Scaling = (Millimeters, Tenths)
-- |
read_Scaling :: Eq i => STM Result [Content i] Scaling
read_Scaling = do
 y <- read_ELEMENT "scaling"
 read_2 read_Millimeters read_Tenths (childs y)
-- |
show_Scaling :: Scaling -> [Content ()]
show_Scaling (a,b) =
 show_ELEMENT "scaling" [] (show_Millimeters a ++ show_Tenths b)
-- |
type Millimeters = PCDATA
-- |
read_Millimeters :: Eq i => STM Result [Content i] Millimeters
read_Millimeters = do
 y <- read_ELEMENT "millimeters"
 read_1 read_PCDATA (childs y)
-- |
show_Millimeters :: Millimeters -> [Content ()]
show_Millimeters a = show_ELEMENT "millimeters" [] (show_PCDATA a)
-- |
type Tenths = Layout_Tenths
-- |
read_Tenths :: Eq i => STM Result [Content i] Tenths
read_Tenths = do
 y <- read_ELEMENT "tenths"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Tenths :: Tenths -> [Content ()]
show_Tenths a = show_ELEMENT "tenths" [] (show_Layout_Tenths a)
\end{code}

\begin{musicxml}
	Margin elements are included within many of the larger
	layout elements.
\end{musicxml}
\begin{code}
-- |
type Left_Margin = Layout_Tenths
-- |
read_Left_Margin :: STM Result [Content i] Left_Margin
read_Left_Margin = do
 y <- read_ELEMENT "left-margin"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Left_Margin :: Left_Margin -> [Content ()]
show_Left_Margin a = show_ELEMENT "left-margin" [] (show_Layout_Tenths a)
-- |
type Right_Margin = Layout_Tenths
-- |
read_Right_Margin :: STM Result [Content i] Right_Margin
read_Right_Margin = do
 y <- read_ELEMENT "right-margin"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Right_Margin :: Right_Margin -> [Content ()]
show_Right_Margin a = show_ELEMENT "right-margin" [] (show_Layout_Tenths a)
-- |
type Top_Margin = Layout_Tenths
-- |
read_Top_Margin :: STM Result [Content i] Top_Margin
read_Top_Margin = do
 y <- read_ELEMENT "top-margin"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Top_Margin :: Top_Margin -> [Content ()]
show_Top_Margin a = show_ELEMENT "top-margin" [] (show_Layout_Tenths a)
-- |
type Bottom_Margin = Layout_Tenths
-- |
read_Bottom_Margin :: STM Result [Content i] Bottom_Margin
read_Bottom_Margin = do
 y <- read_ELEMENT "bottom-margin"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Bottom_Margin :: Bottom_Margin -> [Content ()]
show_Bottom_Margin a = show_ELEMENT "bottom-margin" [] (show_Layout_Tenths a)
\end{code}

\begin{musicxml}
	Page layout can be defined both in score-wide defaults
	and in the print element. Page margins are specified either
	for both even and odd pages, or via separate odd and even
	page number values. The type is not needed when used as
	part of a print element. If omitted when used in the
	defaults element, "both" is the default.
\end{musicxml}
\begin{code}
-- |
type Page_Layout = (Maybe (Page_Height, Page_Width),
 Maybe (Page_Margins, Maybe Page_Margins))
-- |
read_Page_Layout :: Eq i => STM Result [Content i] Page_Layout
read_Page_Layout = do
 y <- read_ELEMENT "page-layout"
 read_2 (read_MAYBE read_Page_Layout_aux1)
 (read_MAYBE read_Page_Layout_aux2) (childs y)
-- |
show_Page_Layout :: Page_Layout -> [Content ()]
show_Page_Layout (a,b) =
 show_ELEMENT "page-layout" [] (show_MAYBE show_Page_Layout_aux1 a ++
 show_MAYBE show_Page_Layout_aux2 b)
-- |
read_Page_Layout_aux1 :: Eq i => STM Result [Content i] (Page_Height, Page_Width)
read_Page_Layout_aux1 = do
 y1 <- read_Page_Height
 y2 <- read_Page_Width
 return (y1,y2)
-- |
show_Page_Layout_aux1 :: (Page_Height, Page_Width) -> [Content ()]
show_Page_Layout_aux1 (a,b) = show_Page_Height a ++ show_Page_Width b
-- |
read_Page_Layout_aux2 :: Eq i =>
 STM Result [Content i] (Page_Margins, Maybe Page_Margins)
read_Page_Layout_aux2 = do
 y1 <- read_Page_Margins
 y2 <- read_MAYBE read_Page_Margins
 return (y1,y2)
-- |
show_Page_Layout_aux2 :: (Page_Margins, Maybe Page_Margins) -> [Content ()]
show_Page_Layout_aux2 (a,b) =
 show_Page_Margins a ++ show_MAYBE show_Page_Margins b
-- |
type Page_Height = Layout_Tenths
-- |
read_Page_Height :: Eq i => STM Result [Content i] Page_Height
read_Page_Height = do
 y <- read_ELEMENT "page-height"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Page_Height :: Page_Height -> [Content ()]
show_Page_Height a = show_ELEMENT "page-height" [] (show_Layout_Tenths a)
-- |
type Page_Width = Layout_Tenths
-- |
read_Page_Width :: Eq i => STM Result [Content i] Page_Width
read_Page_Width = do
 y <- read_ELEMENT "page-width"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Page_Width :: Page_Width -> [Content ()]
show_Page_Width a = show_ELEMENT "page-width" [] (show_Layout_Tenths a)
-- |
type Page_Margins = (Maybe Page_Margins_,
 (Left_Margin, Right_Margin, Top_Margin, Bottom_Margin))
-- |
read_Page_Margins :: Eq i => STM Result [Content i] Page_Margins
read_Page_Margins = do
 y <- read_ELEMENT "page-margins"
 y1 <- read_1 (read_IMPLIED "type" read_Page_Margins_) (attributes y)
 y2 <- read_4 read_Left_Margin read_Right_Margin
 read_Top_Margin read_Bottom_Margin (childs y)
 return (y1,y2)
-- |
show_Page_Margins :: Page_Margins -> [Content ()]
show_Page_Margins (a,(b,c,d,e)) =
 show_ELEMENT "page-margins" (show_IMPLIED "type" show_Page_Margins_ a)
 (show_Left_Margin b ++ show_Right_Margin c ++
 show_Top_Margin d ++ show_Bottom_Margin e)
-- |
data Page_Margins_ = Page_Margins_1 | Page_Margins_2 | Page_Margins_3
 deriving (Eq, Show)
-- |
read_Page_Margins_ :: Prelude.String -> Result Page_Margins_
read_Page_Margins_ "odd" = return Page_Margins_1
read_Page_Margins_ "even" = return Page_Margins_2
read_Page_Margins_ "both" = return Page_Margins_3
read_Page_Margins_ x = fail x
-- |
show_Page_Margins_ :: Page_Margins_ -> Prelude.String
show_Page_Margins_ Page_Margins_1 = "odd"
show_Page_Margins_ Page_Margins_2 = "even"
show_Page_Margins_ Page_Margins_3 = "both"
\end{code}

\begin{musicxml}
	System layout includes left and right margins and the
	vertical distance from the previous system. Margins are
	relative to the page margins. Positive values indent and
	negative values reduce the margin size. The system
	distance is measured from the bottom line of the previous
	system to the top line of the current system. It is ignored
	for the first system on a page. The top system distance
	is measured from the page's top margin to the top line
	of the first system. It is ignored for all but the first
	system on a page.

	Sometimes the sum of measure widths in a system may not
	equal the system width specified by the layout elements due
	to roundoff or other errors. The behavior when reading
	MusicXML files in these cases is application-dependent.
	For instance, applications may find that the system layout
	data is more reliable than the sum of the measure widths,
	and adjust the measure widths accordingly.
\end{musicxml}
\begin{code}
-- |
type System_Layout = (Maybe System_Margins,
 Maybe System_Distance, Maybe Top_System_Distance)
-- |
read_System_Layout :: STM Result [Content i] System_Layout
read_System_Layout = do
 y <- read_ELEMENT "system-layout"
 read_3 (read_MAYBE read_System_Margins)
 (read_MAYBE read_System_Distance)
 (read_MAYBE read_Top_System_Distance)
 (childs y)
-- |
show_System_Layout :: System_Layout -> [Content ()]
show_System_Layout (a,b,c) =
 show_ELEMENT "system-layout" []
 (show_MAYBE show_System_Margins a ++
 show_MAYBE show_System_Distance b ++
 show_MAYBE show_Top_System_Distance c)
-- |
type System_Margins = (Left_Margin, Right_Margin)
-- |
read_System_Margins :: STM Result [Content i] System_Margins
read_System_Margins = do
 y <- read_ELEMENT "system-margins"
 read_2 read_Left_Margin read_Right_Margin (childs y)
-- |
show_System_Margins :: System_Margins -> [Content ()]
show_System_Margins (a,b) =
 show_ELEMENT "system-margins" []
 (show_Left_Margin a ++ show_Right_Margin b)
-- |
type System_Distance = Layout_Tenths
-- |
read_System_Distance :: STM Result [Content i] System_Distance
read_System_Distance = do
 y <- read_ELEMENT "system-distance"
 read_1 read_Layout_Tenths (childs y)
-- |
show_System_Distance :: System_Distance -> [Content ()]
show_System_Distance a =
 show_ELEMENT "system-distance" [] (show_Layout_Tenths a)
-- |
type Top_System_Distance = Layout_Tenths
-- |
read_Top_System_Distance :: STM Result [Content i] Top_System_Distance
read_Top_System_Distance = do
 y <- read_ELEMENT "top-system-distance"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Top_System_Distance :: Top_System_Distance -> [Content ()]
show_Top_System_Distance a =
 show_ELEMENT "top-system-distance" [] (show_Layout_Tenths a)

\end{code}

\begin{musicxml}
	Staff layout includes the vertical distance from the bottom
	line of the previous staff in this system to the top line
	of the staff specified by the number attribute. The
	optional number attribute refers to staff numbers within
	the part, from top to bottom on the system. A value of 1
	is assumed if not present. When used in the defaults
	element, the values apply to all parts. This value is
	ignored for the first staff in a system.
\end{musicxml}
\begin{code}
-- |
type Staff_Layout = (Maybe CDATA, Maybe Staff_Distance)
-- |
read_Staff_Layout :: STM Result [Content i] Staff_Layout
read_Staff_Layout = do
 y <- read_ELEMENT "staff-layout"
 y1 <- read_1 (read_IMPLIED "number" read_CDATA) (attributes y)
 y2 <- read_1 (read_MAYBE read_Staff_Distance) (childs y)
 return (y1,y2)
-- |
show_Staff_Layout :: Staff_Layout -> [Content ()]
show_Staff_Layout (a,b) =
 show_ELEMENT "staff-layout"
 (show_IMPLIED "number" show_CDATA a)
 (show_MAYBE show_Staff_Distance b)
-- |
type Staff_Distance = Layout_Tenths
-- |
read_Staff_Distance :: STM Result [Content i] Staff_Distance
read_Staff_Distance = do
 y <- read_ELEMENT "staff-distance"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Staff_Distance :: Staff_Distance -> [Content ()]
show_Staff_Distance a =
 show_ELEMENT "staff-distance" [] (show_Layout_Tenths a)
\end{code}

\begin{musicxml}
	Measure layout includes the horizontal distance from the
	previous measure. This value is only used for systems
	where there is horizontal whitespace in the middle of a
	system, as in systems with codas. To specify the measure
	width, use the width attribute of the measure element.
\end{musicxml}
\begin{code}
-- |
type Measure_Layout = Maybe Measure_Distance
-- |
read_Measure_Layout :: Eq i => STM Result [Content i] Measure_Layout
read_Measure_Layout = do
 y <- read_ELEMENT "measure-layout"
 read_1 (read_MAYBE read_Measure_Distance) (childs y)
-- |
show_Measure_Layout :: Measure_Layout -> [Content ()]
show_Measure_Layout a =
 show_ELEMENT "measure-layout" [] (show_MAYBE show_Measure_Distance a)
-- |
type Measure_Distance = Layout_Tenths
-- |
read_Measure_Distance :: Eq i => STM Result [Content i] Measure_Distance
read_Measure_Distance = do
 y <- read_ELEMENT "measure-distance"
 read_1 read_Layout_Tenths (childs y)
-- |
show_Measure_Distance :: Measure_Distance -> [Content ()]
show_Measure_Distance a =
 show_ELEMENT "measure-distance" [] (show_Layout_Tenths a)
\end{code}

\begin{musicxml}
	The appearance element controls general graphical
	settings for the music's final form appearance on a
	printed page of display. Currently this includes support
	for line widths and definitions for note sizes, plus an
	extension element for other aspects of appearance.

	The line-width element indicates the width of a line type
	in tenths. The type attribute defines what type of line is
	being defined. Values include beam, bracket, dashes,
	enclosure, ending, extend, heavy barline, leger,
	light barline, octave shift, pedal, slur middle, slur tip,
	staff, stem, tie middle, tie tip, tuplet bracket, and
	wedge. The text content is expressed in tenths.

	The note-size element indicates the percentage of the
	regular note size to use for notes with a cue and large
	size as defined in the type element. The grace type is
	used for notes of cue size that that include a grace
	element. The cue type is used for all other notes with
	cue size, whether defined explicitly or implicitly via a
	cue element. The large type is used for notes of large
	size. The text content represent the numeric percentage.
	A value of 100 would be identical to the size of a regular
	note as defined by the music font.

	The other-appearance element is used to define any
	graphical settings not yet in the current version of the
	MusicXML format. This allows extended representation,
	though without application interoperability.
\end{musicxml}
\begin{code}
-- |
type Appearance = ([Line_Width],[Note_Size],[Other_Appearance])
-- |
read_Appearance :: Eq i => STM Result [Content i] Appearance
read_Appearance = do
 y <- read_ELEMENT "appearance"
 read_3 (read_LIST read_Line_Width) (read_LIST read_Note_Size)
 (read_LIST read_Other_Appearance) (childs y)
-- |
show_Appearance :: Appearance -> [Content ()]
show_Appearance (a,b,c) =
 show_ELEMENT "appearance" [] (show_LIST show_Line_Width a ++
 show_LIST show_Note_Size b ++
 show_LIST show_Other_Appearance c)
-- |
type Line_Width = (CDATA, Layout_Tenths)
-- |
read_Line_Width :: STM Result [Content i] Line_Width
read_Line_Width = do
 y <- read_ELEMENT "line-width"
 y1 <- read_1 (read_REQUIRED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_Layout_Tenths (childs y)
 return (y1,y2)
-- |
show_Line_Width :: Line_Width -> [Content ()]
show_Line_Width (a,b) =
 show_ELEMENT "line-width" (show_REQUIRED "type" show_CDATA a)
 (show_Layout_Tenths b)
-- |
type Note_Size = (Note_Size_, PCDATA)
-- |
read_Note_Size :: STM Result [Content i] Note_Size
read_Note_Size = do
 y <- read_ELEMENT "note-size"
 y1 <- read_1 (read_REQUIRED "type" read_Note_Size_) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Note_Size :: Note_Size -> [Content ()]
show_Note_Size (a,b) =
 show_ELEMENT "note-size" (show_REQUIRED "type" show_Note_Size_ a)
 (show_PCDATA b)
-- |
data Note_Size_ = Note_Size_1 | Note_Size_2 | Note_Size_3
 deriving (Eq, Show)
-- |
read_Note_Size_ :: Prelude.String -> Result Note_Size_
read_Note_Size_ "cue" = return Note_Size_1
read_Note_Size_ "grace" = return Note_Size_2
read_Note_Size_ "large" = return Note_Size_3
read_Note_Size_ x = fail x
-- |
show_Note_Size_ :: Note_Size_ -> Prelude.String
show_Note_Size_ Note_Size_1 = "cue"
show_Note_Size_ Note_Size_2 = "grace"
show_Note_Size_ Note_Size_3 = "large"
-- |
type Other_Appearance = (CDATA, PCDATA)
-- |
read_Other_Appearance :: STM Result [Content i] Other_Appearance
read_Other_Appearance = do
 y <- read_ELEMENT "other-appearance"
 y1 <- read_1 (read_REQUIRED "type" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Other_Appearance :: Other_Appearance -> [Content ()]
show_Other_Appearance (a,b) =
 show_ELEMENT "other-appearance" (show_REQUIRED "type" show_CDATA a)
 (show_PCDATA b)
\end{code}

import Text .XML.MusicXML.Common hiding (Tenths, read Tenths, show Tenths)
import Text .XML.HaXml .Types (Content)
import Prelude (Maybe (. .),Show ,Eq ,String ,Monad (. .), (++))

Version 1.1 of the MusicXML format added layout information for pages, systems, staffs, and measures.
These layout elements joined the print and sound elements in providing formatting data as elements rather
than attributes.

Everything is measured in tenths of staff space. Tenths are then scaled to millimeters within the
scaling element, used in the defaults element at the start of a score. Individual staves can apply a scaling
factor to adjust staff size. When a MusicXML element or attribute refers to tenths, it means the global
tenths defined by the scaling element, not the local tenths as adjusted by the staff-size element.

Margins, page sizes, and distances are all measured in tenths to keep MusicXML data in a consistent
coordinate system as much as possible. The translation to absolute units is done in the scaling element,
which specifies how many millimeters are equal to how many tenths. For a staff height of 7 mm, millimeters
would be set to 7 while tenths is set to 40. The ability to set a formula rather than a single scaling factor
helps avoid roundoff errors.

-- |
type Scaling = (Millimeters,Tenths)

-- |
read Scaling :: Eq i ⇒ STM Result [Content i] Scaling
read Scaling = do

y ← read ELEMENT "scaling"

read 2 read Millimeters read Tenths (childs y)
-- |

show Scaling :: Scaling → [Content ()]
show Scaling (a, b) =

show ELEMENT "scaling" [] (show Millimeters a ++ show Tenths b)
-- |

type Millimeters = PCDATA
-- |

read Millimeters :: Eq i ⇒ STM Result [Content i] Millimeters
read Millimeters = do

y ← read ELEMENT "millimeters"

read 1 read PCDATA (childs y)
-- |

show Millimeters :: Millimeters → [Content ()]
show Millimeters a = show ELEMENT "millimeters" [] (show PCDATA a)

-- |
type Tenths = Layout Tenths

-- |
read Tenths :: Eq i ⇒ STM Result [Content i] Tenths
read Tenths = do

y ← read ELEMENT "tenths"

read 1 read Layout Tenths (childs y)
-- |

show Tenths :: Tenths → [Content ()]
show Tenths a = show ELEMENT "tenths" [] (show Layout Tenths a)

Margin elements are included within many of the larger layout elements.

-- |
type Left Margin = Layout Tenths

-- |
read Left Margin :: STM Result [Content i] Left Margin
read Left Margin = do

y ← read ELEMENT "left-margin"

read 1 read Layout Tenths (childs y)
-- |

show Left Margin :: Left Margin → [Content ()]

84

show Left Margin a = show ELEMENT "left-margin" [] (show Layout Tenths a)
-- |

type Right Margin = Layout Tenths
-- |

read Right Margin :: STM Result [Content i] Right Margin
read Right Margin = do

y ← read ELEMENT "right-margin"

read 1 read Layout Tenths (childs y)
-- |

show Right Margin :: Right Margin → [Content ()]
show Right Margin a = show ELEMENT "right-margin" [] (show Layout Tenths a)

-- |
type Top Margin = Layout Tenths

-- |
read Top Margin :: STM Result [Content i] Top Margin
read Top Margin = do

y ← read ELEMENT "top-margin"

read 1 read Layout Tenths (childs y)
-- |

show Top Margin :: Top Margin → [Content ()]
show Top Margin a = show ELEMENT "top-margin" [] (show Layout Tenths a)

-- |
type Bottom Margin = Layout Tenths

-- |
read Bottom Margin :: STM Result [Content i] Bottom Margin
read Bottom Margin = do

y ← read ELEMENT "bottom-margin"

read 1 read Layout Tenths (childs y)
-- |

show Bottom Margin :: Bottom Margin → [Content ()]
show Bottom Margin a = show ELEMENT "bottom-margin" [] (show Layout Tenths a)

Page layout can be defined both in score-wide defaults and in the print element. Page margins are
specified either for both even and odd pages, or via separate odd and even page number values. The type
is not needed when used as part of a print element. If omitted when used in the defaults element, ”both”
is the default.

-- |
type Page Layout = (Maybe (Page Height ,Page Width),

Maybe (Page Margins,Maybe Page Margins))
-- |

read Page Layout :: Eq i ⇒ STM Result [Content i] Page Layout
read Page Layout = do

y ← read ELEMENT "page-layout"

read 2 (read MAYBE read Page Layout aux1)
(read MAYBE read Page Layout aux2) (childs y)

-- |
show Page Layout :: Page Layout → [Content ()]
show Page Layout (a, b) =

show ELEMENT "page-layout" [] (show MAYBE show Page Layout aux1 a ++
show MAYBE show Page Layout aux2 b)

-- |
read Page Layout aux1 :: Eq i ⇒ STM Result [Content i] (Page Height ,Page Width)
read Page Layout aux1 = do

y1 ← read Page Height
y2 ← read Page Width
return (y1 , y2)
-- |

show Page Layout aux1 :: (Page Height ,Page Width)→ [Content ()]

85

show Page Layout aux1 (a, b) = show Page Height a ++ show Page Width b
-- |

read Page Layout aux2 :: Eq i ⇒
STM Result [Content i] (Page Margins,Maybe Page Margins)

read Page Layout aux2 = do
y1 ← read Page Margins
y2 ← read MAYBE read Page Margins
return (y1 , y2)
-- |

show Page Layout aux2 :: (Page Margins,Maybe Page Margins)→ [Content ()]
show Page Layout aux2 (a, b) =

show Page Margins a ++ show MAYBE show Page Margins b
-- |

type Page Height = Layout Tenths
-- |

read Page Height :: Eq i ⇒ STM Result [Content i] Page Height
read Page Height = do

y ← read ELEMENT "page-height"

read 1 read Layout Tenths (childs y)
-- |

show Page Height :: Page Height → [Content ()]
show Page Height a = show ELEMENT "page-height" [] (show Layout Tenths a)

-- |
type Page Width = Layout Tenths

-- |
read Page Width :: Eq i ⇒ STM Result [Content i] Page Width
read Page Width = do

y ← read ELEMENT "page-width"

read 1 read Layout Tenths (childs y)
-- |

show Page Width :: Page Width → [Content ()]
show Page Width a = show ELEMENT "page-width" [] (show Layout Tenths a)

-- |
type Page Margins = (Maybe Page Margins ,

(Left Margin,Right Margin,Top Margin,Bottom Margin))
-- |

read Page Margins :: Eq i ⇒ STM Result [Content i] Page Margins
read Page Margins = do

y ← read ELEMENT "page-margins"

y1 ← read 1 (read IMPLIED "type" read Page Margins) (attributes y)
y2 ← read 4 read Left Margin read Right Margin

read Top Margin read Bottom Margin (childs y)
return (y1 , y2)
-- |

show Page Margins :: Page Margins → [Content ()]
show Page Margins (a, (b, c, d , e)) =

show ELEMENT "page-margins" (show IMPLIED "type" show Page Margins a)
(show Left Margin b ++ show Right Margin c ++

show Top Margin d ++ show Bottom Margin e)
-- |

data Page Margins = Page Margins 1 | Page Margins 2 | Page Margins 3
deriving (Eq ,Show)
-- |

read Page Margins :: Prelude.String → Result Page Margins
read Page Margins "odd" = return Page Margins 1
read Page Margins "even" = return Page Margins 2
read Page Margins "both" = return Page Margins 3
read Page Margins x = fail x

86

-- |
show Page Margins :: Page Margins → Prelude.String
show Page Margins Page Margins 1 = "odd"

show Page Margins Page Margins 2 = "even"

show Page Margins Page Margins 3 = "both"

System layout includes left and right margins and the vertical distance from the previous system.
Margins are relative to the page margins. Positive values indent and negative values reduce the margin
size. The system distance is measured from the bottom line of the previous system to the top line of the
current system. It is ignored for the first system on a page. The top system distance is measured from the
page’s top margin to the top line of the first system. It is ignored for all but the first system on a page.

Sometimes the sum of measure widths in a system may not equal the system width specified by the
layout elements due to roundoff or other errors. The behavior when reading MusicXML files in these cases
is application-dependent. For instance, applications may find that the system layout data is more reliable
than the sum of the measure widths, and adjust the measure widths accordingly.

-- |
type System Layout = (Maybe System Margins,

Maybe System Distance,Maybe Top System Distance)
-- |

read System Layout :: STM Result [Content i] System Layout
read System Layout = do

y ← read ELEMENT "system-layout"

read 3 (read MAYBE read System Margins)
(read MAYBE read System Distance)
(read MAYBE read Top System Distance)
(childs y)

-- |
show System Layout :: System Layout → [Content ()]
show System Layout (a, b, c) =

show ELEMENT "system-layout" []
(show MAYBE show System Margins a ++

show MAYBE show System Distance b ++
show MAYBE show Top System Distance c)

-- |
type System Margins = (Left Margin,Right Margin)

-- |
read System Margins :: STM Result [Content i] System Margins
read System Margins = do

y ← read ELEMENT "system-margins"

read 2 read Left Margin read Right Margin (childs y)
-- |

show System Margins :: System Margins → [Content ()]
show System Margins (a, b) =

show ELEMENT "system-margins" []
(show Left Margin a ++ show Right Margin b)

-- |
type System Distance = Layout Tenths

-- |
read System Distance :: STM Result [Content i] System Distance
read System Distance = do

y ← read ELEMENT "system-distance"

read 1 read Layout Tenths (childs y)
-- |

show System Distance :: System Distance → [Content ()]
show System Distance a =

show ELEMENT "system-distance" [] (show Layout Tenths a)
-- |

type Top System Distance = Layout Tenths

87

-- |
read Top System Distance :: STM Result [Content i] Top System Distance
read Top System Distance = do

y ← read ELEMENT "top-system-distance"

read 1 read Layout Tenths (childs y)
-- |

show Top System Distance :: Top System Distance → [Content ()]
show Top System Distance a =

show ELEMENT "top-system-distance" [] (show Layout Tenths a)

Staff layout includes the vertical distance from the bottom line of the previous staff in this system to
the top line of the staff specified by the number attribute. The optional number attribute refers to staff
numbers within the part, from top to bottom on the system. A value of 1 is assumed if not present. When
used in the defaults element, the values apply to all parts. This value is ignored for the first staff in a
system.

-- |
type Staff Layout = (Maybe CDATA,Maybe Staff Distance)

-- |
read Staff Layout :: STM Result [Content i] Staff Layout
read Staff Layout = do

y ← read ELEMENT "staff-layout"

y1 ← read 1 (read IMPLIED "number" read CDATA) (attributes y)
y2 ← read 1 (read MAYBE read Staff Distance) (childs y)
return (y1 , y2)
-- |

show Staff Layout :: Staff Layout → [Content ()]
show Staff Layout (a, b) =

show ELEMENT "staff-layout"

(show IMPLIED "number" show CDATA a)
(show MAYBE show Staff Distance b)

-- |
type Staff Distance = Layout Tenths

-- |
read Staff Distance :: STM Result [Content i] Staff Distance
read Staff Distance = do

y ← read ELEMENT "staff-distance"

read 1 read Layout Tenths (childs y)
-- |

show Staff Distance :: Staff Distance → [Content ()]
show Staff Distance a =

show ELEMENT "staff-distance" [] (show Layout Tenths a)

Measure layout includes the horizontal distance from the previous measure. This value is only used
for systems where there is horizontal whitespace in the middle of a system, as in systems with codas. To
specify the measure width, use the width attribute of the measure element.

-- |
type Measure Layout = Maybe Measure Distance

-- |
read Measure Layout :: Eq i ⇒ STM Result [Content i] Measure Layout
read Measure Layout = do

y ← read ELEMENT "measure-layout"

read 1 (read MAYBE read Measure Distance) (childs y)
-- |

show Measure Layout :: Measure Layout → [Content ()]
show Measure Layout a =

show ELEMENT "measure-layout" [] (show MAYBE show Measure Distance a)
-- |

type Measure Distance = Layout Tenths

88

-- |
read Measure Distance :: Eq i ⇒ STM Result [Content i] Measure Distance
read Measure Distance = do

y ← read ELEMENT "measure-distance"

read 1 read Layout Tenths (childs y)
-- |

show Measure Distance :: Measure Distance → [Content ()]
show Measure Distance a =

show ELEMENT "measure-distance" [] (show Layout Tenths a)

The appearance element controls general graphical settings for the music’s final form appearance on a
printed page of display. Currently this includes support for line widths and definitions for note sizes, plus
an extension element for other aspects of appearance.

The line-width element indicates the width of a line type in tenths. The type attribute defines what
type of line is being defined. Values include beam, bracket, dashes, enclosure, ending, extend, heavy
barline, leger, light barline, octave shift, pedal, slur middle, slur tip, staff, stem, tie middle, tie tip, tuplet
bracket, and wedge. The text content is expressed in tenths.

The note-size element indicates the percentage of the regular note size to use for notes with a cue and
large size as defined in the type element. The grace type is used for notes of cue size that that include
a grace element. The cue type is used for all other notes with cue size, whether defined explicitly or
implicitly via a cue element. The large type is used for notes of large size. The text content represent
the numeric percentage. A value of 100 would be identical to the size of a regular note as defined by the
music font.

The other-appearance element is used to define any graphical settings not yet in the current version of
the MusicXML format. This allows extended representation, though without application interoperability.

-- |
type Appearance = ([Line Width], [Note Size], [Other Appearance])

-- |
read Appearance :: Eq i ⇒ STM Result [Content i] Appearance
read Appearance = do

y ← read ELEMENT "appearance"

read 3 (read LIST read Line Width) (read LIST read Note Size)
(read LIST read Other Appearance) (childs y)

-- |
show Appearance :: Appearance → [Content ()]
show Appearance (a, b, c) =

show ELEMENT "appearance" [] (show LIST show Line Width a ++
show LIST show Note Size b ++
show LIST show Other Appearance c)

-- |
type Line Width = (CDATA,Layout Tenths)

-- |
read Line Width :: STM Result [Content i] Line Width
read Line Width = do

y ← read ELEMENT "line-width"

y1 ← read 1 (read REQUIRED "type" read CDATA) (attributes y)
y2 ← read 1 read Layout Tenths (childs y)
return (y1 , y2)
-- |

show Line Width :: Line Width → [Content ()]
show Line Width (a, b) =

show ELEMENT "line-width" (show REQUIRED "type" show CDATA a)
(show Layout Tenths b)

-- |
type Note Size = (Note Size ,PCDATA)

-- |
read Note Size :: STM Result [Content i] Note Size
read Note Size = do

89

y ← read ELEMENT "note-size"

y1 ← read 1 (read REQUIRED "type" read Note Size) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Note Size :: Note Size → [Content ()]
show Note Size (a, b) =

show ELEMENT "note-size" (show REQUIRED "type" show Note Size a)
(show PCDATA b)

-- |
data Note Size = Note Size 1 | Note Size 2 | Note Size 3

deriving (Eq ,Show)
-- |

read Note Size :: Prelude.String → Result Note Size
read Note Size "cue" = return Note Size 1
read Note Size "grace" = return Note Size 2
read Note Size "large" = return Note Size 3
read Note Size x = fail x

-- |
show Note Size :: Note Size → Prelude.String
show Note Size Note Size 1 = "cue"

show Note Size Note Size 2 = "grace"

show Note Size Note Size 3 = "large"

-- |
type Other Appearance = (CDATA,PCDATA)

-- |
read Other Appearance :: STM Result [Content i] Other Appearance
read Other Appearance = do

y ← read ELEMENT "other-appearance"

y1 ← read 1 (read REQUIRED "type" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Other Appearance :: Other Appearance → [Content ()]
show Other Appearance (a, b) =

show ELEMENT "other-appearance" (show REQUIRED "type" show CDATA a)
(show PCDATA b)

2.8 Link

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Link where
import Text .XML.MusicXML.Common
import Text .XML.HaXml .Types (Content ,Attribute)
import Prelude (Maybe,Show ,Eq ,Monad (. .),String , (++))

The link-attributes entity includes all the simple XLink attributes supported in the MusicXML for-
mat.

-- * XLink
-- |

90

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Link where
import Text.XML.MusicXML.Common
import Text.XML.HaXml.Types (Content, Attribute)
import Prelude (Maybe, Show, Eq, Monad(..), String, (++))
\end{code}

\begin{musicxml}
	The link-attributes entity includes all the simple XLink
	attributes supported in the MusicXML format.
\end{musicxml}
\begin{code}
-- * XLink
-- |
type Link_Attributes = (CDATA, CDATA, CDATA,
 Maybe CDATA, Maybe CDATA,
 Link_Attributes_A, Link_Attributes_B)
-- |
read_Link_Attributes :: STM Result [Attribute] Link_Attributes
read_Link_Attributes = do
 y1 <- read_FIXED "xmlns:xlink" read_CDATA "http://www.w3.org/1999/xlink"
 y2 <- read_REQUIRED "xlink:href" read_CDATA
 y3 <- read_FIXED "xlink:type" read_CDATA "simple"
 y4 <- read_IMPLIED "xlink:role" read_CDATA
 y5 <- read_IMPLIED "xlink:title" read_CDATA
 y6 <- read_DEFAULT "xlink:show" read_Link_Attributes_A Link_Attributes_2
 y7 <- read_DEFAULT "xlink:actuate" read_Link_Attributes_B Link_Attributes_6
 return (y1,y2,y3,y4,y5,y6,y7)
-- |
show_Link_Attributes :: Link_Attributes -> [Attribute]
show_Link_Attributes (a,b,c,d,e,f,g) =
 show_FIXED "xmlns:xlink" show_CDATA a ++
 show_REQUIRED "xlink:href" show_CDATA b ++
 show_FIXED "xlink:type" show_CDATA c ++
 show_IMPLIED "xlink:role" show_CDATA d ++
 show_IMPLIED "xlink:title" show_CDATA e ++
 show_DEFAULT "xlink:show" show_Link_Attributes_A f ++
 show_DEFAULT "xlink:actuate" show_Link_Attributes_B g
-- |
data Link_Attributes_A = Link_Attributes_1
 | Link_Attributes_2
 | Link_Attributes_3
 | Link_Attributes_4
 | Link_Attributes_5
 deriving (Eq, Show)
-- |
read_Link_Attributes_A :: Prelude.String -> Result Link_Attributes_A
read_Link_Attributes_A "new" = return Link_Attributes_1
read_Link_Attributes_A "replace" = return Link_Attributes_2
read_Link_Attributes_A "embed" = return Link_Attributes_3
read_Link_Attributes_A "other" = return Link_Attributes_4
read_Link_Attributes_A "none" = return Link_Attributes_5
read_Link_Attributes_A x = fail x
-- |
show_Link_Attributes_A :: Link_Attributes_A -> Prelude.String
show_Link_Attributes_A Link_Attributes_1 = "new"
show_Link_Attributes_A Link_Attributes_2 = "replace"
show_Link_Attributes_A Link_Attributes_3 = "embed"
show_Link_Attributes_A Link_Attributes_4 = "other"
show_Link_Attributes_A Link_Attributes_5 = "none"

-- |
data Link_Attributes_B = Link_Attributes_6
 | Link_Attributes_7
 | Link_Attributes_8
 | Link_Attributes_9
 deriving (Eq, Show)
-- |
read_Link_Attributes_B :: Prelude.String -> Result Link_Attributes_B
read_Link_Attributes_B "onRequest" = return Link_Attributes_6
read_Link_Attributes_B "onLoad" = return Link_Attributes_7
read_Link_Attributes_B "other" = return Link_Attributes_8
read_Link_Attributes_B "none" = return Link_Attributes_9
read_Link_Attributes_B x = fail x
-- |
show_Link_Attributes_B :: Link_Attributes_B -> Prelude.String
show_Link_Attributes_B Link_Attributes_6 = "onRequest"
show_Link_Attributes_B Link_Attributes_7 = "onLoad"
show_Link_Attributes_B Link_Attributes_8 = "other"
show_Link_Attributes_B Link_Attributes_9 = "none"
\end{code}

\begin{musicxml}
	The element and position attributes are new as of Version
	2.0. They allow for bookmarks and links to be positioned at
	higher resolution than the level of music-data elements.
	When no element and position attributes are present, the
	bookmark or link element refers to the next sibling element
	in the MusicXML file. The element attribute specifies an
	element type for a descendant of the next sibling element
	that is not a link or bookmark. The position attribute
	specifies the position of this descendant element, where
	the first position is 1. The position attribute is ignored
	if the element attribute is not present. For instance, an
	element value of "beam" and a position value of "2" defines
	the link or bookmark to refer to the second beam descendant
	of the next sibling element that is not a link or bookmark.
	This is equivalent to an XPath test of [.//beam[2]] done
	in the context of the sibling element.
\end{musicxml}
\begin{code}
-- * Link
-- |
type Link = ((Link_Attributes,
 Maybe CDATA, Maybe CDATA, Maybe CDATA, Position), ())
-- |
read_Link :: Eq i => STM Result [Content i] Link
read_Link = do
 y <- read_ELEMENT "link"
 y1 <- read_5 read_Link_Attributes (read_IMPLIED "name" read_CDATA)
 (read_IMPLIED "element" read_CDATA)
 (read_IMPLIED "position" read_CDATA)
 read_Position (attributes y)
 return (y1,())
-- |
show_Link :: Link -> [Content ()]
show_Link ((a,b,c,d,e),_) =
 show_ELEMENT "link" (show_Link_Attributes a ++
 show_IMPLIED "name" show_CDATA b ++
 show_IMPLIED "element" show_CDATA c ++
 show_IMPLIED "position" show_CDATA d ++
 show_Position e) []
-- * Bookmark
-- |
type Bookmark = ((ID, Maybe CDATA, Maybe CDATA, Maybe CDATA), ())
-- |
read_Bookmark :: Eq i => STM Result [Content i] Bookmark
read_Bookmark = do
 y <- read_ELEMENT "bookmark"
 y1 <- read_4 (read_REQUIRED "id" read_ID)
 (read_IMPLIED "name" read_CDATA)
 (read_IMPLIED "element" read_CDATA)
 (read_IMPLIED "position" read_CDATA)
 (attributes y)
 return (y1,())
-- |
show_Bookmark :: Bookmark -> [Content ()]
show_Bookmark ((a,b,c,d),_) =
 show_ELEMENT "bookmark" (show_REQUIRED "id" show_ID a ++
 show_IMPLIED "name" show_CDATA b ++
 show_IMPLIED "element" show_CDATA c ++
 show_IMPLIED "position" show_CDATA d) []
\end{code}

type Link Attributes = (CDATA,CDATA,CDATA,
Maybe CDATA,Maybe CDATA,
Link Attributes A,Link Attributes B)
-- |

read Link Attributes :: STM Result [Attribute] Link Attributes
read Link Attributes = do

y1 ← read FIXED "xmlns:xlink" read CDATA "http://www.w3.org/1999/xlink"

y2 ← read REQUIRED "xlink:href" read CDATA
y3 ← read FIXED "xlink:type" read CDATA "simple"

y4 ← read IMPLIED "xlink:role" read CDATA
y5 ← read IMPLIED "xlink:title" read CDATA
y6 ← read DEFAULT "xlink:show" read Link Attributes A Link Attributes 2
y7 ← read DEFAULT "xlink:actuate" read Link Attributes B Link Attributes 6
return (y1 , y2 , y3 , y4 , y5 , y6 , y7)
-- |

show Link Attributes :: Link Attributes → [Attribute]
show Link Attributes (a, b, c, d , e, f , g) =

show FIXED "xmlns:xlink" show CDATA a ++
show REQUIRED "xlink:href" show CDATA b ++
show FIXED "xlink:type" show CDATA c ++
show IMPLIED "xlink:role" show CDATA d ++
show IMPLIED "xlink:title" show CDATA e ++
show DEFAULT "xlink:show" show Link Attributes A f ++
show DEFAULT "xlink:actuate" show Link Attributes B g
-- |

data Link Attributes A = Link Attributes 1
| Link Attributes 2
| Link Attributes 3
| Link Attributes 4
| Link Attributes 5
deriving (Eq ,Show)

-- |
read Link Attributes A :: Prelude.String → Result Link Attributes A
read Link Attributes A "new" = return Link Attributes 1
read Link Attributes A "replace" = return Link Attributes 2
read Link Attributes A "embed" = return Link Attributes 3
read Link Attributes A "other" = return Link Attributes 4
read Link Attributes A "none" = return Link Attributes 5
read Link Attributes A x = fail x

-- |
show Link Attributes A :: Link Attributes A→ Prelude.String
show Link Attributes A Link Attributes 1 = "new"

show Link Attributes A Link Attributes 2 = "replace"

show Link Attributes A Link Attributes 3 = "embed"

show Link Attributes A Link Attributes 4 = "other"

show Link Attributes A Link Attributes 5 = "none"

-- |
data Link Attributes B = Link Attributes 6
| Link Attributes 7
| Link Attributes 8
| Link Attributes 9
deriving (Eq ,Show)

-- |
read Link Attributes B :: Prelude.String → Result Link Attributes B
read Link Attributes B "onRequest" = return Link Attributes 6
read Link Attributes B "onLoad" = return Link Attributes 7
read Link Attributes B "other" = return Link Attributes 8
read Link Attributes B "none" = return Link Attributes 9

91

read Link Attributes B x = fail x
-- |

show Link Attributes B :: Link Attributes B → Prelude.String
show Link Attributes B Link Attributes 6 = "onRequest"

show Link Attributes B Link Attributes 7 = "onLoad"

show Link Attributes B Link Attributes 8 = "other"

show Link Attributes B Link Attributes 9 = "none"

The element and position attributes are new as of Version 2.0. They allow for bookmarks and links to
be positioned at higher resolution than the level of music-data elements. When no element and position
attributes are present, the bookmark or link element refers to the next sibling element in the MusicXML
file. The element attribute specifies an element type for a descendant of the next sibling element that is
not a link or bookmark. The position attribute specifies the position of this descendant element, where the
first position is 1. The position attribute is ignored if the element attribute is not present. For instance,
an element value of ”beam” and a position value of ”2” defines the link or bookmark to refer to the second
beam descendant of the next sibling element that is not a link or bookmark. This is equivalent to an
XPath test of [.//beam[2]] done in the context of the sibling element.

-- * Link
-- |

type Link = ((Link Attributes,
Maybe CDATA,Maybe CDATA,Maybe CDATA,Position), ())
-- |

read Link :: Eq i ⇒ STM Result [Content i] Link
read Link = do

y ← read ELEMENT "link"

y1 ← read 5 read Link Attributes (read IMPLIED "name" read CDATA)
(read IMPLIED "element" read CDATA)
(read IMPLIED "position" read CDATA)
read Position (attributes y)

return (y1 , ())
-- |

show Link :: Link → [Content ()]
show Link ((a, b, c, d , e),) =

show ELEMENT "link" (show Link Attributes a ++
show IMPLIED "name" show CDATA b ++
show IMPLIED "element" show CDATA c ++
show IMPLIED "position" show CDATA d ++
show Position e) []

-- * Bookmark
-- |

type Bookmark = ((ID ,Maybe CDATA,Maybe CDATA,Maybe CDATA), ())
-- |

read Bookmark :: Eq i ⇒ STM Result [Content i] Bookmark
read Bookmark = do

y ← read ELEMENT "bookmark"

y1 ← read 4 (read REQUIRED "id" read ID)
(read IMPLIED "name" read CDATA)
(read IMPLIED "element" read CDATA)
(read IMPLIED "position" read CDATA)
(attributes y)

return (y1 , ())
-- |

show Bookmark :: Bookmark → [Content ()]
show Bookmark ((a, b, c, d),) =

show ELEMENT "bookmark" (show REQUIRED "id" show ID a ++
show IMPLIED "name" show CDATA b ++
show IMPLIED "element" show CDATA c ++
show IMPLIED "position" show CDATA d) []

92

2.9 MusicXML

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML (
module Text .XML.MusicXML,
module Text .XML.MusicXML.Common,
module Text .XML.MusicXML.Attributes,
module Text .XML.MusicXML.Identity ,
module Text .XML.MusicXML.Barline,
module Text .XML.MusicXML.Link ,
module Text .XML.MusicXML.Direction,
module Text .XML.MusicXML.Layout ,
module Text .XML.MusicXML.Note,
module Text .XML.MusicXML.Score,
module Text .XML.MusicXML.Partwise,
module Text .XML.MusicXML.Timewise,

) where
import Prelude (IO , Int ,String ,FilePath,

Monad (. .),Show (. .),Eq (. .),Ord (. .),
Maybe (. .),Bool (. .),
[·, ·],maybe, otherwise, fromEnum, π2,mapM ,
readFile,writeFile,
(·), (++), (+)) -- base package

import qualified Data.Map as · 7→ · -- containers package
import Control .Monad (MonadPlus (. .)) -- base package
import System.Time (CalendarTime (. .),

getClockTime, toCalendarTime) -- old-time package
import System.Directory (doesFileExist) -- directory package
import Text .PrettyPrint .HughesPJ -- pretty package
import Text .XML.HaXml .Types -- HaXml package
import Text .XML.HaXml .Parse (xmlParse ′) -- HaXml package
import Text .XML.HaXml .Pretty (document) -- HaXml package
import Text .XML.HaXml .Posn (Posn,noPos) -- HaXml package
import Text .XML.MusicXML.Common hiding

(Tenths, read Tenths, show Tenths,
Directive, read Directive, show Directive) -- MusicXML package

import Text .XML.MusicXML.Attributes -- MusicXML package
import Text .XML.MusicXML.Barline -- MusicXML package
import Text .XML.MusicXML.Link -- MusicXML package
import Text .XML.MusicXML.Direction -- MusicXML package
import Text .XML.MusicXML.Identity -- MusicXML package
import Text .XML.MusicXML.Layout -- MusicXML package
import Text .XML.MusicXML.Note -- MusicXML package
import Text .XML.MusicXML.Score hiding

(Opus, read Opus, show Opus) -- MusicXML package
import Text .XML.MusicXML.Partwise hiding

(doctype,Part , read Part , show Part ,
Measure, read Measure, show Measure) -- MusicXML package

import Text .XML.MusicXML.Timewise hiding
(doctype,Part , read Part , show Part ,

93

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML (
 module Text.XML.MusicXML,
 module Text.XML.MusicXML.Common,
 module Text.XML.MusicXML.Attributes,
 module Text.XML.MusicXML.Identity,
 module Text.XML.MusicXML.Barline,
 module Text.XML.MusicXML.Link,
 module Text.XML.MusicXML.Direction,
 module Text.XML.MusicXML.Layout,
 module Text.XML.MusicXML.Note,
 module Text.XML.MusicXML.Score,
 module Text.XML.MusicXML.Partwise,
 module Text.XML.MusicXML.Timewise,
) where
import Prelude (IO, Int, String, FilePath,
 Monad(..), Show(..), Eq(..), Ord(..),
 Maybe(..), Bool(..),
 either, maybe, otherwise, fromEnum, snd, mapM,
 readFile, writeFile,
 (.), (++), (+)) -- base package
import qualified Data.Map as Map -- containers package
import Control.Monad (MonadPlus(..)) -- base package
import System.Time (CalendarTime(..),
 getClockTime, toCalendarTime) -- old-time package
import System.Directory (doesFileExist) -- directory package
import Text.PrettyPrint.HughesPJ -- pretty package
import Text.XML.HaXml.Types -- HaXml package
import Text.XML.HaXml.Parse (xmlParse') -- HaXml package
import Text.XML.HaXml.Pretty (document) -- HaXml package
import Text.XML.HaXml.Posn (Posn, noPos) -- HaXml package
import Text.XML.MusicXML.Common hiding
 (Tenths, read_Tenths, show_Tenths,
 Directive, read_Directive, show_Directive) -- MusicXML package
import Text.XML.MusicXML.Attributes -- MusicXML package
import Text.XML.MusicXML.Barline -- MusicXML package
import Text.XML.MusicXML.Link -- MusicXML package
import Text.XML.MusicXML.Direction -- MusicXML package
import Text.XML.MusicXML.Identity -- MusicXML package
import Text.XML.MusicXML.Layout -- MusicXML package
import Text.XML.MusicXML.Note -- MusicXML package
import Text.XML.MusicXML.Score hiding
 (Opus, read_Opus, show_Opus) -- MusicXML package
import Text.XML.MusicXML.Partwise hiding
 (doctype, Part, read_Part, show_Part,
 Measure, read_Measure, show_Measure) -- MusicXML package
import Text.XML.MusicXML.Timewise hiding
 (doctype, Part, read_Part, show_Part,
 Measure, read_Measure, show_Measure) -- MusicXML package
import Text.XML.MusicXML.Opus hiding
 (doctype) -- MusicXML package
import Text.XML.MusicXML.Container hiding
 (doctype) -- MusicXML package

import qualified Text.XML.MusicXML.Partwise as Partwise -- MusicXML package
import qualified Text.XML.MusicXML.Timewise as Timewise -- MusicXML package
import qualified Text.XML.MusicXML.Opus as Opus -- MusicXML package
import qualified Text.XML.MusicXML.Container as Container -- MusicXML package
\end{code}

\begin{code}
-- * MusicXML
-- |
data ScoreDoc = Partwise Score_Partwise
 | Timewise Score_Timewise
 deriving (Eq, Show)
data MusicXMLDoc = Score ScoreDoc
 | Opus Opus
 | Container Container
 deriving (Eq, Show)
-- |
data MusicXMLRec = MusicXMLRec (Map.Map FilePath MusicXMLDoc)
 deriving (Eq, Show)
\end{code}
\begin{code}
-- |
read_DOCUMENT :: STM Result [Content Posn] a -> Document Posn -> Result a
read_DOCUMENT r (Document _ _ x _) = stateM r [CElem x noPos] >>= (return.snd)
-- |
read_MusicXML_Partwise :: Document Posn -> Result Score_Partwise
read_MusicXML_Partwise = read_DOCUMENT read_Score_Partwise
-- |
read_MusicXML_Timewise :: Document Posn -> Result Score_Timewise
read_MusicXML_Timewise = read_DOCUMENT read_Score_Timewise
-- |
read_MusicXML_Opus :: Document Posn -> Result Opus
read_MusicXML_Opus = read_DOCUMENT read_Opus
-- |
read_MusicXML_Container :: Document Posn -> Result Container
read_MusicXML_Container = read_DOCUMENT read_Container
-- |
show_DOCUMENT :: DocTypeDecl -> (t -> [Content i]) -> t -> Result (Document i)
show_DOCUMENT doct f doc =
 case f doc of
 [(CElem processed _)] ->
 return (Document (Prolog (Just xmldecl) []
 (Just doct) []) [] processed [])
 _ -> fail "internal error"
-- |
show_MusicXML_Partwise :: Score_Partwise -> Result (Document ())
show_MusicXML_Partwise =
 show_DOCUMENT Partwise.doctype show_Score_Partwise
-- |
show_MusicXML_Timewise :: Score_Timewise -> Result (Document ())
show_MusicXML_Timewise =
 show_DOCUMENT Partwise.doctype show_Score_Timewise
-- |
show_MusicXML_Opus :: Opus -> Result (Document ())
show_MusicXML_Opus x =
 show_DOCUMENT Opus.doctype show_Opus x
-- |
show_MusicXML_Container :: Container -> Result (Document ())
show_MusicXML_Container x =
 show_DOCUMENT Container.doctype show_Container x
-- |
update_MusicXML_Partwise :: ([Software], Encoding_Date) ->
 Score_Partwise -> Score_Partwise
update_MusicXML_Partwise = update_Score_Partwise
-- |
update_MusicXML_Timewise :: ([Software], Encoding_Date) ->
 Score_Timewise -> Score_Timewise
update_MusicXML_Timewise = update_Score_Timewise
\end{code}

\begin{code}
-- |
read_MusicXMLDoc :: Document Posn -> Result MusicXMLDoc
read_MusicXMLDoc doc =
 (read_DOCUMENT read_Score_Partwise doc >>= return .Score .Partwise) `mplus`
 (read_DOCUMENT read_Score_Timewise doc >>= return .Score .Timewise) `mplus`
 (read_DOCUMENT read_Opus doc >>= return . Opus) `mplus`
 (read_DOCUMENT read_Container doc >>= return . Container) `mplus`
 fail "<score-partwise> or <score-timewise> or <opus> or <container>"
-- |
show_MusicXMLDoc :: MusicXMLDoc -> Result (Document ())
show_MusicXMLDoc (Score (Partwise doc)) = show_MusicXML_Partwise doc
show_MusicXMLDoc (Score (Timewise doc)) = show_MusicXML_Timewise doc
show_MusicXMLDoc (Opus doc) = show_MusicXML_Opus doc
show_MusicXMLDoc (Container doc) = show_MusicXML_Container doc
-- |
update_MusicXMLDoc :: ([Software], Encoding_Date) ->
 MusicXMLDoc -> MusicXMLDoc
update_MusicXMLDoc x (Score (Partwise doc)) =
 Score (Partwise (update_MusicXML_Partwise x doc))
update_MusicXMLDoc x (Score (Timewise doc)) =
 Score (Timewise (update_MusicXML_Timewise x doc))
update_MusicXMLDoc _ y = y
-- |
read_MusicXMLRec :: FilePath -> IO (Map.Map FilePath MusicXMLDoc)
read_MusicXMLRec f = do
 x <- read_FILE read_MusicXMLDoc f >>= \a -> return (f, a)
 case isOK (snd x) of
 True -> do
 xs <- mapM (\f' -> read_FILE read_MusicXMLDoc f'
 >>= \a -> return (f', a))
 (Text.XML.MusicXML.getFiles (fromOK (snd x)))
 return (Map.map fromOK (Map.filter isOK (Map.fromList (x:xs))))
 False -> return (Map.empty)
\end{code}

\begin{code}
-- |
read_CONTENTS :: (Document Posn -> Result a) ->
 FilePath -> Prelude.String -> Result a
read_CONTENTS f filepath contents =
 either fail f (xmlParse' filepath contents)
-- |
show_CONTENTS :: (a -> Result (Document i)) -> a -> Prelude.String
show_CONTENTS f musicxml =
 maybe (fail "undefined error")
 (renderStyle (Style LeftMode 100 1.5) . document)
 ((toMaybe . f) musicxml)
-- |
read_FILE :: (Document Posn -> Result a) -> FilePath -> IO (Result a)
read_FILE f filepath = do
 exists <- doesFileExist filepath
 case exists of
 True -> readFile filepath >>= return . (read_CONTENTS f) filepath
 False -> (return . fail) ("no file: " ++ show filepath)
-- |
show_FILE :: (a -> Result (Document i)) -> FilePath -> a -> IO ()
show_FILE f filepath musicxml =
 writeFile filepath (show_CONTENTS f musicxml)
\end{code}

\begin{code}
-- |
xmldecl :: XMLDecl
xmldecl = XMLDecl "1.0" Nothing Nothing
-- |
getFiles :: MusicXMLDoc -> [FilePath]
getFiles (Score _) = []
getFiles (Opus x) = Text.XML.MusicXML.Opus.getFiles x
getFiles (Container x) = Text.XML.MusicXML.Container.getFiles x
-- |
toMaybe :: Result a -> Maybe a
toMaybe (Ok x) = Just x
toMaybe (Error _) = Nothing
-- | getTime uses old-time library. At future versions can be defined as:
-- @getTime :: IO Prelude.String@
-- @getTime = getCurrentTime >>= return . show . utctDay@
getTime :: IO Encoding_Date
getTime = getClockTime >>= toCalendarTime >>=
 return . (\(CalendarTime yyyy mm dd _ _ _ _ _ _ _ _ _) ->
 show4 yyyy ++ "-" ++ show2 (fromEnum mm + 1) ++ "-" ++ show2 dd)
-- |
show2, show3, show4 :: Int -> Prelude.String
show2 x | (x < 0) = show2 (-x)
 | otherwise = case show x of; [a] -> '0':a:[]; y -> y
show3 x | (x < 0) = show3 (-x)
 | otherwise = case show2 x of; [a,b] -> '0':a:b:[]; y -> y
show4 x | (x < 0) = show4 (-x)
 | otherwise = case show3 x of; [a,b,c] -> '0':a:b:c:[]; y -> y
\end{code}
\begin{verbatim}
getTime :: IO Prelude.String
getTime = getCurrentTime >>= return . show . utctDay
\end{verbatim}

Measure, read Measure, show Measure) -- MusicXML package
import Text .XML.MusicXML.Opus hiding

(doctype) -- MusicXML package
import Text .XML.MusicXML.Container hiding

(doctype) -- MusicXML package

import qualified Text .XML.MusicXML.Partwise as Partwise -- MusicXML package
import qualified Text .XML.MusicXML.Timewise as Timewise -- MusicXML package
import qualified Text .XML.MusicXML.Opus as Opus -- MusicXML package
import qualified Text .XML.MusicXML.Container as Container -- MusicXML package

-- * MusicXML
-- |

data ScoreDoc = Partwise Score Partwise
| Timewise Score Timewise
deriving (Eq ,Show)

data MusicXMLDoc = Score ScoreDoc
| Opus Opus
| Container Container
deriving (Eq ,Show)

-- |
data MusicXMLRec = MusicXMLRec (Map.Map FilePath MusicXMLDoc)

deriving (Eq ,Show)

-- |
read DOCUMENT :: STM Result [Content Posn] a → Document Posn → Result a
read DOCUMENT r (Document x) = stateM r [CElem x noPos]>>= (return · π2)

-- |
read MusicXML Partwise :: Document Posn → Result Score Partwise
read MusicXML Partwise = read DOCUMENT read Score Partwise

-- |
read MusicXML Timewise :: Document Posn → Result Score Timewise
read MusicXML Timewise = read DOCUMENT read Score Timewise

-- |
read MusicXML Opus :: Document Posn → Result Opus
read MusicXML Opus = read DOCUMENT read Opus

-- |
read MusicXML Container :: Document Posn → Result Container
read MusicXML Container = read DOCUMENT read Container

-- |
show DOCUMENT :: DocTypeDecl → (t → [Content i])→ t → Result (Document i)
show DOCUMENT doct f doc =

case f doc of
[(CElem processed)]→

return (Document (Prolog (Just xmldecl) []
(Just doct) []) [] processed [])

→ fail "internal error"

-- |
show MusicXML Partwise :: Score Partwise → Result (Document ())
show MusicXML Partwise =

show DOCUMENT Partwise.doctype show Score Partwise
-- |

show MusicXML Timewise :: Score Timewise → Result (Document ())
show MusicXML Timewise =

show DOCUMENT Partwise.doctype show Score Timewise
-- |

show MusicXML Opus :: Opus → Result (Document ())
show MusicXML Opus x =

show DOCUMENT Opus.doctype show Opus x

94

-- |
show MusicXML Container :: Container → Result (Document ())
show MusicXML Container x =

show DOCUMENT Container .doctype show Container x
-- |

update MusicXML Partwise :: ([Software],Encoding Date)→
Score Partwise → Score Partwise

update MusicXML Partwise = update Score Partwise
-- |

update MusicXML Timewise :: ([Software],Encoding Date)→
Score Timewise → Score Timewise

update MusicXML Timewise = update Score Timewise

-- |
read MusicXMLDoc :: Document Posn → Result MusicXMLDoc
read MusicXMLDoc doc =

(read DOCUMENT read Score Partwise doc >>= return · Score · Partwise) ‘mplus‘
(read DOCUMENT read Score Timewise doc >>= return · Score · Timewise) ‘mplus‘
(read DOCUMENT read Opus doc >>= return ·Opus) ‘mplus‘
(read DOCUMENT read Container doc >>= return · Container) ‘mplus‘
fail "<score-partwise> or <score-timewise> or <opus> or <container>"

-- |
show MusicXMLDoc :: MusicXMLDoc → Result (Document ())
show MusicXMLDoc (Score (Partwise doc)) = show MusicXML Partwise doc
show MusicXMLDoc (Score (Timewise doc)) = show MusicXML Timewise doc
show MusicXMLDoc (Opus doc) = show MusicXML Opus doc
show MusicXMLDoc (Container doc) = show MusicXML Container doc

-- |
update MusicXMLDoc :: ([Software],Encoding Date)→

MusicXMLDoc → MusicXMLDoc
update MusicXMLDoc x (Score (Partwise doc)) =

Score (Partwise (update MusicXML Partwise x doc))
update MusicXMLDoc x (Score (Timewise doc)) =

Score (Timewise (update MusicXML Timewise x doc))
update MusicXMLDoc y = y

-- |
read MusicXMLRec :: FilePath → IO (Map.Map FilePath MusicXMLDoc)
read MusicXMLRec f = do

x ← read FILE read MusicXMLDoc f >>= λa → return (f , a)
case isOK (π2 x) of

True → do
xs ← mapM (λf ′ → read FILE read MusicXMLDoc f ′

>>= λa → return (f ′, a))
(Text .XML.MusicXML.getFiles (fromOK (π2 x)))

return (Map.map fromOK (Map.filter isOK (Map.fromList (x : xs))))
False → return (Map.empty)

-- |
read CONTENTS :: (Document Posn → Result a)→

FilePath → Prelude.String → Result a
read CONTENTS f filepath contents =

[fail , f] (xmlParse ′ filepath contents)
-- |

show CONTENTS :: (a → Result (Document i))→ a → Prelude.String
show CONTENTS f musicxml =

maybe (fail "undefined error")
(renderStyle (Style LeftMode 100 1.5) · document)
((toMaybe · f) musicxml)

95

-- |
read FILE :: (Document Posn → Result a)→ FilePath → IO (Result a)
read FILE f filepath = do

exists ← doesFileExist filepath
case exists of

True → readFile filepath >>= return · (read CONTENTS f) filepath
False → (return · fail) ("no file: " ++ show filepath)

-- |
show FILE :: (a → Result (Document i))→ FilePath → a → IO ()
show FILE f filepath musicxml =

writeFile filepath (show CONTENTS f musicxml)

-- |
xmldecl :: XMLDecl
xmldecl = XMLDecl "1.0" Nothing Nothing

-- |
getFiles :: MusicXMLDoc → [FilePath]
getFiles (Score) = []
getFiles (Opus x) = Text .XML.MusicXML ·Opus.getFiles x
getFiles (Container x) = Text .XML.MusicXML · Container .getFiles x

-- |
toMaybe :: Result a → Maybe a
toMaybe (Ok x) = Just x
toMaybe (Error) = Nothing

-- | getTime uses old-time library. At future versions can be defined as:
-- @getTime :: IO Prelude.String@
-- @getTime = getCurrentTime = return . show . utctDay@

getTime :: IO Encoding Date
getTime = getClockTime >>= toCalendarTime >>=

return · (λ(CalendarTime yyyy mm dd)→
show4 yyyy ++ "-" ++ show2 (fromEnum mm + 1) ++ "-" ++ show2 dd)

-- |
show2 , show3 , show4 :: Int → Prelude.String
show2 x | (x < 0) = show2 (−x)

| otherwise = case show x of ; [a]→ ’0’ : a : []; y → y
show3 x | (x < 0) = show3 (−x)

| otherwise = case show2 x of ; [a, b]→ ’0’ : a : b : []; y → y
show4 x | (x < 0) = show4 (−x)

| otherwise = case show3 x of ; [a, b, c]→ ’0’ : a : b : c : []; y → y

getTime :: IO Prelude.String

getTime = getCurrentTime >>= return . show . utctDay

2.10 Note

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Note where
import Text .XML.MusicXML.Common
import Prelude (Maybe (. .),Monad (. .),Show ,Eq , (·), (++))
import Control .Monad (MonadPlus (. .))
import qualified Data.Char (String)
import Text .XML.HaXml .Types (Content (. .))

96

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Note where
import Text.XML.MusicXML.Common
import Prelude (Maybe(..), Monad(..), Show, Eq, (.), (++))
import Control.Monad (MonadPlus(..))
import qualified Data.Char (String)
import Text.XML.HaXml.Types (Content(..))
\end{code}

\begin{musicxml}
	The common note elements between cue/grace notes and
	regular (full) notes: pitch, chord, and rest information,
	but not duration (cue and grace notes do not have
	duration encoded here). Unpitched elements are used for
	unpitched percussion, speaking voice, and other musical
	elements lacking determinate pitch.
\end{musicxml}
\begin{code}
-- * Note entities
-- |
type Full_Note = (Maybe Chord, Full_Note_)
-- |
read_Full_Note :: STM Result [Content i] Full_Note
read_Full_Note = do
 y1 <- read_MAYBE read_Chord
 y2 <- read_Full_Note_
 return (y1,y2)
-- |
show_Full_Note :: Full_Note -> [Content ()]
show_Full_Note (a,b) =
 show_MAYBE show_Chord a ++
 show_Full_Note_ b
-- |
data Full_Note_ = Full_Note_1 Pitch
 | Full_Note_2 Unpitched
 | Full_Note_3 Rest
 deriving (Eq, Show)
-- |
read_Full_Note_ :: STM Result [Content i] Full_Note_
read_Full_Note_ =
 (read_Pitch >>= return . Full_Note_1) `mplus`
 (read_Unpitched >>= return . Full_Note_2) `mplus`
 (read_Rest >>= return . Full_Note_3)
-- |
show_Full_Note_ :: Full_Note_ -> [Content ()]
show_Full_Note_ (Full_Note_1 x) = show_Pitch x
show_Full_Note_ (Full_Note_2 x) = show_Unpitched x
show_Full_Note_ (Full_Note_3 x) = show_Rest x
\end{code}

\begin{musicxml}
	Notes are the most common type of MusicXML data. The
	MusicXML format keeps the MuseData distinction between
	elements used for sound information and elements used for
	notation information (e.g., tie is used for sound, tied for
	notation). Thus grace notes do not have a duration element.
	Cue notes have a duration element, as do forward elements,
	but no tie elements. Having these two types of information
	available can make interchange considerably easier, as
	some programs handle one type of information much more
	readily than the other.

 The position and printout entities for printing suggestions
	are defined in the common.mod file.
	
	The dynamics and end-dynamics attributes correspond to
	MIDI 1.0's Note On and Note Off velocities, respectively.
	They are expressed in terms of percentages of the default
	forte value (90 for MIDI 1.0). The attack and release
	attributes are used to alter the staring and stopping time
	of the note from when it would otherwise occur based on
	the flow of durations - information that is specific to a
	performance. They are expressed in terms of divisions,
	either positive or negative. A note that starts a tie should
	not have a release attribute, and a note that stops a tie
	should not have an attack attribute. If a note is played
	only one time through a repeat, the time-only attribute
	shows which time to play the note. The pizzicato attribute
	is used when just this note is sounded pizzicato, vs. the
	pizzicato element which changes overall playback between
	pizzicato and arco.
\end{musicxml}
\begin{code}
-- * Note
-- |
type Note = ((Print_Style, Printout, Maybe CDATA, Maybe CDATA,
 Maybe CDATA, Maybe CDATA, Maybe CDATA, Maybe Yes_No),
 (Note_, Maybe Instrument, Editorial_Voice, Maybe Type, [Dot],
 Maybe Accidental, Maybe Time_Modification, Maybe Stem, Maybe Notehead,
 Maybe Staff, [Beam], [Notations], [Lyric]))
-- |
read_Note :: Eq i => STM Result [Content i] Note
read_Note = do
 y <- read_ELEMENT "note"
 y1 <- read_8 read_Print_Style read_Printout
 (read_IMPLIED "dynamics" read_CDATA)
 (read_IMPLIED "end-dynamics" read_CDATA)
 (read_IMPLIED "attack" read_CDATA)
 (read_IMPLIED "release" read_CDATA)
 (read_IMPLIED "time-only" read_CDATA)
 (read_IMPLIED "pizzicato" read_Yes_No) (attributes y)
 y2 <- read_13 read_Note_ (read_MAYBE read_Instrument)
 read_Editorial_Voice (read_MAYBE read_Type)
 (read_LIST read_Dot) (read_MAYBE read_Accidental)
 (read_MAYBE read_Time_Modification)
 (read_MAYBE read_Stem) (read_MAYBE read_Notehead)
 (read_MAYBE read_Staff) (read_LIST read_Beam)
 (read_LIST read_Notations) (read_LIST read_Lyric)
 (childs y)
 return (y1,y2)

show_Note :: Note -> [Content ()]
show_Note ((a,b,c,d,e,f,g,h),(i,j,k,l,m,n,o,p,q,r,s,t,u)) =
 show_ELEMENT "note" (show_Print_Style a ++ show_Printout b ++
 show_IMPLIED "dynamics" show_CDATA c ++
 show_IMPLIED "end-dynamics" show_CDATA d ++
 show_IMPLIED "attack" show_CDATA e ++
 show_IMPLIED "release" show_CDATA f ++
 show_IMPLIED "time-only" show_CDATA g ++
 show_IMPLIED "pizzicato" show_Yes_No h)
 (show_Note_ i ++ show_MAYBE show_Instrument j ++
 show_Editorial_Voice k ++
 show_MAYBE show_Type l ++
 show_LIST show_Dot m ++
 show_MAYBE show_Accidental n ++
 show_MAYBE show_Time_Modification o ++
 show_MAYBE show_Stem p ++
 show_MAYBE show_Notehead q ++
 show_MAYBE show_Staff r ++
 show_LIST show_Beam s ++
 show_LIST show_Notations t ++
 show_LIST show_Lyric u)
-- ** Note_
-- |
data Note_ = Note_1 (Grace, Full_Note, Maybe (Tie, Maybe Tie))
 | Note_2 (Cue, Full_Note, Duration)
 | Note_3 (Full_Note, Duration, Maybe (Tie, Maybe Tie))
 deriving (Eq, Show)
-- |
read_Note_ :: STM Result [Content i] Note_
read_Note_ =
 (read_Note_aux1 >>= return . Note_1) `mplus`
 (read_Note_aux2 >>= return . Note_2) `mplus`
 (read_Note_aux3 >>= return . Note_3)
read_Note_aux1 ::
 STM Result [Content i] (Grace, Full_Note, Maybe (Tie, Maybe Tie))
read_Note_aux1 = do
 y1 <- read_Grace
 y2 <- read_Full_Note
 y3 <- read_MAYBE read_Note_aux4
 return (y1,y2,y3)
read_Note_aux2 :: STM Result [Content i] (Cue, Full_Note, Duration)
read_Note_aux2 = do
 y1 <- read_Cue
 y2 <- read_Full_Note
 y3 <- read_Duration
 return (y1,y2,y3)
read_Note_aux3 ::
 STM Result [Content i] (Full_Note, Duration, Maybe (Tie, Maybe Tie))
read_Note_aux3 = do
 y1 <- read_Full_Note
 y2 <- read_Duration
 y3 <- read_MAYBE read_Note_aux4
 return (y1,y2,y3)
read_Note_aux4 :: STM Result [Content i] (Tie, Maybe Tie)
read_Note_aux4 = do
 y1 <- read_Tie
 y2 <- read_MAYBE read_Tie
 return (y1,y2)
-- |
show_Note_ :: Note_ -> [Content ()]
show_Note_ (Note_1 (a,b,c)) =
 show_Grace a ++ show_Full_Note b ++ show_MAYBE show_Note_aux1 c
show_Note_ (Note_2 (a,b,c)) =
 show_Cue a ++ show_Full_Note b ++ show_Duration c
show_Note_ (Note_3 (a,b,c)) =
 show_Full_Note a ++ show_Duration b ++ show_MAYBE show_Note_aux1 c
-- |
show_Note_aux1 :: (Tie, Maybe Tie) -> [Content ()]
show_Note_aux1 (a,b) = show_Tie a ++ show_MAYBE show_Tie b
\end{code}

\begin{musicxml}
	Pitch is represented as a combination of the step of the
	diatonic scale, the chromatic alteration, and the octave.
	The step element uses the English letters A through G.
	The alter element represents chromatic alteration in
	number of semitones (e.g., -1 for flat, 1 for sharp).
	Decimal values like 0.5 (quarter tone sharp) may be
	used for microtones. The octave element is represented
	by the numbers 0 to 9, where 4 indicates the octave
	started by middle C.
\end{musicxml}
\begin{code}
-- |
type Pitch = (Step, Maybe Alter, Octave)
-- |
read_Pitch :: STM Result [Content i] Pitch
read_Pitch = do
 y <- read_ELEMENT "pitch"
 read_3 read_Step (read_MAYBE read_Alter) read_Octave (childs y)
-- |
show_Pitch :: Pitch -> [Content ()]
show_Pitch (a,b,c) =
 show_ELEMENT "pitch" []
 (show_Step a ++ show_MAYBE show_Alter b ++ show_Octave c)
-- |
type Step = PCDATA
-- |
read_Step :: STM Result [Content i] Step
read_Step = do
 y <- read_ELEMENT "step"
 read_1 read_PCDATA (childs y)
-- |
show_Step :: Step -> [Content ()]
show_Step x = show_ELEMENT "step" [] (show_PCDATA x)
-- |
type Alter = PCDATA
-- |
read_Alter :: STM Result [Content i] Alter
read_Alter = do
 y <- read_ELEMENT "alter"
 read_1 read_PCDATA (childs y)
-- |
show_Alter :: Alter -> [Content ()]
show_Alter x = show_ELEMENT "alter" [] (show_PCDATA x)
-- |
type Octave = PCDATA
-- |
read_Octave :: STM Result [Content i] Octave
read_Octave = do
 y <- read_ELEMENT "octave"
 read_1 read_PCDATA (childs y)
-- |
show_Octave :: Octave -> [Content ()]
show_Octave x = show_ELEMENT "octave" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	The cue and grace elements indicate the presence of
	cue and grace notes. The slash attribute for a grace
	note is yes for slashed eighth notes. The other grace
	note attributes come from MuseData sound suggestions.
	Steal-time-previous indicates the percentage of time
	to steal from the previous note for the grace note.
	Steal-time-following indicates the percentage of time
	to steal from the following note for the grace note.
	Make-time indicates to make time, not steal time; the
	units are in real-time divisions for the grace note.
\end{musicxml}
\begin{code}
-- |
type Cue = ()
-- |
read_Cue :: STM Result [Content i] Cue
read_Cue = read_ELEMENT "cue" >> return ()
-- |
show_Cue :: Cue -> [Content ()]
show_Cue _ = show_ELEMENT "cue" [] []
-- |
type Grace = ((Maybe CDATA, Maybe CDATA, Maybe CDATA, Maybe Yes_No),())
-- |
read_Grace :: STM Result [Content i] Grace
read_Grace = do
 y <- read_ELEMENT "grace"
 y1 <- read_4 (read_IMPLIED "steal-time-previous" read_CDATA)
 (read_IMPLIED "steal-time-following" read_CDATA)
 (read_IMPLIED "make-time" read_CDATA)
 (read_IMPLIED "slash" read_Yes_No) (attributes y)
 return (y1,())
-- |
show_Grace :: Grace -> [Content ()]
show_Grace ((a,b,c,d),_) =
 show_ELEMENT "grace"
 (show_IMPLIED "steal-time-previous" show_CDATA a ++
 show_IMPLIED "steal-time-following" show_CDATA b ++
 show_IMPLIED "make-time" show_CDATA c ++
 show_IMPLIED "slash" show_Yes_No d)
 []
\end{code}

\begin{musicxml}
	The chord element indicates that this note is an additional
	chord tone with the preceding note. The duration of this
	note can be no longer than the preceding note. In MuseData,
	a missing duration indicates the same length as the previous
	note, but the MusicXML format requires a duration for chord
	notes too.
\end{musicxml}
\begin{code}
-- |
type Chord = ()
-- |
read_Chord :: STM Result [Content i] Chord
read_Chord =
 read_ELEMENT "chord" >> return ()
-- |
show_Chord :: Chord -> [Content ()]
show_Chord _ = show_ELEMENT "chord" [] []
\end{code}

\begin{musicxml}
	The unpitched element indicates musical elements that are
	notated on the staff but lack definite pitch, such as
	unpitched percussion and speaking voice. Like notes, it
	uses step and octave elements to indicate placement on the
	staff, following the current clef. If percussion clef is
	used, the display-step and display-octave elements are
	interpreted as if in treble clef, with a G in octave 4 on
	line 2. If not present, the note is placed on the middle
	line of the staff, generally used for one-line staffs.
\end{musicxml}
\begin{code}
type Unpitched = Maybe (Display_Step, Display_Octave)
-- |
read_Unpitched :: STM Result [Content i] Unpitched
read_Unpitched = do
 y <- read_ELEMENT "unpitched"
 read_1 (read_MAYBE read_Unpitched_aux1) (childs y)

read_Unpitched_aux1 :: STM Result [Content i] (Display_Step, Display_Octave)
read_Unpitched_aux1 = do
 y1 <- read_Display_Step
 y2 <- read_Display_Octave
 return (y1,y2)

-- |
show_Unpitched :: Unpitched -> [Content ()]
show_Unpitched x =
 show_ELEMENT "unpitched" []
 (show_MAYBE (\(a,b) -> show_Display_Step a ++
 show_Display_Octave b) x)
-- |
type Display_Step = PCDATA
-- |
read_Display_Step :: STM Result [Content i] Display_Step
read_Display_Step = do
 y <- read_ELEMENT "display-step"
 read_1 read_PCDATA (childs y)
-- |
show_Display_Step :: Display_Step -> [Content ()]
show_Display_Step x = show_ELEMENT "display-step" [] (show_PCDATA x)
-- |
type Display_Octave = PCDATA
-- |
read_Display_Octave :: STM Result [Content i] Display_Octave
read_Display_Octave = do
 y <- read_ELEMENT "display-octave"
 read_1 read_PCDATA (childs y)
-- |
show_Display_Octave :: Display_Octave -> [Content ()]
show_Display_Octave x = show_ELEMENT "display-octave" [] (show_PCDATA x)
\end{code}

\begin{musicxml}
	The rest element indicates notated rests or silences.
	Rest are usually empty, but placement on the staff can
	be specified using display-step and display-octave
	elements.
\end{musicxml}
\begin{nocode}
read_Rest_F :: [Content i] -> ([Content i],Maybe a)
read_Rest_F l =
 let (l1,_) = read_ELEMENT_F "rest" l
-- y1 = read_PCDATA_F (childs_F y)
 in (l1,Nothing)
\end{nocode}
\begin{code}
-- |
type Rest = Maybe (Display_Step, Display_Octave)
-- |
read_Rest :: STM Result [Content i] Rest
read_Rest = do
 y <- read_ELEMENT "rest"
 read_1 (read_MAYBE read_Rest_aux1) (childs y)
-- |
read_Rest_aux1 :: STM Result [Content i] (Display_Step, Display_Octave)
read_Rest_aux1 = do
 y1 <- read_Display_Step
 y2 <- read_Display_Octave
 return (y1,y2)
-- |
show_Rest :: Rest -> [Content ()]
show_Rest x =
 show_ELEMENT "rest" []
 (show_MAYBE (\(a,b) -> show_Display_Step a ++
 show_Display_Octave b) x)
\end{code}

\begin{musicxml}
	Duration is a positive number specified in division units.
	This is the intended duration vs. notated duration (for
	instance, swing eighths vs. even eighths, or differences
	in dotted notes in Baroque-era music). Differences in
	duration specific to an interpretation or performance
	should use the note element's attack and release
	attributes.

	The tie element indicates that a tie begins or ends with
	this note. The tie element indicates sound; the tied
	element indicates notation.
\end{musicxml}
\begin{code}
type Duration = PCDATA
-- |
read_Duration :: STM Result [Content i] Duration
read_Duration = do
 y <- read_ELEMENT "duration"
 read_1 read_PCDATA (childs y)
-- |
show_Duration :: Duration -> [Content ()]
show_Duration x = show_ELEMENT "duration" [] (show_PCDATA x)
-- |
type Tie = (Start_Stop, ())
-- |
read_Tie :: STM Result [Content i] Tie
read_Tie = do
 y <- read_ELEMENT "tie"
 y1 <- read_1 (read_REQUIRED "type" read_Start_Stop) (attributes y)
 return (y1,())
-- |
show_Tie :: Tie -> [Content ()]
show_Tie (a,_) =
 show_ELEMENT "tie" (show_REQUIRED "type" show_Start_Stop a) []
\end{code}

\begin{musicxml}
	If multiple score-instruments are specified on a
	score-part, there should be an instrument element for
	each note in the part. The id attribute is an IDREF back
	to the score-instrument ID.
\end{musicxml}
\begin{code}
-- ** Instrument
-- |
type Instrument = (ID, ())
-- |
read_Instrument :: STM Result [Content i] Instrument
read_Instrument = do
 y <- read_ELEMENT "instrument"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 return (y1,())
-- |
show_Instrument :: Instrument -> [Content ()]
show_Instrument (a,_) =
 show_ELEMENT "instrument" (show_REQUIRED "id" show_ID a) []
\end{code}

\begin{musicxml}
	Type indicates the graphic note type, Valid values (from
	shortest to longest) are 256th, 128th, 64th, 32nd, 16th,
	eighth, quarter, half, whole, breve, and long. The size
	attribute indicates full, cue, or large size, with full
	the default for regular notes and cue the default for
	cue and grace notes.
\end{musicxml}
\begin{code}
-- ** Type
-- |
type Type = (Maybe Symbol_Size,PCDATA)
-- |
read_Type :: STM Result [Content i] Type
read_Type = do
 y <- read_ELEMENT "type"
 y1 <- read_1 (read_IMPLIED "size" read_Symbol_Size) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Type :: Type -> [Content ()]
show_Type (a,b) =
 show_ELEMENT "type"
 (show_IMPLIED "size" show_Symbol_Size a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	One dot element is used for each dot of prolongation.
	The placement element is used to specify whether the
	dot should appear above or below the staff line. It is
	ignored for notes that appear on a staff space.
\end{musicxml}
\begin{code}
-- ** Dot
-- |
type Dot = ((Print_Style, Placement), ())
-- |
read_Dot :: STM Result [Content i] Dot
read_Dot = do
 y <- read_ELEMENT "dot"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Dot :: Dot -> [Content ()]
show_Dot ((a,b),_) =
 show_ELEMENT "dot"
 (show_Print_Style a ++
 show_Placement b)
 []
\end{code}

\begin{musicxml}
	Actual notated accidentals. Valid values include: sharp,
	natural, flat, double-sharp, sharp-sharp, flat-flat,
	natural-sharp, natural-flat, quarter-flat, quarter-sharp,
	three-quarters-flat, and three-quarters-sharp. Editorial
	and cautionary indications are indicated by attributes.
	Values for these attributes are "no" if not present.
	Specific graphic display such as parentheses, brackets,
	and size are controlled by the level-display entity
	defined in the common.mod file.
\end{musicxml}
\begin{code}
-- ** Accidental
-- |
type Accidental = ((Maybe Yes_No, Maybe Yes_No, Level_Display, Print_Style),
 PCDATA)
-- |
read_Accidental :: STM Result [Content i] Accidental
read_Accidental = do
 y <- read_ELEMENT "accidental"
 y1 <- read_4 (read_IMPLIED "cautionary" read_Yes_No)
 (read_IMPLIED "editorial" read_Yes_No)
 read_Level_Display read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Accidental :: Accidental -> [Content ()]
show_Accidental ((a,b,c,d),e) =
 show_ELEMENT "accidental"
 (show_IMPLIED "cautionary" show_Yes_No a ++
 show_IMPLIED "editorial" show_Yes_No b ++
 show_Level_Display c ++
 show_Print_Style d)
 (show_PCDATA e)
\end{code}

\begin{musicxml}
	Time modification indicates tuplets and other durational
	changes. The child elements are defined in the common.mod
	file.
\end{musicxml}
\begin{code}
-- ** Time_Modification
-- |
type Time_Modification = (Actual_Notes, Normal_Notes,
 Maybe (Normal_Type, [Normal_Dot]))
-- |
read_Time_Modification :: Eq i => STM Result [Content i] Time_Modification
read_Time_Modification = do
 y <- read_ELEMENT "time-modification"
 read_3 read_Actual_Notes read_Normal_Notes
 (read_MAYBE (read_Time_Modification_aux1)) (childs y)
-- |
read_Time_Modification_aux1 :: Eq i =>
 STM Result [Content i] (Normal_Type, [Normal_Dot])
read_Time_Modification_aux1 = do
 y1 <- read_Normal_Type
 y2 <- read_LIST read_Normal_Dot
 return (y1,y2)
-- |
show_Time_Modification :: Time_Modification -> [Content ()]
show_Time_Modification (a,b,c) =
 show_ELEMENT "time-modification" []
 (show_Actual_Notes a ++ show_Normal_Notes b ++
 show_MAYBE (\(c1,c2) -> show_Normal_Type c1 ++
 show_LIST show_Normal_Dot c2) c)
\end{code}

\begin{musicxml}
	Stems can be down, up, none, or double. For down and up
	stems, the position attributes can be used to specify
	stem length. The relative values specify the end of the
	stem relative to the program default. Default values
	specify an absolute end stem position. Negative values of
	relative-y that would flip a stem instead of shortening
	it are ignored.
\end{musicxml}
\begin{code}
-- ** Stem
-- |
type Stem = ((Position, Color),PCDATA)
-- |
read_Stem :: STM Result [Content i] Stem
read_Stem = do
 y <- read_ELEMENT "stem"
 y1 <- read_2 read_Position read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Stem :: Stem -> [Content ()]
show_Stem ((a,b),c) =
 show_ELEMENT "stem"
 (show_Position a ++ show_Color b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The notehead element indicates shapes other than the open
	and closed ovals associated with note durations. The element
	value can be slash, triangle, diamond, square, cross, x,
	circle-x, inverted triangle, arrow down, arrow up, slashed,
	back slashed, normal, cluster, or none. For shape note
	music, the element values do, re, mi, fa, so, la, and ti
	are used, corresponding to Aikin's 7-shape system.

	The arrow shapes differ from triangle and inverted triangle
	by being centered on the stem. Slashed and back slashed
	notes include both the normal notehead and a slash. The
	triangle shape has the tip of the triangle pointing up;
	the inverted triangle shape has the tip of the triangle
	pointing down.
	
	For the enclosed shapes, the default is to be hollow for
	half notes and longer, and filled otherwise. The filled
	attribute can be set to change this if needed.
	
	If the parentheses attribute is set to yes, the notehead
	is parenthesized. It is no by default.
\end{musicxml}
\begin{code}
-- ** Notehead
-- |
type Notehead = ((Maybe Yes_No, Maybe Yes_No, Font, Color), PCDATA)
-- |
read_Notehead :: STM Result [Content i] Notehead
read_Notehead = do
 y <- read_ELEMENT "notehead"
 y1 <- read_4 (read_IMPLIED "filled" read_Yes_No)
 (read_IMPLIED "parentheses" read_Yes_No)
 read_Font read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Notehead :: Notehead -> [Content ()]
show_Notehead ((a,b,c,d),e) =
 show_ELEMENT "notehead"
 (show_IMPLIED "filled" show_Yes_No a ++
 show_IMPLIED "parentheses" show_Yes_No b ++
 show_Font c ++ show_Color d)
 (show_PCDATA e)
\end{code}

\begin{musicxml}
	Beam types include begin, continue, end, forward hook,
	and backward hook. In MuseData, up to six concurrent
	beams are available to cover up to 256th notes. This
	seems sufficient so we use an enumerated type defined
	in the common.mod file. The repeater attribute, used for
	tremolos, needs to be specified with a "yes" value for each
	beam using it. Beams that have a begin value can also have
	a fan attribute to indicate accelerandos and ritardandos
	using fanned beams. The fan attribute may also be used
	with a continue value if the fanning direction changes
	on that note. The value is "none" if not specified.
	
	Note that the beam number does not distinguish sets of
	beams that overlap, as it does for slur and other elements.
	Beaming groups are distinguished by being in different
	voices and/or the presence or absence of grace and cue
	elements.
\end{musicxml}
\begin{code}
-- ** Beam
-- |
type Beam = ((Beam_Level, Maybe Yes_No, Maybe Beam_, Color), PCDATA)
-- |
read_Beam :: STM Result [Content i] Beam
read_Beam = do
 y <- read_ELEMENT "beam"
 y1 <- read_4 (read_DEFAULT "number" read_Beam_Level Beam_Level_1)
 (read_IMPLIED "repeater" read_Yes_No)
 (read_IMPLIED "fan" read_Beam_)
 read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)

-- |
show_Beam :: Beam -> [Content ()]
show_Beam ((a,b,c,d),e) =
 show_ELEMENT "beam"
 (show_IMPLIED "number" show_Beam_Level (Just a) ++
 show_IMPLIED "repeater" show_Yes_No b ++
 show_IMPLIED "fan" show_Beam_ c ++
 show_Color d)
 (show_PCDATA e)
-- |
data Beam_ = Beam_Accel | Beam_Rit | Beam_None
 deriving (Eq, Show)
-- |
read_Beam_ :: Data.Char.String -> Result Beam_
read_Beam_ "accel" = return Beam_Accel
read_Beam_ "rit" = return Beam_Rit
read_Beam_ "none" = return Beam_None
read_Beam_ _ =
 fail "I expect fan attribute"
-- |
show_Beam_ :: Beam_ -> Data.Char.String
show_Beam_ Beam_Accel = "accel"
show_Beam_ Beam_Rit = "rit"
show_Beam_ Beam_None = "none"
\end{code}

\begin{musicxml}
	Notations are musical notations, not XML notations.
	Multiple notations are allowed in order to represent
	multiple editorial levels. The set of notations will be
	refined and expanded over time, especially to handle
	more instrument-specific technical notations.
\end{musicxml}
\begin{code}
-- ** Notations
-- |
type Notations = [(Editorial, Notations_)]
-- |
read_Notations :: Eq i => STM Result [Content i] Notations
read_Notations = do
 y <- read_ELEMENT "notations"
 read_1 (read_LIST read_Notations_aux1) (childs y)
-- |
show_Notations :: Notations -> [Content ()]
show_Notations a =
 show_ELEMENT "notations" [] (show_LIST show_Notations_aux1 a)
-- |
read_Notations_aux1 :: Eq i => STM Result [Content i] (Editorial, Notations_)
read_Notations_aux1 = do
 y1 <- read_Editorial
 y2 <- read_Notations_
 return (y1,y2)
-- |
show_Notations_aux1 :: (Editorial, Notations_) -> [Content ()]
show_Notations_aux1 (a,b) = show_Editorial a ++ show_Notations_ b
-- |
data Notations_ = Notations_1 Tied
 | Notations_2 Slur
 | Notations_3 Tuplet
 | Notations_4 Glissando
 | Notations_5 Slide
 | Notations_6 Ornaments
 | Notations_7 Technical
 | Notations_8 Articulations
 | Notations_9 Dynamics
 | Notations_10 Fermata
 | Notations_11 Arpeggiate
 | Notations_12 Non_Arpeggiate
 | Notations_13 Accidental_Mark
 | Notations_14 Other_Notation
 deriving (Eq, Show)
-- |
read_Notations_ :: Eq i => STM Result [Content i] Notations_
read_Notations_ =
 (read_Tied >>= return . Notations_1) `mplus`
 (read_Slur >>= return . Notations_2) `mplus`
 (read_Tuplet >>= return . Notations_3) `mplus`
 (read_Glissando >>= return . Notations_4) `mplus`
 (read_Slide >>= return . Notations_5) `mplus`
 (read_Ornaments >>= return . Notations_6) `mplus`
 (read_Technical >>= return . Notations_7) `mplus`
 (read_Articulations >>= return . Notations_8) `mplus`
 (read_Dynamics >>= return . Notations_9) `mplus`
 (read_Fermata >>= return . Notations_10) `mplus`
 (read_Arpeggiate >>= return . Notations_11) `mplus`
 (read_Non_Arpeggiate >>= return . Notations_12) `mplus`
 (read_Accidental_Mark >>= return . Notations_13) `mplus`
 (read_Other_Notation >>= return . Notations_14)
-- |
show_Notations_ :: Notations_ -> [Content ()]
show_Notations_ (Notations_1 x) = show_Tied x
show_Notations_ (Notations_2 x) = show_Slur x
show_Notations_ (Notations_3 x) = show_Tuplet x
show_Notations_ (Notations_4 x) = show_Glissando x
show_Notations_ (Notations_5 x) = show_Slide x
show_Notations_ (Notations_6 x) = show_Ornaments x
show_Notations_ (Notations_7 x) = show_Technical x
show_Notations_ (Notations_8 x) = show_Articulations x
show_Notations_ (Notations_9 x) = show_Dynamics x
show_Notations_ (Notations_10 x) = show_Fermata x
show_Notations_ (Notations_11 x) = show_Arpeggiate x
show_Notations_ (Notations_12 x) = show_Non_Arpeggiate x
show_Notations_ (Notations_13 x) = show_Accidental_Mark x
show_Notations_ (Notations_14 x) = show_Other_Notation x
-- *** Tied
-- |
type Tied = ((Start_Stop, Maybe Number_Level, Line_Type, Position, Placement,
 Orientation, Bezier, Color),())
-- |
read_Tied :: STM Result [Content i] Tied
read_Tied = do
 y <- read_ELEMENT "tied"
 y1 <- read_8 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "number" read_Number_Level)
 read_Line_Type read_Position read_Placement
 read_Orientation read_Bezier read_Color (attributes y)
 return (y1,())
-- |
show_Tied :: Tied -> [Content ()]
show_Tied ((a,b,c,d,e,f,g,h),_)=
 show_ELEMENT "tied"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_Line_Type c ++
 show_Position d ++
 show_Placement e ++
 show_Orientation f ++
 show_Bezier g ++
 show_Color h) []
\end{code}

\begin{musicxml}
 Slur elements are empty. Most slurs are represented with
	two elements: one with a start type, and one with a stop
	type. Slurs can add more elements using a continue type.
	This is typically used to specify the formatting of cross-
	system slurs, or to specify the shape of very complex slurs.
\end{musicxml}
\begin{code}
-- *** Slur
-- |
type Slur = ((Start_Stop_Continue, Number_Level, Line_Type, Position, Placement,
 Orientation, Bezier, Color),())
-- |
read_Slur :: STM Result [Content i] Slur
read_Slur = do
 y <- read_ELEMENT "slur"
 y1 <- read_8 (read_REQUIRED "type" read_Start_Stop_Continue)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Line_Type read_Position read_Placement
 read_Orientation read_Bezier read_Color (attributes y)
 return (y1,())
-- |
show_Slur :: Slur -> [Content ()]
show_Slur ((a,b,c,d,e,f,g,h),_)=
 show_ELEMENT "slur"
 (show_REQUIRED "type" show_Start_Stop_Continue a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Line_Type c ++
 show_Position d ++
 show_Placement e ++
 show_Orientation f ++
 show_Bezier g ++
 show_Color h) []
\end{code}

\begin{musicxml}
	A tuplet element is present when a tuplet is to be displayed
	graphically, in addition to the sound data provided by the
	time-modification elements. The number attribute is used to
	distinguish nested tuplets. The bracket attribute is used
	to indicate the presence of a bracket. If unspecified, the
	results are implementation-dependent. The line-shape
	attribute is used to specify whether the bracket is straight
	or in the older curved or slurred style. It is straight by
	default.
	
	Whereas a time-modification element shows how the
	cumulative, sounding effect of tuplets compare to the
	written note type, the tuplet element describes how this
	is displayed. The tuplet-actual and tuplet-normal elements
	provide optional full control over tuplet specifications.
	Each allows the number and note type (including dots)
	describing a single tuplet. If any of these elements are
	absent, their values are based on the time-modification
	element.
	
	The show-number attribute is used to display either the
	number of actual notes, the number of both actual and
	normal notes, or neither. It is actual by default. The
	show-type attribute is used to display either the actual
	type, both the actual and normal types, or neither. It is
	none by default.
\end{musicxml}
\begin{code}
-- *** Tuplet
-- |
type Tuplet = ((Start_Stop, Maybe Number_Level, Maybe Yes_No, Maybe Tuplet_,
 Maybe Tuplet_, Line_Shape, Position, Placement),
 (Maybe Tuplet_Actual, Maybe Tuplet_Normal))
-- |
read_Tuplet :: Eq i => STM Result [Content i] Tuplet
read_Tuplet = do
 y <- read_ELEMENT "tuplet"
 y1 <- read_8 (read_REQUIRED "type" read_Start_Stop)
 (read_IMPLIED "number" read_Number_Level)
 (read_IMPLIED "bracket" read_Yes_No)
 (read_IMPLIED "show-number" read_Tuplet_)
 (read_IMPLIED "show-type" read_Tuplet_)
 read_Line_Shape read_Position read_Placement
 (attributes y)
 y2 <- read_2 (read_MAYBE read_Tuplet_Actual)
 (read_MAYBE read_Tuplet_Normal)
 (childs y)
 return (y1,y2)
-- |
show_Tuplet :: Tuplet -> [Content ()]
show_Tuplet ((a,b,c,d,e,f,g,h),(i,j)) =
 show_ELEMENT "tuplet"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_IMPLIED "bracket" show_Yes_No c ++
 show_IMPLIED "show-number" show_Tuplet_ d ++
 show_IMPLIED "show-type" show_Tuplet_ e ++
 show_Line_Shape f ++ show_Position g ++
 show_Placement h)
 (show_MAYBE show_Tuplet_Actual i ++
 show_MAYBE show_Tuplet_Normal j)
-- |
data Tuplet_ = Tuplet_1 | Tuplet_2 | Tuplet_3
 deriving (Eq, Show)
-- |
read_Tuplet_ :: Data.Char.String -> Result Tuplet_
read_Tuplet_ "actual" = return Tuplet_1
read_Tuplet_ "both" = return Tuplet_2
read_Tuplet_ "none" = return Tuplet_3
read_Tuplet_ _ = fail "wrong value at tuplet"
-- |
show_Tuplet_ :: Tuplet_ -> Data.Char.String
show_Tuplet_ Tuplet_1 = "actual"
show_Tuplet_ Tuplet_2 = "both"
show_Tuplet_ Tuplet_3 = "none"
-- |
type Tuplet_Actual = (Maybe Tuplet_Number, Maybe Tuplet_Type, [Tuplet_Dot])
-- |
read_Tuplet_Actual :: Eq i => STM Result [Content i] Tuplet_Actual
read_Tuplet_Actual = do
 y <- read_ELEMENT "tuplet-actual"
 read_3 (read_MAYBE read_Tuplet_Number)
 (read_MAYBE read_Tuplet_Type)
 (read_LIST read_Tuplet_Dot) (childs y)
-- |
show_Tuplet_Actual :: Tuplet_Actual -> [Content ()]
show_Tuplet_Actual (a,b,c) =
 show_ELEMENT "tuplet-actual" []
 (show_MAYBE show_Tuplet_Number a ++
 show_MAYBE show_Tuplet_Type b ++
 show_LIST show_Tuplet_Dot c)
-- |
type Tuplet_Normal = (Maybe Tuplet_Number, Maybe Tuplet_Type, [Tuplet_Dot])
-- |
read_Tuplet_Normal :: Eq i => STM Result [Content i] Tuplet_Normal
read_Tuplet_Normal = do
 y <- read_ELEMENT "tuplet-normal"
 read_3 (read_MAYBE read_Tuplet_Number)
 (read_MAYBE read_Tuplet_Type)
 (read_LIST read_Tuplet_Dot) (childs y)
-- |
show_Tuplet_Normal :: Tuplet_Normal -> [Content ()]
show_Tuplet_Normal (a,b,c) =
 show_ELEMENT "tuplet-normal" []
 (show_MAYBE show_Tuplet_Number a ++
 show_MAYBE show_Tuplet_Type b ++
 show_LIST show_Tuplet_Dot c)
-- |
type Tuplet_Number = ((Font, Color), PCDATA)
-- |
read_Tuplet_Number :: STM Result [Content i] Tuplet_Number
read_Tuplet_Number = do
 y <- read_ELEMENT "tuplet-number"
 y1 <- read_2 read_Font read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Tuplet_Number :: Tuplet_Number -> [Content ()]
show_Tuplet_Number ((a,b),c) =
 show_ELEMENT "tuplet-number"
 (show_Font a ++ show_Color b)
 (show_PCDATA c)
-- |
type Tuplet_Type = ((Font, Color), PCDATA)
-- |
read_Tuplet_Type :: STM Result [Content i] Tuplet_Type
read_Tuplet_Type = do
 y <- read_ELEMENT "tuplet-type"
 y1 <- read_2 read_Font read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Tuplet_Type :: Tuplet_Type -> [Content ()]
show_Tuplet_Type ((a,b),c) =
 show_ELEMENT "tuplet-type"
 (show_Font a ++ show_Color b)
 (show_PCDATA c)
-- |
type Tuplet_Dot = ((Font, Color), ())
-- |
read_Tuplet_Dot :: STM Result [Content i] Tuplet_Dot
read_Tuplet_Dot = do
 y <- read_ELEMENT "tuplet-dot"
 y1 <- read_2 read_Font read_Color (attributes y)
 return (y1,())
-- |
show_Tuplet_Dot :: Tuplet_Dot -> [Content ()]
show_Tuplet_Dot ((a,b),_) =
 show_ELEMENT "tuplet-dot"
 (show_Font a ++ show_Color b) []
\end{code}

\begin{musicxml}
	Glissando and slide elements both indicate rapidly moving
	from one pitch to the other so that individual notes are not
	discerned. The distinction is similar to that between NIFF's
	glissando and portamento elements. A glissando sounds the
	half notes in between the slide and defaults to a wavy line.
	A slide is continuous between two notes and defaults to a
	solid line. The optional text for a glissando or slide is
	printed alongside the line.
\end{musicxml}
\begin{code}
-- *** Glissando
-- |
type Glissando = ((Start_Stop, Number_Level, Line_Type, Print_Style),Text)
-- |
read_Glissando :: STM Result [Content i] Glissando
read_Glissando = do
 y <- read_ELEMENT "glissando"
 y1 <- read_4 (read_REQUIRED "type" read_Start_Stop)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Line_Type read_Print_Style (attributes y)
 y2 <- read_1 read_Text (childs y)
 return (y1,y2)
-- |
show_Glissando :: Glissando -> [Content ()]
show_Glissando ((a,b,c,d),e) =
 show_ELEMENT "glissando"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Line_Type c ++ show_Print_Style d)
 (show_Text e)
-- *** Slide
-- |
type Slide = ((Start_Stop, Number_Level, Line_Type, Print_Style, Bend_Sound),Text)
-- |
read_Slide :: STM Result [Content i] Slide
read_Slide = do
 y <- read_ELEMENT "slide"
 y1 <- read_5 (read_REQUIRED "type" read_Start_Stop)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Line_Type read_Print_Style read_Bend_Sound
 (attributes y)
 y2 <- read_1 read_Text (childs y)
 return (y1,y2)
-- |
show_Slide :: Slide -> [Content ()]
show_Slide ((a,b,c,d,e),f) =
 show_ELEMENT "slide"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Line_Type c ++ show_Print_Style d ++
 show_Bend_Sound e)
 (show_Text f)
\end{code}

\begin{musicxml}
	The other-notation element is used to define any notations
	not yet in the MusicXML format. This allows extended
	representation, though without application interoperability.
	It handles notations where more specific extension elements
	such as other-dynamics and other-technical are not
	appropriate.
\end{musicxml}
\begin{code}
-- |
type Other_Notation = ((Start_Stop_Single, Number_Level, Print_Object,
 Print_Style, Placement), PCDATA)
-- |
read_Other_Notation :: STM Result [Content i] Other_Notation
read_Other_Notation = do
 y <- read_ELEMENT "other-notation"
 y1 <- read_5 (read_REQUIRED "type" read_Start_Stop_Single)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Print_Object read_Print_Style read_Placement
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Other_Notation :: Other_Notation -> [Content ()]
show_Other_Notation ((a,b,c,d,e),f) =
 show_ELEMENT "other-notation"
 (show_REQUIRED "type" show_Start_Stop_Single a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Print_Object c ++ show_Print_Style d ++
 show_Placement e)
 (show_PCDATA f)
\end{code}

\begin{musicxml}
	Ornaments can be any of several types, followed optionally
	by accidentals. The accidental-mark element's content is
	represented the same as an accidental element, but with a
	different name to reflect the different musical meaning.
\end{musicxml}
\begin{code}
-- *** Ornaments
-- |
type Ornaments = [(Ornaments_, [Accidental_Mark])]
-- |
read_Ornaments :: Eq i => STM Result [Content i] Ornaments
read_Ornaments = do
 y <- read_ELEMENT "ornaments"
 read_1 (read_LIST read_Ornaments_aux1) (childs y)
read_Ornaments_aux1 :: Eq i => STM Result [Content i] (Ornaments_, [Accidental_Mark])
read_Ornaments_aux1 = do
 y1 <- read_Ornaments_
 y2 <- read_LIST read_Accidental_Mark
 return (y1,y2)
-- |
show_Ornaments :: Ornaments -> [Content ()]
show_Ornaments l =
 show_ELEMENT "ornaments" [] (show_LIST show_Ornaments_aux1 l)
show_Ornaments_aux1 :: (Ornaments_, [Accidental_Mark]) -> [Content ()]
show_Ornaments_aux1 (a,b) =
 show_Ornaments_ a ++ show_LIST show_Accidental_Mark b
-- |
data Ornaments_ = Ornaments_1 Trill_Mark
 | Ornaments_2 Turn
 | Ornaments_3 Delayed_Turn
 | Ornaments_4 Inverted_Turn
 | Ornaments_5 Shake
 | Ornaments_6 Wavy_Line
 | Ornaments_7 Mordent
 | Ornaments_8 Inverted_Mordent
 | Ornaments_9 Schleifer
 | Ornaments_10 Tremolo
 | Ornaments_11 Other_Ornament
 deriving (Eq, Show)
-- |
read_Ornaments_ :: STM Result [Content i] Ornaments_
read_Ornaments_ =
 (read_Trill_Mark >>= return . Ornaments_1) `mplus`
 (read_Turn >>= return . Ornaments_2) `mplus`
 (read_Delayed_Turn >>= return . Ornaments_3) `mplus`
 (read_Inverted_Turn >>= return . Ornaments_4) `mplus`
 (read_Shake >>= return . Ornaments_5) `mplus`
 (read_Wavy_Line >>= return . Ornaments_6) `mplus`
 (read_Mordent >>= return . Ornaments_7) `mplus`
 (read_Inverted_Mordent >>= return . Ornaments_8) `mplus`
 (read_Schleifer >>= return . Ornaments_9) `mplus`
 (read_Tremolo >>= return . Ornaments_10) `mplus`
 (read_Other_Ornament >>= return . Ornaments_11)
-- |
show_Ornaments_ :: Ornaments_ -> [Content ()]
show_Ornaments_ (Ornaments_1 x) = show_Trill_Mark x
show_Ornaments_ (Ornaments_2 x) = show_Turn x
show_Ornaments_ (Ornaments_3 x) = show_Delayed_Turn x
show_Ornaments_ (Ornaments_4 x) = show_Inverted_Turn x
show_Ornaments_ (Ornaments_5 x) = show_Shake x
show_Ornaments_ (Ornaments_6 x) = show_Wavy_Line x
show_Ornaments_ (Ornaments_7 x) = show_Mordent x
show_Ornaments_ (Ornaments_8 x) = show_Inverted_Mordent x
show_Ornaments_ (Ornaments_9 x) = show_Schleifer x
show_Ornaments_ (Ornaments_10 x) = show_Tremolo x
show_Ornaments_ (Ornaments_11 x) = show_Other_Ornament x
-- |
type Trill_Mark = ((Print_Style, Placement, Trill_Sound),())
-- |
read_Trill_Mark :: STM Result [Content i] Trill_Mark
read_Trill_Mark = do
 y <- read_ELEMENT "trill-mark"
 y1 <- read_3 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Trill_Mark :: Trill_Mark -> [Content ()]
show_Trill_Mark ((a,b,c),_) =
 show_ELEMENT "trill-mark"
 (show_Print_Style a ++
 show_Placement b ++
 show_Trill_Sound c) []
\end{code}

\begin{musicxml}
	The turn and delayed-turn elements are the normal turn
	shape which goes up then down. The delayed-turn element
	indicates a turn that is delayed until the end of the
	current note. The inverted-turn element has the shape
	which goes down and then up.
\end{musicxml}
\begin{code}
-- |
type Turn = ((Print_Style, Placement, Trill_Sound), ())
-- |
read_Turn :: STM Result [Content i] Turn
read_Turn = do
 y <- read_ELEMENT "turn"
 y1 <- read_3 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Turn :: Turn -> [Content ()]
show_Turn ((a,b,c),_) =
 show_ELEMENT "turn"
 (show_Print_Style a ++
 show_Placement b ++
 show_Trill_Sound c) []
-- |
type Delayed_Turn = ((Print_Style, Placement, Trill_Sound), ())
-- |
read_Delayed_Turn :: STM Result [Content i] Delayed_Turn
read_Delayed_Turn = do
 y <- read_ELEMENT "delayed-turn"
 y1 <- read_3 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Delayed_Turn :: Delayed_Turn -> [Content ()]
show_Delayed_Turn ((a,b,c),_) =
 show_ELEMENT "delayed-turn"
 (show_Print_Style a ++
 show_Placement b ++
 show_Trill_Sound c) []
-- |
type Inverted_Turn = ((Print_Style, Placement, Trill_Sound), ())
-- |
read_Inverted_Turn :: STM Result [Content i] Inverted_Turn
read_Inverted_Turn = do
 y <- read_ELEMENT "inverted-turn"
 y1 <- read_3 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Inverted_Turn :: Inverted_Turn -> [Content ()]
show_Inverted_Turn ((a,b,c),_) =
 show_ELEMENT "inverted-turn"
 (show_Print_Style a ++
 show_Placement b ++
 show_Trill_Sound c) []
-- |
type Shake = ((Print_Style, Placement, Trill_Sound), ())
-- |
read_Shake :: STM Result [Content i] Shake
read_Shake = do
 y <- read_ELEMENT "shake"
 y1 <- read_3 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Shake :: Shake -> [Content ()]
show_Shake ((a,b,c),_) =
 show_ELEMENT "shake"
 (show_Print_Style a ++
 show_Placement b ++
 show_Trill_Sound c) []
\end{code}

\begin{musicxml}
	The wavy-line element is defined in the Common.lhs file,
	as it applies to more than just note elements.

	The long attribute for the mordent and inverted-mordent
	elements is "no" by default. The mordent element represents
	the sign with the vertical line; the inverted-mordent
	element represents the sign without the vertical line.
\end{musicxml}
\begin{code}
-- |
type Mordent = ((Maybe Yes_No, Print_Style, Placement, Trill_Sound), ())
-- |
read_Mordent :: STM Result [Content i] Mordent
read_Mordent = do
 y <- read_ELEMENT "mordent"
 y1 <- read_4 (read_IMPLIED "long" read_Yes_No)
 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Mordent :: Mordent -> [Content ()]
show_Mordent ((a,b,c,d),_) =
 show_ELEMENT "mordent"
 (show_IMPLIED [] show_Yes_No a ++
 show_Print_Style b ++
 show_Placement c ++
 show_Trill_Sound d) []
-- |
type Inverted_Mordent = ((Maybe Yes_No, Print_Style, Placement, Trill_Sound), ())
-- |
read_Inverted_Mordent :: STM Result [Content i] Inverted_Mordent
read_Inverted_Mordent = do
 y <- read_ELEMENT "inverted-mordent"
 y1 <- read_4 (read_IMPLIED "long" read_Yes_No)
 read_Print_Style read_Placement read_Trill_Sound
 (attributes y)
 return (y1,())
-- |
show_Inverted_Mordent :: Inverted_Mordent -> [Content ()]
show_Inverted_Mordent ((a,b,c,d),_) =
 show_ELEMENT "inverted-mordent"
 (show_IMPLIED [] show_Yes_No a ++
 show_Print_Style b ++
 show_Placement c ++
 show_Trill_Sound d) []
\end{code}

\begin{musicxml}
	The name for this ornament is based on the German,
	to avoid confusion with the more common slide element
	defined earlier.
\end{musicxml}
\begin{code}
-- |
type Schleifer = ((Print_Style, Placement), ())
-- |
read_Schleifer :: STM Result [Content i] Schleifer
read_Schleifer = do
 y <- read_ELEMENT "schleifer"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Schleifer :: Schleifer -> [Content ()]
show_Schleifer ((a,b),_) =
 show_ELEMENT "schleifer" (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	While using repeater beams is the preferred method for
	indicating tremolos, often playback and display are not
	well-enough integrated in an application to make that
	feasible. The tremolo ornament can be used to indicate
	either single-note or double-note tremolos. Single-note
	tremolos use the single type, while double-note tremolos
	use the start and stop types. The default is "single" for
	compatibility with Version 1.1. The text of the element
	indicates the number of tremolo marks and is an integer
	from 0 to 6. Note that the number of attached beams is
	not included in this value, but is represented separately
	using the beam element.
\end{musicxml}
\begin{code}
-- |
type Tremolo = ((Start_Stop_Single, Print_Style, Placement), PCDATA)
-- |
read_Tremolo :: STM Result [Content i] Tremolo
read_Tremolo = do
 y <- read_ELEMENT "tremolo"
 y1 <- read_3 (read_DEFAULT "type" read_Start_Stop_Single Start_Stop_Single_3)
 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Tremolo :: Tremolo -> [Content ()]
show_Tremolo ((a,b,c),d) =
 show_ELEMENT "tremolo"
 (show_IMPLIED "type" show_Start_Stop_Single (Just a) ++
 show_Print_Style b ++ show_Placement c)
 (show_PCDATA d)
\end{code}

\begin{musicxml}
	The other-ornament element is used to define any ornaments
	not yet in the MusicXML format. This allows extended
	representation, though without application interoperability.
\end{musicxml}
\begin{code}
-- |
type Other_Ornament = ((Print_Style, Placement), PCDATA)
-- |
read_Other_Ornament :: STM Result [Content i] Other_Ornament
read_Other_Ornament = do
 y <- read_ELEMENT "other-ornament"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Other_Ornament :: Other_Ornament -> [Content ()]
show_Other_Ornament ((a,b),c) =
 show_ELEMENT "other-ornament"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	An accidental-mark can be used as a separate notation or
	as part of an ornament. When used in an ornament, position
	and placement are relative to the ornament, not relative to
	the note.
\end{musicxml}
\begin{code}
-- |
type Accidental_Mark = ((Print_Style, Placement), CDATA)
-- |
read_Accidental_Mark :: STM Result [Content i] Accidental_Mark
read_Accidental_Mark = do
 y <- read_ELEMENT "accidental-mark"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Accidental_Mark :: Accidental_Mark -> [Content ()]
show_Accidental_Mark ((a,b),c) =
 show_ELEMENT "accidental-mark"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	Technical indications give performance information for
	individual instruments.
\end{musicxml}
\begin{code}
-- *** Technical
-- |
type Technical = [Technical_]
-- |
read_Technical :: Eq i => STM Result [Content i] Technical
read_Technical = do
 y <- read_ELEMENT "technical"
 read_1 (read_LIST read_Technical_) (childs y)
-- |
show_Technical :: Technical -> [Content ()]
show_Technical x =
 show_ELEMENT "technical" [] (show_LIST show_Technical_ x)
-- |
data Technical_ = Technical_1 Up_Bow
 | Technical_2 Down_Bow
 | Technical_3 Harmonic
 | Technical_4 Open_String
 | Technical_5 Thumb_Position
 | Technical_6 Fingering
 | Technical_7 Pluck
 | Technical_8 Double_Tongue
 | Technical_9 Triple_Tongue
 | Technical_10 Stopped
 | Technical_11 Snap_Pizzicato
 | Technical_12 Fret
 | Technical_13 String
 | Technical_14 Hammer_On
 | Technical_15 Pull_Off
 | Technical_16 Bend
 | Technical_17 Tap
 | Technical_18 Heel
 | Technical_19 Toe
 | Technical_20 Fingernails
 | Technical_21 Other_Technical
 deriving (Eq, Show)
-- |
read_Technical_ :: STM Result [Content i] Technical_
read_Technical_ =
 (read_Up_Bow >>= return . Technical_1) `mplus`
 (read_Down_Bow >>= return . Technical_2) `mplus`
 (read_Harmonic >>= return . Technical_3) `mplus`
 (read_Open_String >>= return . Technical_4) `mplus`
 (read_Thumb_Position >>= return . Technical_5) `mplus`
 (read_Fingering >>= return . Technical_6) `mplus`
 (read_Pluck >>= return . Technical_7) `mplus`
 (read_Double_Tongue >>= return . Technical_8) `mplus`
 (read_Triple_Tongue >>= return . Technical_9) `mplus`
 (read_Stopped >>= return . Technical_10) `mplus`
 (read_Snap_Pizzicato >>= return . Technical_11) `mplus`
 (read_Fret >>= return . Technical_12) `mplus`
 (read_String >>= return . Technical_13) `mplus`
 (read_Hammer_On >>= return . Technical_14) `mplus`
 (read_Pull_Off >>= return . Technical_15) `mplus`
 (read_Bend >>= return . Technical_16) `mplus`
 (read_Tap >>= return . Technical_17) `mplus`
 (read_Heel >>= return . Technical_18) `mplus`
 (read_Toe >>= return . Technical_19) `mplus`
 (read_Fingernails >>= return . Technical_20) `mplus`
 (read_Other_Technical >>= return . Technical_21)
-- |
show_Technical_ :: Technical_ -> [Content ()]
show_Technical_ (Technical_1 x) = show_Up_Bow x
show_Technical_ (Technical_2 x) = show_Down_Bow x
show_Technical_ (Technical_3 x) = show_Harmonic x
show_Technical_ (Technical_4 x) = show_Open_String x
show_Technical_ (Technical_5 x) = show_Thumb_Position x
show_Technical_ (Technical_6 x) = show_Fingering x
show_Technical_ (Technical_7 x) = show_Pluck x
show_Technical_ (Technical_8 x) = show_Double_Tongue x
show_Technical_ (Technical_9 x) = show_Triple_Tongue x
show_Technical_ (Technical_10 x) = show_Stopped x
show_Technical_ (Technical_11 x) = show_Snap_Pizzicato x
show_Technical_ (Technical_12 x) = show_Fret x
show_Technical_ (Technical_13 x) = show_String x
show_Technical_ (Technical_14 x) = show_Hammer_On x
show_Technical_ (Technical_15 x) = show_Pull_Off x
show_Technical_ (Technical_16 x) = show_Bend x
show_Technical_ (Technical_17 x) = show_Tap x
show_Technical_ (Technical_18 x) = show_Heel x
show_Technical_ (Technical_19 x) = show_Toe x
show_Technical_ (Technical_20 x) = show_Fingernails x
show_Technical_ (Technical_21 x) = show_Other_Technical x
\end{code}

\begin{musicxml}
	The up-bow and down-bow elements represent the symbol
	that is used both for bowing indications on bowed
	instruments, and up-stroke / down-stoke indications
	on plucked instruments.
\end{musicxml}
\begin{code}
-- |
type Up_Bow = ((Print_Style, Placement), ())
-- |
read_Up_Bow :: STM Result [Content i] Up_Bow
read_Up_Bow = do
 y <- read_ELEMENT "up-bow"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Up_Bow :: Up_Bow -> [Content ()]
show_Up_Bow ((a,b),_) =
 show_ELEMENT "up-bow"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Down_Bow = ((Print_Style, Placement), ())
-- |
read_Down_Bow :: STM Result [Content i] Down_Bow
read_Down_Bow = do
 y <- read_ELEMENT "down-bow"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Down_Bow :: Down_Bow -> [Content ()]
show_Down_Bow ((a,b),_) =
 show_ELEMENT "down-bow"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The harmonic element indicates natural and artificial
	harmonics. Natural harmonics usually notate the base
	pitch rather than the sounding pitch. Allowing the type
	of pitch to be specified, combined with controls for
	appearance/playback differences, allows both the notation
	and the sound to be represented. Artificial harmonics can
	add a notated touching-pitch; the pitch or fret at which
	the string is touched lightly to produce the harmonic.
	Artificial pinch harmonics will usually not notate a
	touching pitch. The attributes for the harmonic element
	refer to the use of the circular harmonic symbol, typically
	but not always used with natural harmonics.
\end{musicxml}
\begin{code}
type Harmonic = ((Print_Object, Print_Style, Placement),
 (Maybe Harmonic_A, Maybe Harmonic_B))
-- |
read_Harmonic :: STM Result [Content i] Harmonic
read_Harmonic = do
 y <- read_ELEMENT "harmonic"
 y1 <- read_3 read_Print_Object read_Print_Style
 read_Placement (attributes y)
 y2 <- read_2 (read_MAYBE read_Harmonic_A)
 (read_MAYBE read_Harmonic_B) (childs y)
 return (y1,y2)
-- |
show_Harmonic :: Harmonic -> [Content ()]
show_Harmonic ((a,b,c),(d,e)) =
 show_ELEMENT "harmonic"
 (show_Print_Object a ++
 show_Print_Style b ++
 show_Placement c)
 (show_MAYBE show_Harmonic_A d ++
 show_MAYBE show_Harmonic_B e)
data Harmonic_A = Harmonic_1 Natural
 | Harmonic_2 Artificial
 deriving (Eq, Show)
-- |
read_Harmonic_A :: STM Result [Content i] Harmonic_A
read_Harmonic_A =
 (read_Natural >>= return . Harmonic_1) `mplus`
 (read_Artificial >>= return . Harmonic_2)
-- |
show_Harmonic_A :: Harmonic_A -> [Content ()]
show_Harmonic_A (Harmonic_1 x) = show_Natural x
show_Harmonic_A (Harmonic_2 x) = show_Artificial x
-- |
data Harmonic_B = Harmonic_3 Base_Pitch
 | Harmonic_4 Touching_Pitch
 | Harmonic_5 Sounding_Pitch
 deriving (Eq, Show)
-- |
read_Harmonic_B :: STM Result [Content i] Harmonic_B
read_Harmonic_B =
 (read_Base_Pitch >>= return . Harmonic_3) `mplus`
 (read_Touching_Pitch >>= return . Harmonic_4) `mplus`
 (read_Sounding_Pitch >>= return . Harmonic_5)
-- |
show_Harmonic_B :: Harmonic_B -> [Content ()]
show_Harmonic_B (Harmonic_3 x) = show_Base_Pitch x
show_Harmonic_B (Harmonic_4 x) = show_Touching_Pitch x
show_Harmonic_B (Harmonic_5 x) = show_Sounding_Pitch x
-- |
type Natural = ()
-- |
read_Natural :: STM Result [Content i] Natural
read_Natural = do
 read_ELEMENT "natural" >> return ()
-- |
show_Natural :: Natural -> [Content ()]
show_Natural _ = show_ELEMENT "natural" [] []
-- |
type Artificial = ()
-- |
read_Artificial :: STM Result [Content i] Artificial
read_Artificial = do
 read_ELEMENT "artificial" >> return ()
-- |
show_Artificial :: Artificial -> [Content ()]
show_Artificial _ = show_ELEMENT "artificial" [] []
-- |
type Base_Pitch = ()
-- |
read_Base_Pitch :: STM Result [Content i] Base_Pitch
read_Base_Pitch = do
 read_ELEMENT "base-picth" >> return ()
-- |
show_Base_Pitch :: Base_Pitch -> [Content ()]
show_Base_Pitch _ = show_ELEMENT "base-pitch" [] []
-- |
type Touching_Pitch = ()
-- |
read_Touching_Pitch :: STM Result [Content i] Touching_Pitch
read_Touching_Pitch = do
 read_ELEMENT "touching-pitch" >> return ()
-- |
show_Touching_Pitch :: Touching_Pitch -> [Content ()]
show_Touching_Pitch _ = show_ELEMENT "touching-picth" [] []
-- |
type Sounding_Pitch = ()
-- |
read_Sounding_Pitch :: STM Result [Content i] Sounding_Pitch
read_Sounding_Pitch = do
 read_ELEMENT "sounding-picth" >> return ()
-- |
show_Sounding_Pitch :: Sounding_Pitch -> [Content ()]
show_Sounding_Pitch _ = show_ELEMENT "sounding-pitch" [] []
-- |
type Open_String = ((Print_Style, Placement),())
-- |
read_Open_String :: STM Result [Content i] Open_String
read_Open_String = do
 y <- read_ELEMENT "open-string"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Open_String :: Open_String -> [Content ()]
show_Open_String ((a,b),_) =
 show_ELEMENT "open-string"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Thumb_Position = ((Print_Style, Placement),())
-- |
read_Thumb_Position :: STM Result [Content i] Thumb_Position
read_Thumb_Position = do
 y <- read_ELEMENT "thumb-position"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Thumb_Position :: Thumb_Position -> [Content ()]
show_Thumb_Position ((a,b),_) =
 show_ELEMENT "thumb-position"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The pluck element is used to specify the plucking fingering
	on a fretted instrument, where the fingering element refers
	to the fretting fingering. Typical values are p, i, m, a for
	pulgar/thumb, indicio/index, medio/middle, and anular/ring
	fingers.
\end{musicxml}
\begin{code}
-- |
type Pluck = ((Print_Style, Placement), PCDATA)
-- |
read_Pluck :: STM Result [Content i] Pluck
read_Pluck = do
 y <- read_ELEMENT "pluck"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Pluck :: Pluck -> [Content ()]
show_Pluck ((a,b),c) =
 show_ELEMENT "pluck"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
-- |
type Double_Tongue = ((Print_Style, Placement),())
-- |
read_Double_Tongue :: STM Result [Content i] Double_Tongue
read_Double_Tongue = do
 y <- read_ELEMENT "double-tongue"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Double_Tongue :: Double_Tongue -> [Content ()]
show_Double_Tongue ((a,b),_) =
 show_ELEMENT "double-tongue"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Triple_Tongue = ((Print_Style, Placement),())
-- |
read_Triple_Tongue :: STM Result [Content i] Triple_Tongue
read_Triple_Tongue = do
 y <- read_ELEMENT "triple-tongue"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Triple_Tongue :: Triple_Tongue -> [Content ()]
show_Triple_Tongue ((a,b),_) =
 show_ELEMENT "triple-tongue"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Stopped = ((Print_Style, Placement),())
-- |
read_Stopped :: STM Result [Content i] Stopped
read_Stopped = do
 y <- read_ELEMENT "stopped"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Stopped :: Stopped -> [Content ()]
show_Stopped ((a,b),_) =
 show_ELEMENT "stopped"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Snap_Pizzicato = ((Print_Style, Placement),())
-- |
read_Snap_Pizzicato :: STM Result [Content i] Snap_Pizzicato
read_Snap_Pizzicato = do
 y <- read_ELEMENT "snap-pizzicato"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Snap_Pizzicato :: Snap_Pizzicato -> [Content ()]
show_Snap_Pizzicato ((a,b),_) =
 show_ELEMENT "snap-pizzicato"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The hammer-on and pull-off elements are used in guitar
	and fretted instrument notation. Since a single slur
	can be marked over many notes, the hammer-on and pull-off
	elements are separate so the individual pair of notes can
	be specified. The element content can be used to specify
	how the hammer-on or pull-off should be notated. An empty
	element leaves this choice up to the application.
\end{musicxml}
\begin{code}
-- |
type Hammer_On = ((Start_Stop, Number_Level, Print_Style, Placement), PCDATA)
-- |
read_Hammer_On :: STM Result [Content i] Hammer_On
read_Hammer_On = do
 y <- read_ELEMENT "hammer-on"
 y1 <- read_4 (read_REQUIRED "type" read_Start_Stop)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Hammer_On :: Hammer_On -> [Content ()]
show_Hammer_On ((a,b,c,d),e) =
 show_ELEMENT "hammer-on"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Print_Style c ++ show_Placement d)
 (show_PCDATA e)
-- |
type Pull_Off = ((Start_Stop, Number_Level, Print_Style, Placement), PCDATA)
-- |
read_Pull_Off :: STM Result [Content i] Pull_Off
read_Pull_Off = do
 y <- read_ELEMENT "pull-off"
 y1 <- read_4 (read_REQUIRED "type" read_Start_Stop)
 (read_DEFAULT "number" read_Number_Level Number_Level_1)
 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Pull_Off :: Pull_Off -> [Content ()]
show_Pull_Off ((a,b,c,d),e) =
 show_ELEMENT "pull-off"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_IMPLIED "number" show_Number_Level (Just b) ++
 show_Print_Style c ++ show_Placement d)
 (show_PCDATA e)
\end{code}

\begin{musicxml}
	The bend element is used in guitar and tablature. The
	bend-alter element indicates the number of steps in the
	bend, similar to the alter element. As with the alter
	element, numbers like 0.5 can be used to indicate
	microtones. Negative numbers indicate pre-bends or
	releases; the pre-bend and release elements are used
	to distinguish what is intended. A with-bar element
	indicates that the bend is to be done at the bridge
	with a whammy or vibrato bar. The content of the
	element indicates how this should be notated.
\end{musicxml}
\begin{code}
-- |
type Bend = ((Print_Style, Bend_Sound),
 (Bend_Alter, Maybe Bend_, Maybe With_Bar))
-- |
read_Bend :: STM Result [Content i] Bend
read_Bend = do
 y <- read_ELEMENT "bend"
 y1 <- read_2 read_Print_Style read_Bend_Sound (attributes y)
 y2 <- read_3 read_Bend_Alter (read_MAYBE read_Bend_)
 (read_MAYBE read_With_Bar) (childs y)
 return (y1,y2)
-- |
show_Bend :: Bend -> [Content ()]
show_Bend ((a,b),(c,d,e)) =
 show_ELEMENT "bend"
 (show_Print_Style a ++ show_Bend_Sound b)
 (show_Bend_Alter c ++
 show_MAYBE show_Bend_ d ++
 show_MAYBE show_With_Bar e)
-- |
data Bend_ = Bend_1 Pre_Bend | Bend_2 Release
 deriving (Eq, Show)
-- |
read_Bend_ :: STM Result [Content i] Bend_
read_Bend_ =
 (read_Pre_Bend >>= return . Bend_1) `mplus`
 (read_Release >>= return . Bend_2)
-- |
show_Bend_ :: Bend_ -> [Content ()]
show_Bend_ (Bend_1 x) = show_Pre_Bend x
show_Bend_ (Bend_2 x) = show_Release x
-- |
type Bend_Alter = PCDATA
-- |
read_Bend_Alter :: STM Result [Content i] Bend_Alter
read_Bend_Alter = do
 y <- read_ELEMENT "bend-alter"
 read_1 read_PCDATA (childs y)
-- |
show_Bend_Alter :: Bend_Alter -> [Content ()]
show_Bend_Alter a = show_ELEMENT "bend-alter" [] (show_PCDATA a)
-- |
type Pre_Bend = ()
-- |
read_Pre_Bend :: STM Result [Content i] Pre_Bend
read_Pre_Bend = read_ELEMENT "pre-bend" >> return ()
-- |
show_Pre_Bend :: Pre_Bend -> [Content ()]
show_Pre_Bend _ = show_ELEMENT "pre-bend" [] []
-- |
type Release = ()
-- |
read_Release :: STM Result [Content i] Release
read_Release = read_ELEMENT "release" >> return ()
-- |
show_Release :: Release -> [Content ()]
show_Release _ = show_ELEMENT "release" [] []
-- |
type With_Bar = ((Print_Style, Placement), CDATA)
-- |
read_With_Bar :: STM Result [Content i] With_Bar
read_With_Bar = do
 y <- read_ELEMENT "with-bar"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_With_Bar :: With_Bar -> [Content ()]
show_With_Bar ((a,b),c) =
 show_ELEMENT "with-bar"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The tap element indicates a tap on the fretboard. The
	element content allows specification of the notation;
	+ and T are common choices. If empty, the display is
	application-specific.
\end{musicxml}
\begin{code}
-- |
type Tap = ((Print_Style, Placement), CDATA)
-- |
read_Tap :: STM Result [Content i] Tap
read_Tap = do
 y <- read_ELEMENT "tap"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Tap :: Tap -> [Content ()]
show_Tap ((a,b),c) =
 show_ELEMENT "tap"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	The heel and toe element are used with organ pedals. The
	substitution value is "no" if the attribute is not present.
\end{musicxml}
\begin{code}
-- |
type Heel = ((Maybe Yes_No, Print_Style, Placement), ())
-- |
read_Heel :: STM Result [Content i] Heel
read_Heel = do
 y <- read_ELEMENT "heel"
 y1 <- read_3 (read_IMPLIED "substitution" read_Yes_No)
 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Heel :: Heel -> [Content ()]
show_Heel ((a,b,c),_) =
 show_ELEMENT "heel"
 (show_IMPLIED "substitution" show_Yes_No a ++
 show_Print_Style b ++
 show_Placement c) []
-- |
type Toe = ((Maybe Yes_No, Print_Style, Placement), ())
-- |
read_Toe :: STM Result [Content i] Toe
read_Toe = do
 y <- read_ELEMENT "toe"
 y1 <- read_3 (read_IMPLIED "substitution" read_Yes_No)
 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Toe :: Toe -> [Content ()]
show_Toe ((a,b,c),_) =
 show_ELEMENT "toe"
 (show_IMPLIED "substitution" show_Yes_No a ++
 show_Print_Style b ++
 show_Placement c) []
\end{code}

\begin{musicxml}
	The fingernails element is used in harp notation.
\end{musicxml}
\begin{code}
-- |
type Fingernails = ((Print_Style, Placement), ())
-- |
read_Fingernails :: STM Result [Content i] Fingernails
read_Fingernails = do
 y <- read_ELEMENT "fingernails"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1, ())
-- |
show_Fingernails :: Fingernails -> [Content ()]
show_Fingernails ((a,b),_) =
 show_ELEMENT "fingernails"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The other-technical element is used to define any technical
	indications not yet in the MusicXML format. This allows
	extended representation, though without application
	interoperability.
\end{musicxml}
\begin{code}
-- |
type Other_Technical = ((Print_Style, Placement), CDATA)
-- |
read_Other_Technical :: STM Result [Content i] Other_Technical
read_Other_Technical = do
 y <- read_ELEMENT "other-technical"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Other_Technical :: Other_Technical -> [Content ()]
show_Other_Technical ((a,b),c) =
 show_ELEMENT "other-technical"
 (show_Print_Style a ++ show_Placement b)
 (show_PCDATA c)
\end{code}

\begin{musicxml}
	Articulations and accents are grouped together here.
\end{musicxml}
\begin{code}
-- *** Articulations
-- |
type Articulations = [Articulations_]
-- |
read_Articulations :: Eq i => STM Result [Content i] Articulations
read_Articulations = do
 y <- read_ELEMENT "articulations"
 read_1 (read_LIST read_Articulations_) (childs y)
-- |
show_Articulations :: Articulations -> [Content ()]
show_Articulations a =
 show_ELEMENT "articulations" [] (show_LIST show_Articulations_ a)
data Articulations_ = Articulations_1 Accent
 | Articulations_2 Strong_Accent
 | Articulations_3 Staccato
 | Articulations_4 Tenuto
 | Articulations_5 Detached_Legato
 | Articulations_6 Staccatissimo
 | Articulations_7 Spiccato
 | Articulations_8 Scoop
 | Articulations_9 Plop
 | Articulations_10 Doit
 | Articulations_11 Falloff
 | Articulations_12 Breath_Mark
 | Articulations_13 Caesura
 | Articulations_14 Stress
 | Articulations_15 Unstress
 | Articulations_16 Other_Articulation
 deriving (Eq, Show)
-- |
read_Articulations_ :: STM Result [Content i] Articulations_
read_Articulations_ =
 (read_Accent >>= return . Articulations_1) `mplus`
 (read_Strong_Accent >>= return . Articulations_2) `mplus`
 (read_Staccato >>= return . Articulations_3) `mplus`
 (read_Tenuto >>= return . Articulations_4) `mplus`
 (read_Detached_Legato >>= return . Articulations_5) `mplus`
 (read_Staccatissimo >>= return . Articulations_6) `mplus`
 (read_Spiccato >>= return . Articulations_7) `mplus`
 (read_Scoop >>= return . Articulations_8) `mplus`
 (read_Plop >>= return . Articulations_9) `mplus`
 (read_Doit >>= return . Articulations_10) `mplus`
 (read_Falloff >>= return . Articulations_11) `mplus`
 (read_Breath_Mark >>= return . Articulations_12) `mplus`
 (read_Caesura >>= return . Articulations_13) `mplus`
 (read_Stress >>= return . Articulations_14) `mplus`
 (read_Unstress >>= return . Articulations_15) `mplus`
 (read_Other_Articulation >>= return . Articulations_16)
-- |
show_Articulations_ :: Articulations_ -> [Content ()]
show_Articulations_ (Articulations_1 x) = show_Accent x
show_Articulations_ (Articulations_2 x) = show_Strong_Accent x
show_Articulations_ (Articulations_3 x) = show_Staccato x
show_Articulations_ (Articulations_4 x) = show_Tenuto x
show_Articulations_ (Articulations_5 x) = show_Detached_Legato x
show_Articulations_ (Articulations_6 x) = show_Staccatissimo x
show_Articulations_ (Articulations_7 x) = show_Spiccato x
show_Articulations_ (Articulations_8 x) = show_Scoop x
show_Articulations_ (Articulations_9 x) = show_Plop x
show_Articulations_ (Articulations_10 x) = show_Doit x
show_Articulations_ (Articulations_11 x) = show_Falloff x
show_Articulations_ (Articulations_12 x) = show_Breath_Mark x
show_Articulations_ (Articulations_13 x) = show_Caesura x
show_Articulations_ (Articulations_14 x) = show_Stress x
show_Articulations_ (Articulations_15 x) = show_Unstress x
show_Articulations_ (Articulations_16 x) = show_Other_Articulation x
-- |
type Accent = ((Print_Style, Placement), ())
-- |
read_Accent :: STM Result [Content i] Accent
read_Accent = do
 y <- read_ELEMENT "accent"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Accent :: Accent -> [Content ()]
show_Accent ((a,b),_) =
 show_ELEMENT "accent"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Strong_Accent = ((Print_Style, Placement, Up_Down), ())
-- |
read_Strong_Accent :: STM Result [Content i] Strong_Accent
read_Strong_Accent = do
 y <- read_ELEMENT "strong-accent"
 y1 <- read_3 read_Print_Style read_Placement
 (read_DEFAULT "type" read_Up_Down Up_Down_1) (attributes y)
 return (y1,())
-- |
show_Strong_Accent :: Strong_Accent -> [Content ()]
show_Strong_Accent ((a,b,c),_) =
 show_ELEMENT "strong-accent"
 (show_Print_Style a ++ show_Placement b ++
 show_REQUIRED "type" show_Up_Down c) []
\end{code}

\begin{musicxml}
	The staccato element is used for a dot articulation, as
	opposed to a stroke or a wedge.
\end{musicxml}
\begin{code}
-- |
type Staccato = ((Print_Style, Placement), ())
-- |
read_Staccato :: STM Result [Content i] Staccato
read_Staccato = do
 y <- read_ELEMENT "staccato"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Staccato :: Staccato -> [Content ()]
show_Staccato ((a,b),_) =
 show_ELEMENT "staccato"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Tenuto = ((Print_Style, Placement), ())
-- |
read_Tenuto :: STM Result [Content i] Tenuto
read_Tenuto = do
 y <- read_ELEMENT "tenuto"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Tenuto :: Tenuto -> [Content ()]
show_Tenuto ((a,b),_) =
 show_ELEMENT "tenuto"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Detached_Legato = ((Print_Style, Placement), ())
-- |
read_Detached_Legato :: STM Result [Content i] Detached_Legato
read_Detached_Legato = do
 y <- read_ELEMENT "detached-legato"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Detached_Legato :: Detached_Legato -> [Content ()]
show_Detached_Legato ((a,b),_) =
 show_ELEMENT "detached-legato"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The staccatissimo element is used for a wedge articulation,
	as opposed to a dot or a stroke.
\end{musicxml}
\begin{code}
-- |
type Staccatissimo = ((Print_Style, Placement), ())
-- |
read_Staccatissimo :: STM Result [Content i] Staccato
read_Staccatissimo = do
 y <- read_ELEMENT "staccatissimo"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Staccatissimo :: Staccatissimo -> [Content ()]
show_Staccatissimo ((a,b),_) =
 show_ELEMENT "staccatissimo"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The spiccato element is used for a stroke articulation, as
	opposed to a dot or a wedge.
\end{musicxml}
\begin{code}
-- |
type Spiccato = ((Print_Style, Placement), ())
-- |
read_Spiccato :: STM Result [Content i] Spiccato
read_Spiccato = do
 y <- read_ELEMENT "spiccato"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Spiccato :: Spiccato -> [Content ()]
show_Spiccato ((a,b),_) =
 show_ELEMENT "spiccato"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The scoop, plop, doit, and falloff elements are
	indeterminate slides attached to a single note.
	Scoops and plops come before the main note, coming
	from below and above the pitch, respectively. Doits
	and falloffs come after the main note, going above
	and below the pitch, respectively.
\end{musicxml}
\begin{code}
-- |
type Scoop = ((Line_Shape, Line_Type, Print_Style, Placement),())
-- |
read_Scoop :: STM Result [Content i] Scoop
read_Scoop = do
 y <- read_ELEMENT "scoop"
 y1 <- read_4 read_Line_Shape read_Line_Type
 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Scoop :: Scoop -> [Content ()]
show_Scoop ((a,b,c,d),_) =
 show_ELEMENT "scoop"
 (show_Line_Shape a ++ show_Line_Type b ++
 show_Print_Style c ++ show_Placement d) []
-- |
type Plop = ((Line_Shape, Line_Type, Print_Style, Placement),())
-- |
read_Plop :: STM Result [Content i] Plop
read_Plop = do
 y <- read_ELEMENT "plop"
 y1 <- read_4 read_Line_Shape read_Line_Type
 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Plop :: Plop -> [Content ()]
show_Plop ((a,b,c,d),_) =
 show_ELEMENT "plop"
 (show_Line_Shape a ++ show_Line_Type b ++
 show_Print_Style c ++ show_Placement d) []
-- |
type Doit = ((Line_Shape, Line_Type, Print_Style, Placement),())
-- |
read_Doit :: STM Result [Content i] Doit
read_Doit = do
 y <- read_ELEMENT "doit"
 y1 <- read_4 read_Line_Shape read_Line_Type
 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Doit :: Doit -> [Content ()]
show_Doit ((a,b,c,d),_) =
 show_ELEMENT "doit"
 (show_Line_Shape a ++ show_Line_Type b ++
 show_Print_Style c ++ show_Placement d) []
-- |
type Falloff = ((Line_Shape, Line_Type, Print_Style, Placement),())
-- |
read_Falloff :: STM Result [Content i] Falloff
read_Falloff = do
 y <- read_ELEMENT "falloff"
 y1 <- read_4 read_Line_Shape read_Line_Type
 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Falloff :: Falloff -> [Content ()]
show_Falloff ((a,b,c,d),_) =
 show_ELEMENT "falloff"
 (show_Line_Shape a ++ show_Line_Type b ++
 show_Print_Style c ++ show_Placement d) []
-- |
type Breath_Mark = ((Print_Style, Placement), ())
-- |
read_Breath_Mark :: STM Result [Content i] Breath_Mark
read_Breath_Mark = do
 y <- read_ELEMENT "breath-mark"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Breath_Mark :: Breath_Mark -> [Content ()]
show_Breath_Mark ((a,b),_) =
 show_ELEMENT "breath-mark"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Caesura = ((Print_Style, Placement), ())
-- |
read_Caesura :: STM Result [Content i] Caesura
read_Caesura = do
 y <- read_ELEMENT "caesura"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Caesura :: Caesura -> [Content ()]
show_Caesura ((a,b),_) =
 show_ELEMENT "caesura"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Stress = ((Print_Style, Placement), ())
-- |
read_Stress :: STM Result [Content i] Stress
read_Stress = do
 y <- read_ELEMENT "stress"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Stress :: Stress -> [Content ()]
show_Stress ((a,b),_) =
 show_ELEMENT "stress"
 (show_Print_Style a ++ show_Placement b) []
-- |
type Unstress = ((Print_Style, Placement), ())
-- |
read_Unstress :: STM Result [Content i] Unstress
read_Unstress = do
 y <- read_ELEMENT "unstress"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Unstress :: Staccato -> [Content ()]
show_Unstress ((a,b),_) =
 show_ELEMENT "unstress"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The other-articulation element is used to define any
	articulations not yet in the MusicXML format. This allows
	extended representation, though without application
	interoperability.
\end{musicxml}
\begin{code}
-- |
type Other_Articulation = ((Print_Style, Placement), ())
-- |
read_Other_Articulation :: STM Result [Content i] Other_Articulation
read_Other_Articulation = do
 y <- read_ELEMENT "other-articulation"
 y1 <- read_2 read_Print_Style read_Placement (attributes y)
 return (y1,())
-- |
show_Other_Articulation :: Other_Articulation -> [Content ()]
show_Other_Articulation ((a,b),_) =
 show_ELEMENT "other-articulation"
 (show_Print_Style a ++ show_Placement b) []
\end{code}

\begin{musicxml}
	The dynamics and fermata elements are defined in the
	common.mod file as they apply to more than just note
	elements.

	The arpeggiate element indicates that this note is part of
	an arpeggiated chord. The number attribute can be used to
	distinguish between two simultaneous chords arpeggiated
	separately (different numbers) or together (same number).
	The up-down attribute is used if there is an arrow on the
	arpeggio sign. By default, arpeggios go from the lowest to
	highest note.
\end{musicxml}
\begin{code}
-- *** Arpeggiate
-- |
type Arpeggiate = ((Maybe Number_Level, Maybe Up_Down, Position, Placement,
 Color), ())
-- |
read_Arpeggiate :: STM Result [Content i] Arpeggiate
read_Arpeggiate = do
 y <- read_ELEMENT "arpeggiate"
 y1 <- read_5 (read_IMPLIED "number" read_Number_Level)
 (read_IMPLIED "direction" read_Up_Down)
 read_Position read_Placement read_Color (attributes y)
 return (y1,())
-- |
show_Arpeggiate :: Arpeggiate -> [Content ()]
show_Arpeggiate ((a,b,c,d,e),_) =
 show_ELEMENT "arpeggiate" (show_IMPLIED "number" show_Number_Level a ++
 show_IMPLIED "direction" show_Up_Down b ++
 show_Position c ++ show_Placement d ++
 show_Color e) []
\end{code}

\begin{musicxml}
	The non-arpeggiate element indicates that this note is at
	the top or bottom of a bracket indicating to not arpeggiate
	these notes. Since this does not involve playback, it is
	only used on the top or bottom notes, not on each note
	as for the arpeggiate element.
\end{musicxml}
\begin{code}
-- *** Non_Arpeggiate
-- |
type Non_Arpeggiate =
 ((Top_Bottom, Maybe Number_Level, Position, Placement,Color), ())
-- |
read_Non_Arpeggiate :: STM Result [Content i] Non_Arpeggiate
read_Non_Arpeggiate = do
 y <- read_ELEMENT "non-arpeggiate"
 y1 <- read_5 (read_REQUIRED "type" read_Top_Bottom)
 (read_IMPLIED "number" read_Number_Level)
 read_Position read_Placement read_Color
 (attributes y)
 return (y1,())
-- |
show_Non_Arpeggiate :: Non_Arpeggiate -> [Content ()]
show_Non_Arpeggiate ((a,b,c,d,e),_) =
 show_ELEMENT "non-arpeggiate"
 (show_REQUIRED "type" show_Top_Bottom a ++
 show_IMPLIED "number" show_Number_Level b ++
 show_Position c ++ show_Placement d ++
 show_Color e) []
\end{code}

\begin{musicxml}
	Text underlays for lyrics, based on Humdrum with support
	for other formats. The lyric number indicates multiple
	lines, though a name can be used as well (as in Finale's
	verse/chorus/section specification). Word extensions are
	represented using the extend element. Hyphenation is
	indicated by the syllabic element, which can be single,
	begin, end, or middle. These represent single-syllable
	words, word-beginning syllables, word-ending syllables,
	and mid-word syllables. Multiple syllables on a single
	note are separated by elision elements. A hyphen in the
	text element should only be used for an actual hyphenated
	word. Two text elements that are not separated by an
	elision element are part of the same syllable, but may have
	different text formatting.

	Humming and laughing representations are taken from
	Humdrum. The end-line and end-paragraph elements come
	from RP-017 for Standard MIDI File Lyric meta-events;
	they help facilitate lyric display for Karaoke and
	similar applications. Language names for text elements
	come from ISO 639, with optional country subcodes from
	ISO 3166. Justification is center by default; placement is
	below by default.
\end{musicxml}
\begin{code}
-- ** Lyric
-- |
type Lyric = ((Maybe CDATA, Maybe CDATA,
 Justify, Position, Placement, Color),
 (Lyric_, Maybe End_Line, Maybe End_Paragraph, Editorial))
read_Lyric :: Eq i => STM Result [Content i] Lyric
read_Lyric = do
 y <- read_ELEMENT "lyric"
 y1 <- read_6 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "name" read_CDATA)
 read_Justify read_Position read_Placement
 read_Color (attributes y)
 y2 <- read_4 read_Lyric_ (read_MAYBE read_End_Line)
 (read_MAYBE read_End_Paragraph) read_Editorial
 (childs y)
 return (y1,y2)

show_Lyric :: Lyric -> [Content ()]
show_Lyric ((a,b,c,d,e,f),(g,h,i,j)) =
 show_ELEMENT "lyric" (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "name" show_CDATA b ++
 show_Justify c ++ show_Position d ++
 show_Placement e ++ show_Color f)
 (show_Lyric_ g ++ show_MAYBE show_End_Line h ++
 show_MAYBE show_End_Paragraph i ++
 show_Editorial j)

-- |
data Lyric_ = Lyric_1 ((Maybe Syllabic, Text),
 [(Maybe Elision, Maybe Syllabic,Text)], Maybe Extend)
 | Lyric_2 Extend
 | Lyric_3 Laughing
 | Lyric_4 Humming
 deriving (Eq, Show)
read_Lyric_ :: Eq i => STM Result [Content i] Lyric_
read_Lyric_ =
 (read_Lyric_aux1 >>= (return . Lyric_1)) `mplus`
 (read_Extend >>= (return . Lyric_2)) `mplus`
 (read_Laughing >>= (return . Lyric_3)) `mplus`
 (read_Humming >>= (return . Lyric_4)) `mplus`
 fail "No lyric_ parsed"
read_Lyric_aux1 :: Eq i => STM Result [Content i] ((Maybe Syllabic, Text),
 [(Maybe Elision, Maybe Syllabic,Text)], Maybe Extend)
read_Lyric_aux1 = do
 y1 <- read_MAYBE read_Syllabic
 y2 <- read_Text
 y3 <- read_LIST read_Lyric_aux2
 y4 <- read_MAYBE read_Extend
 return ((y1,y2),y3,y4)
read_Lyric_aux2 :: STM Result [Content i] (Maybe Elision, Maybe Syllabic,Text)
read_Lyric_aux2 = do
 y1 <- read_MAYBE read_Elision
 y2 <- read_MAYBE read_Syllabic
 y3 <- read_Text
 return (y1,y2,y3)

show_Lyric_ :: Lyric_ -> [Content ()]
show_Lyric_ (Lyric_1 ((a,b),c,d)) =
 show_MAYBE show_Syllabic a ++ show_Text b ++
 show_LIST show_Lyric_aux1 c ++ show_MAYBE show_Extend d
show_Lyric_ (Lyric_2 x) = show_Extend x
show_Lyric_ (Lyric_3 x) = show_Laughing x
show_Lyric_ (Lyric_4 x) = show_Humming x

show_Lyric_aux1 :: (Maybe Elision, Maybe Syllabic, Text) -> [Content ()]
show_Lyric_aux1 (a,b,c) = show_MAYBE show_Elision a ++
 show_MAYBE show_Syllabic b ++ show_Text c
-- |
type Text = ((Font, Color, Text_Decoration, Text_Rotation, Letter_Spacing,
 Maybe CDATA, Text_Direction), CDATA)
-- |
read_Text :: STM Result [Content i] Text
read_Text = do
 y <- read_ELEMENT "text"
 y1 <- read_7 read_Font read_Color read_Text_Decoration
 read_Text_Rotation read_Letter_Spacing
 (read_IMPLIED "xml:lang" read_CDATA)
 read_Text_Direction (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Text :: Text -> [Content ()]
show_Text ((a,b,c,d,e,f,g),h) =
 show_ELEMENT "text"
 (show_Font a ++ show_Color b ++
 show_Text_Decoration c ++
 show_Text_Rotation d ++
 show_Letter_Spacing e ++
 show_IMPLIED "xml:lang" show_CDATA f ++
 show_Text_Direction g)
 (show_PCDATA h)
-- |
type Syllabic = PCDATA
-- |
read_Syllabic :: STM Result [Content i] Syllabic
read_Syllabic = do
 y <- read_ELEMENT "syllabic"
 read_1 read_PCDATA (childs y)
-- |
show_Syllabic :: Syllabic -> [Content ()]
show_Syllabic a = show_ELEMENT "syllabic" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	In Version 2.0, the elision element text is used to specify
	the symbol used to display the elision. Common values
	are a no-break space (Unicode 00A0), an underscore
	(Unicode 005F), or an undertie (Unicode 203F).
\end{musicxml}
\begin{code}
type Elision = ((Font, Color), CDATA)
-- |
read_Elision :: STM Result [Content i] Elision
read_Elision = do
 y <- read_ELEMENT "elision"
 y1 <- read_2 read_Font read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Elision :: Elision -> [Content ()]
show_Elision ((a,b),c) =
 show_ELEMENT "elision"
 (show_Font a ++ show_Color b)
 (show_PCDATA c)
type Extend = ((Font, Color), ())
-- |
read_Extend :: STM Result [Content i] Extend
read_Extend = do
 y <- read_ELEMENT "extend"
 y1 <- read_2 read_Font read_Color (attributes y)
 return (y1,())
-- |
show_Extend :: Extend -> [Content ()]
show_Extend ((a,b),_) =
 show_ELEMENT "extend" (show_Font a ++ show_Color b) []
-- |
type Laughing = ()
-- |
read_Laughing :: STM Result [Content i] Laughing
read_Laughing = read_ELEMENT "laughing" >> return ()
-- |
show_Laughing :: Laughing -> [Content ()]
show_Laughing _ = show_ELEMENT "laughing" [] []
-- |
type Humming = ()
-- |
read_Humming :: STM Result [Content i] Humming
read_Humming = read_ELEMENT "humming" >> return ()
-- |
show_Humming :: Humming -> [Content ()]
show_Humming _ = show_ELEMENT "humming" [] []
-- |
type End_Line = ()
-- |
read_End_Line :: STM Result [Content i] End_Line
read_End_Line = read_ELEMENT "end-line" >> return ()
-- |
show_End_Line :: End_Line -> [Content ()]
show_End_Line _ = show_ELEMENT "end-line" [] []
-- |
type End_Paragraph = ()
-- |
read_End_Paragraph :: STM Result [Content i] End_Paragraph
read_End_Paragraph = read_ELEMENT "end-paragraph" >> return ()
-- |
show_End_Paragraph :: End_Paragraph -> [Content ()]
show_End_Paragraph _ = show_ELEMENT "end-paragraph" [] []
-- |
\end{code}

\begin{musicxml}
	Figured bass elements take their position from the first
	regular note that follows. Figures are ordered from top to
	bottom. A figure-number is a number. Values for prefix and
	suffix include the accidental values sharp, flat, natural,
	double-sharp, flat-flat, and sharp-sharp. Suffixes include
	both symbols that come after the figure number and those
	that overstrike the figure number. The suffix value slash
	is used for slashed numbers indicating chromatic alteration.
	The orientation and display of the slash usually depends on
	the figure number. The prefix and suffix elements may
	contain additional values for symbols specific to particular
	figured bass styles. The value of parentheses is "no" if not
	present.
\end{musicxml}
\begin{code}
-- |
type Figured_Bass = ((Print_Style, Printout, Maybe Yes_No),
 ([Figure], Maybe Duration, Editorial))
-- |
read_Figured_Bass :: Eq i => STM Result [Content i] Figured_Bass
read_Figured_Bass = do
 y <- read_ELEMENT "figured-bass"
 y1 <- read_3 read_Print_Style read_Printout
 (read_IMPLIED "parentheses" read_Yes_No) (attributes y)
 y2 <- read_3 (read_LIST read_Figure) (read_MAYBE read_Duration)
 read_Editorial (childs y)
 return (y1,y2)
-- |
show_Figured_Bass :: Figured_Bass -> [Content ()]
show_Figured_Bass ((a,b,c),(d,e,f)) =
 show_ELEMENT "figured-bass"
 (show_Print_Style a ++ show_Printout b ++
 show_IMPLIED "parentheses" show_Yes_No c)
 (show_LIST show_Figure d ++ show_MAYBE show_Duration e ++
 show_Editorial f)
-- |
type Figure = (Maybe Prefix, Maybe Figure_Number, Maybe Suffix, Maybe Extend)
-- |
read_Figure :: STM Result [Content i] Figure
read_Figure = do
 y <- read_ELEMENT "figure"
 read_4 (read_MAYBE read_Prefix) (read_MAYBE read_Figure_Number)
 (read_MAYBE read_Suffix) (read_MAYBE read_Extend) (childs y)
-- |
show_Figure :: Figure -> [Content ()]
show_Figure (a,b,c,d) =
 show_ELEMENT "figure" []
 (show_MAYBE show_Prefix a ++
 show_MAYBE show_Figure_Number b ++
 show_MAYBE show_Suffix c ++
 show_MAYBE show_Extend d)
-- |
type Prefix = (Print_Style, CDATA)
-- |
read_Prefix :: STM Result [Content i] Prefix
read_Prefix = do
 y <- read_ELEMENT "prefix"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Prefix :: Prefix -> [Content ()]
show_Prefix (a,b) =
 show_ELEMENT "prefix"
 (show_Print_Style a)
 (show_PCDATA b)
-- |
type Figure_Number = (Print_Style, PCDATA)
-- |
read_Figure_Number :: STM Result [Content i] Figure_Number
read_Figure_Number = do
 y <- read_ELEMENT "figure-number"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Figure_Number :: Figure_Number -> [Content ()]
show_Figure_Number (a,b) =
 show_ELEMENT "figure-number"
 (show_Print_Style a)
 (show_PCDATA b)
-- |
type Suffix = (Print_Style, PCDATA)
-- |
read_Suffix :: STM Result [Content i] Suffix
read_Suffix = do
 y <- read_ELEMENT "suffix"
 y1 <- read_1 read_Print_Style (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Suffix :: Suffix -> [Content ()]
show_Suffix (a,b) =
 show_ELEMENT "suffix"
 (show_Print_Style a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The backup and forward elements are required to coordinate
	multiple voices in one part, including music on multiple
	staves. The forward element is generally used within voices
	and staves, while the backup element is generally used to
	move between voices and staves. Thus the backup element
	does not include voice or staff elements. Duration values
	should always be positive, and should not cross measure
	boundaries.
\end{musicxml}
\begin{code}
-- |
type Backup = (Duration, Editorial)
-- |
read_Backup :: STM Result [Content i] Backup
read_Backup = do
 y <- read_ELEMENT "backup"
 read_2 read_Duration read_Editorial (childs y)
-- |
show_Backup :: Backup -> [Content ()]
show_Backup (a,b) =
 show_ELEMENT "backup" []
 (show_Duration a ++
 show_Editorial b)
-- |
type Forward = (Duration, Editorial_Voice, Maybe Staff)
-- |
read_Forward :: STM Result [Content i] Forward
read_Forward = do
 y <- read_ELEMENT "forward"
 read_3 read_Duration read_Editorial_Voice
 (read_MAYBE read_Staff) (childs y)
-- |
show_Forward :: Forward -> [Content ()]
show_Forward (a,b,c) =
 show_ELEMENT "forward" []
 (show_Duration a ++
 show_Editorial_Voice b ++
 show_MAYBE show_Staff c)
\end{code}

The common note elements between cue/grace notes and regular (full) notes: pitch, chord, and rest
information, but not duration (cue and grace notes do not have duration encoded here). Unpitched
elements are used for unpitched percussion, speaking voice, and other musical elements lacking determinate
pitch.

-- * Note entities
-- |

type Full Note = (Maybe Chord ,Full Note)
-- |

read Full Note :: STM Result [Content i] Full Note
read Full Note = do

y1 ← read MAYBE read Chord
y2 ← read Full Note
return (y1 , y2)
-- |

show Full Note :: Full Note → [Content ()]
show Full Note (a, b) =

show MAYBE show Chord a ++
show Full Note b
-- |

data Full Note = Full Note 1 Pitch
| Full Note 2 Unpitched
| Full Note 3 Rest
deriving (Eq ,Show)
-- |

read Full Note :: STM Result [Content i] Full Note
read Full Note =

(read Pitch >>= return · Full Note 1) ‘mplus‘
(read Unpitched >>= return · Full Note 2) ‘mplus‘
(read Rest >>= return · Full Note 3)
-- |

show Full Note :: Full Note → [Content ()]
show Full Note (Full Note 1 x) = show Pitch x
show Full Note (Full Note 2 x) = show Unpitched x
show Full Note (Full Note 3 x) = show Rest x

Notes are the most common type of MusicXML data. The MusicXML format keeps the MuseData
distinction between elements used for sound information and elements used for notation information (e.g.,
tie is used for sound, tied for notation). Thus grace notes do not have a duration element. Cue notes have
a duration element, as do forward elements, but no tie elements. Having these two types of information
available can make interchange considerably easier, as some programs handle one type of information much
more readily than the other.

The position and printout entities for printing suggestions are defined in the common.mod file.
The dynamics and end-dynamics attributes correspond to MIDI 1.0’s Note On and Note Off velocities,

respectively. They are expressed in terms of percentages of the default forte value (90 for MIDI 1.0). The
attack and release attributes are used to alter the staring and stopping time of the note from when it
would otherwise occur based on the flow of durations - information that is specific to a performance. They
are expressed in terms of divisions, either positive or negative. A note that starts a tie should not have
a release attribute, and a note that stops a tie should not have an attack attribute. If a note is played
only one time through a repeat, the time-only attribute shows which time to play the note. The pizzicato
attribute is used when just this note is sounded pizzicato, vs. the pizzicato element which changes overall
playback between pizzicato and arco.

-- * Note
-- |

type Note = ((Print Style,Printout ,Maybe CDATA,Maybe CDATA,
Maybe CDATA,Maybe CDATA,Maybe CDATA,Maybe Yes No),
(Note ,Maybe Instrument ,Editorial Voice,Maybe Type, [Dot],
Maybe Accidental ,Maybe Time Modification,Maybe Stem,Maybe Notehead ,
Maybe Staff , [Beam], [Notations], [Lyric]))

97

-- |
read Note :: Eq i ⇒ STM Result [Content i] Note
read Note = do

y ← read ELEMENT "note"

y1 ← read 8 read Print Style read Printout
(read IMPLIED "dynamics" read CDATA)
(read IMPLIED "end-dynamics" read CDATA)
(read IMPLIED "attack" read CDATA)
(read IMPLIED "release" read CDATA)
(read IMPLIED "time-only" read CDATA)
(read IMPLIED "pizzicato" read Yes No) (attributes y)

y2 ← read 13 read Note (read MAYBE read Instrument)
read Editorial Voice (read MAYBE read Type)
(read LIST read Dot) (read MAYBE read Accidental)
(read MAYBE read Time Modification)
(read MAYBE read Stem) (read MAYBE read Notehead)
(read MAYBE read Staff) (read LIST read Beam)
(read LIST read Notations) (read LIST read Lyric)
(childs y)

return (y1 , y2)

show Note :: Note → [Content ()]
show Note ((a, b, c, d , e, f , g , h), (i , j , k , l ,m,n, o, p, q , r , s, t , u)) =

show ELEMENT "note" (show Print Style a ++ show Printout b ++
show IMPLIED "dynamics" show CDATA c ++
show IMPLIED "end-dynamics" show CDATA d ++
show IMPLIED "attack" show CDATA e ++
show IMPLIED "release" show CDATA f ++
show IMPLIED "time-only" show CDATA g ++
show IMPLIED "pizzicato" show Yes No h)

(show Note i ++ show MAYBE show Instrument j ++
show Editorial Voice k ++
show MAYBE show Type l ++
show LIST show Dot m ++
show MAYBE show Accidental n ++
show MAYBE show Time Modification o ++
show MAYBE show Stem p ++
show MAYBE show Notehead q ++
show MAYBE show Staff r ++
show LIST show Beam s ++
show LIST show Notations t ++
show LIST show Lyric u)

-- ** Note
-- |

data Note = Note 1 (Grace,Full Note,Maybe (Tie,Maybe Tie))
| Note 2 (Cue,Full Note,Duration)
| Note 3 (Full Note,Duration,Maybe (Tie,Maybe Tie))
deriving (Eq ,Show)
-- |

read Note :: STM Result [Content i] Note
read Note =

(read Note aux1 >>= return ·Note 1) ‘mplus‘
(read Note aux2 >>= return ·Note 2) ‘mplus‘
(read Note aux3 >>= return ·Note 3)

read Note aux1 ::
STM Result [Content i] (Grace,Full Note,Maybe (Tie,Maybe Tie))

read Note aux1 = do
y1 ← read Grace
y2 ← read Full Note

98

y3 ← read MAYBE read Note aux4
return (y1 , y2 , y3)

read Note aux2 :: STM Result [Content i] (Cue,Full Note,Duration)
read Note aux2 = do

y1 ← read Cue
y2 ← read Full Note
y3 ← read Duration
return (y1 , y2 , y3)

read Note aux3 ::
STM Result [Content i] (Full Note,Duration,Maybe (Tie,Maybe Tie))

read Note aux3 = do
y1 ← read Full Note
y2 ← read Duration
y3 ← read MAYBE read Note aux4
return (y1 , y2 , y3)

read Note aux4 :: STM Result [Content i] (Tie,Maybe Tie)
read Note aux4 = do

y1 ← read Tie
y2 ← read MAYBE read Tie
return (y1 , y2)
-- |

show Note :: Note → [Content ()]
show Note (Note 1 (a, b, c)) =

show Grace a ++ show Full Note b ++ show MAYBE show Note aux1 c
show Note (Note 2 (a, b, c)) =

show Cue a ++ show Full Note b ++ show Duration c
show Note (Note 3 (a, b, c)) =

show Full Note a ++ show Duration b ++ show MAYBE show Note aux1 c
-- |

show Note aux1 :: (Tie,Maybe Tie)→ [Content ()]
show Note aux1 (a, b) = show Tie a ++ show MAYBE show Tie b

Pitch is represented as a combination of the step of the diatonic scale, the chromatic alteration, and the
octave. The step element uses the English letters A through G. The alter element represents chromatic
alteration in number of semitones (e.g., -1 for flat, 1 for sharp). Decimal values like 0.5 (quarter tone
sharp) may be used for microtones. The octave element is represented by the numbers 0 to 9, where 4
indicates the octave started by middle C.

-- |
type Pitch = (Step,Maybe Alter ,Octave)

-- |
read Pitch :: STM Result [Content i] Pitch
read Pitch = do

y ← read ELEMENT "pitch"

read 3 read Step (read MAYBE read Alter) read Octave (childs y)
-- |

show Pitch :: Pitch → [Content ()]
show Pitch (a, b, c) =

show ELEMENT "pitch" []
(show Step a ++ show MAYBE show Alter b ++ show Octave c)

-- |
type Step = PCDATA

-- |
read Step :: STM Result [Content i] Step
read Step = do

y ← read ELEMENT "step"

read 1 read PCDATA (childs y)
-- |

show Step :: Step → [Content ()]

99

show Step x = show ELEMENT "step" [] (show PCDATA x)
-- |

type Alter = PCDATA
-- |

read Alter :: STM Result [Content i] Alter
read Alter = do

y ← read ELEMENT "alter"

read 1 read PCDATA (childs y)
-- |

show Alter :: Alter → [Content ()]
show Alter x = show ELEMENT "alter" [] (show PCDATA x)

-- |
type Octave = PCDATA

-- |
read Octave :: STM Result [Content i] Octave
read Octave = do

y ← read ELEMENT "octave"

read 1 read PCDATA (childs y)
-- |

show Octave :: Octave → [Content ()]
show Octave x = show ELEMENT "octave" [] (show PCDATA x)

The cue and grace elements indicate the presence of cue and grace notes. The slash attribute for a
grace note is yes for slashed eighth notes. The other grace note attributes come from MuseData sound
suggestions. Steal-time-previous indicates the percentage of time to steal from the previous note for the
grace note. Steal-time-following indicates the percentage of time to steal from the following note for the
grace note. Make-time indicates to make time, not steal time; the units are in real-time divisions for the
grace note.

-- |
type Cue = ()

-- |
read Cue :: STM Result [Content i] Cue
read Cue = read ELEMENT "cue">> return ()

-- |
show Cue :: Cue → [Content ()]
show Cue = show ELEMENT "cue" [] []

-- |
type Grace = ((Maybe CDATA,Maybe CDATA,Maybe CDATA,Maybe Yes No), ())

-- |
read Grace :: STM Result [Content i] Grace
read Grace = do

y ← read ELEMENT "grace"

y1 ← read 4 (read IMPLIED "steal-time-previous" read CDATA)
(read IMPLIED "steal-time-following" read CDATA)
(read IMPLIED "make-time" read CDATA)
(read IMPLIED "slash" read Yes No) (attributes y)

return (y1 , ())
-- |

show Grace :: Grace → [Content ()]
show Grace ((a, b, c, d),) =

show ELEMENT "grace"

(show IMPLIED "steal-time-previous" show CDATA a ++
show IMPLIED "steal-time-following" show CDATA b ++
show IMPLIED "make-time" show CDATA c ++
show IMPLIED "slash" show Yes No d)

[]

The chord element indicates that this note is an additional chord tone with the preceding note. The
duration of this note can be no longer than the preceding note. In MuseData, a missing duration indicates

100

the same length as the previous note, but the MusicXML format requires a duration for chord notes too.

-- |
type Chord = ()

-- |
read Chord :: STM Result [Content i] Chord
read Chord =

read ELEMENT "chord">> return ()
-- |

show Chord :: Chord → [Content ()]
show Chord = show ELEMENT "chord" [] []

The unpitched element indicates musical elements that are notated on the staff but lack definite pitch,
such as unpitched percussion and speaking voice. Like notes, it uses step and octave elements to indicate
placement on the staff, following the current clef. If percussion clef is used, the display-step and display-
octave elements are interpreted as if in treble clef, with a G in octave 4 on line 2. If not present, the note
is placed on the middle line of the staff, generally used for one-line staffs.

type Unpitched = Maybe (Display Step,Display Octave)
-- |

read Unpitched :: STM Result [Content i] Unpitched
read Unpitched = do

y ← read ELEMENT "unpitched"

read 1 (read MAYBE read Unpitched aux1) (childs y)

read Unpitched aux1 :: STM Result [Content i] (Display Step,Display Octave)
read Unpitched aux1 = do

y1 ← read Display Step
y2 ← read Display Octave
return (y1 , y2)

-- |
show Unpitched :: Unpitched → [Content ()]
show Unpitched x =

show ELEMENT "unpitched" []
(show MAYBE (λ(a, b)→ show Display Step a ++

show Display Octave b) x)
-- |

type Display Step = PCDATA
-- |

read Display Step :: STM Result [Content i] Display Step
read Display Step = do

y ← read ELEMENT "display-step"

read 1 read PCDATA (childs y)
-- |

show Display Step :: Display Step → [Content ()]
show Display Step x = show ELEMENT "display-step" [] (show PCDATA x)

-- |
type Display Octave = PCDATA

-- |
read Display Octave :: STM Result [Content i] Display Octave
read Display Octave = do

y ← read ELEMENT "display-octave"

read 1 read PCDATA (childs y)
-- |

show Display Octave :: Display Octave → [Content ()]
show Display Octave x = show ELEMENT "display-octave" [] (show PCDATA x)

The rest element indicates notated rests or silences. Rest are usually empty, but placement on the
staff can be specified using display-step and display-octave elements.

-- |
type Rest = Maybe (Display Step,Display Octave)

101

-- |
read Rest :: STM Result [Content i] Rest
read Rest = do

y ← read ELEMENT "rest"

read 1 (read MAYBE read Rest aux1) (childs y)
-- |

read Rest aux1 :: STM Result [Content i] (Display Step,Display Octave)
read Rest aux1 = do

y1 ← read Display Step
y2 ← read Display Octave
return (y1 , y2)
-- |

show Rest :: Rest → [Content ()]
show Rest x =

show ELEMENT "rest" []
(show MAYBE (λ(a, b)→ show Display Step a ++

show Display Octave b) x)

Duration is a positive number specified in division units. This is the intended duration vs. notated
duration (for instance, swing eighths vs. even eighths, or differences in dotted notes in Baroque-era music).
Differences in duration specific to an interpretation or performance should use the note element’s attack
and release attributes.

The tie element indicates that a tie begins or ends with this note. The tie element indicates sound;
the tied element indicates notation.

type Duration = PCDATA
-- |

read Duration :: STM Result [Content i] Duration
read Duration = do

y ← read ELEMENT "duration"

read 1 read PCDATA (childs y)
-- |

show Duration :: Duration → [Content ()]
show Duration x = show ELEMENT "duration" [] (show PCDATA x)

-- |
type Tie = (Start Stop, ())

-- |
read Tie :: STM Result [Content i] Tie
read Tie = do

y ← read ELEMENT "tie"

y1 ← read 1 (read REQUIRED "type" read Start Stop) (attributes y)
return (y1 , ())
-- |

show Tie :: Tie → [Content ()]
show Tie (a,) =

show ELEMENT "tie" (show REQUIRED "type" show Start Stop a) []

If multiple score-instruments are specified on a score-part, there should be an instrument element for
each note in the part. The id attribute is an IDREF back to the score-instrument ID.

-- ** Instrument
-- |

type Instrument = (ID , ())
-- |

read Instrument :: STM Result [Content i] Instrument
read Instrument = do

y ← read ELEMENT "instrument"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
return (y1 , ())
-- |

102

show Instrument :: Instrument → [Content ()]
show Instrument (a,) =

show ELEMENT "instrument" (show REQUIRED "id" show ID a) []

Type indicates the graphic note type, Valid values (from shortest to longest) are 256th, 128th, 64th,
32nd, 16th, eighth, quarter, half, whole, breve, and long. The size attribute indicates full, cue, or large
size, with full the default for regular notes and cue the default for cue and grace notes.

-- ** Type
-- |

type Type = (Maybe Symbol Size,PCDATA)
-- |

read Type :: STM Result [Content i] Type
read Type = do

y ← read ELEMENT "type"

y1 ← read 1 (read IMPLIED "size" read Symbol Size) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Type :: Type → [Content ()]
show Type (a, b) =

show ELEMENT "type"

(show IMPLIED "size" show Symbol Size a)
(show PCDATA b)

One dot element is used for each dot of prolongation. The placement element is used to specify whether
the dot should appear above or below the staff line. It is ignored for notes that appear on a staff space.

-- ** Dot
-- |

type Dot = ((Print Style,Placement), ())
-- |

read Dot :: STM Result [Content i] Dot
read Dot = do

y ← read ELEMENT "dot"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Dot :: Dot → [Content ()]
show Dot ((a, b),) =

show ELEMENT "dot"

(show Print Style a ++
show Placement b)

[]

Actual notated accidentals. Valid values include: sharp, natural, flat, double-sharp, sharp-sharp, flat-
flat, natural-sharp, natural-flat, quarter-flat, quarter-sharp, three-quarters-flat, and three-quarters-sharp.
Editorial and cautionary indications are indicated by attributes. Values for these attributes are ”no” if not
present. Specific graphic display such as parentheses, brackets, and size are controlled by the level-display
entity defined in the common.mod file.

-- ** Accidental
-- |

type Accidental = ((Maybe Yes No,Maybe Yes No,Level Display ,Print Style),
PCDATA)
-- |

read Accidental :: STM Result [Content i] Accidental
read Accidental = do

y ← read ELEMENT "accidental"

y1 ← read 4 (read IMPLIED "cautionary" read Yes No)

103

(read IMPLIED "editorial" read Yes No)
read Level Display read Print Style (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Accidental :: Accidental → [Content ()]
show Accidental ((a, b, c, d), e) =

show ELEMENT "accidental"

(show IMPLIED "cautionary" show Yes No a ++
show IMPLIED "editorial" show Yes No b ++
show Level Display c ++
show Print Style d)

(show PCDATA e)

Time modification indicates tuplets and other durational changes. The child elements are defined in
the common.mod file.

-- ** Time Modification
-- |

type Time Modification = (Actual Notes,Normal Notes,
Maybe (Normal Type, [Normal Dot]))
-- |

read Time Modification :: Eq i ⇒ STM Result [Content i] Time Modification
read Time Modification = do

y ← read ELEMENT "time-modification"

read 3 read Actual Notes read Normal Notes
(read MAYBE (read Time Modification aux1)) (childs y)

-- |
read Time Modification aux1 :: Eq i ⇒

STM Result [Content i] (Normal Type, [Normal Dot])
read Time Modification aux1 = do

y1 ← read Normal Type
y2 ← read LIST read Normal Dot
return (y1 , y2)
-- |

show Time Modification :: Time Modification → [Content ()]
show Time Modification (a, b, c) =

show ELEMENT "time-modification" []
(show Actual Notes a ++ show Normal Notes b ++

show MAYBE (λ(c1 , c2)→ show Normal Type c1 ++
show LIST show Normal Dot c2) c)

Stems can be down, up, none, or double. For down and up stems, the position attributes can be used
to specify stem length. The relative values specify the end of the stem relative to the program default.
Default values specify an absolute end stem position. Negative values of relative-y that would flip a stem
instead of shortening it are ignored.

-- ** Stem
-- |

type Stem = ((Position,Color),PCDATA)
-- |

read Stem :: STM Result [Content i] Stem
read Stem = do

y ← read ELEMENT "stem"

y1 ← read 2 read Position read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Stem :: Stem → [Content ()]
show Stem ((a, b), c) =

104

show ELEMENT "stem"

(show Position a ++ show Color b)
(show PCDATA c)

The notehead element indicates shapes other than the open and closed ovals associated with note
durations. The element value can be slash, triangle, diamond, square, cross, x, circle-x, inverted triangle,
arrow down, arrow up, slashed, back slashed, normal, cluster, or none. For shape note music, the element
values do, re, mi, fa, so, la, and ti are used, corresponding to Aikin’s 7-shape system.

The arrow shapes differ from triangle and inverted triangle by being centered on the stem. Slashed
and back slashed notes include both the normal notehead and a slash. The triangle shape has the tip of
the triangle pointing up; the inverted triangle shape has the tip of the triangle pointing down.

For the enclosed shapes, the default is to be hollow for half notes and longer, and filled otherwise. The
filled attribute can be set to change this if needed.

If the parentheses attribute is set to yes, the notehead is parenthesized. It is no by default.

-- ** Notehead
-- |

type Notehead = ((Maybe Yes No,Maybe Yes No,Font ,Color),PCDATA)
-- |

read Notehead :: STM Result [Content i] Notehead
read Notehead = do

y ← read ELEMENT "notehead"

y1 ← read 4 (read IMPLIED "filled" read Yes No)
(read IMPLIED "parentheses" read Yes No)
read Font read Color (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Notehead :: Notehead → [Content ()]
show Notehead ((a, b, c, d), e) =

show ELEMENT "notehead"

(show IMPLIED "filled" show Yes No a ++
show IMPLIED "parentheses" show Yes No b ++
show Font c ++ show Color d)

(show PCDATA e)

Beam types include begin, continue, end, forward hook, and backward hook. In MuseData, up to six
concurrent beams are available to cover up to 256th notes. This seems sufficient so we use an enumerated
type defined in the common.mod file. The repeater attribute, used for tremolos, needs to be specified
with a ”yes” value for each beam using it. Beams that have a begin value can also have a fan attribute
to indicate accelerandos and ritardandos using fanned beams. The fan attribute may also be used with a
continue value if the fanning direction changes on that note. The value is ”none” if not specified.

Note that the beam number does not distinguish sets of beams that overlap, as it does for slur and
other elements. Beaming groups are distinguished by being in different voices and/or the presence or
absence of grace and cue elements.

-- ** Beam
-- |

type Beam = ((Beam Level ,Maybe Yes No,Maybe Beam ,Color),PCDATA)
-- |

read Beam :: STM Result [Content i] Beam
read Beam = do

y ← read ELEMENT "beam"

y1 ← read 4 (read DEFAULT "number" read Beam Level Beam Level 1)
(read IMPLIED "repeater" read Yes No)
(read IMPLIED "fan" read Beam)
read Color (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)

-- |

105

show Beam :: Beam → [Content ()]
show Beam ((a, b, c, d), e) =

show ELEMENT "beam"

(show IMPLIED "number" show Beam Level (Just a) ++
show IMPLIED "repeater" show Yes No b ++
show IMPLIED "fan" show Beam c ++
show Color d)

(show PCDATA e)
-- |

data Beam = Beam Accel | Beam Rit | Beam None
deriving (Eq ,Show)
-- |

read Beam :: Data.Char .String → Result Beam
read Beam "accel" = return Beam Accel
read Beam "rit" = return Beam Rit
read Beam "none" = return Beam None
read Beam =

fail "I expect fan attribute"

-- |
show Beam :: Beam → Data.Char .String
show Beam Beam Accel = "accel"

show Beam Beam Rit = "rit"

show Beam Beam None = "none"

Notations are musical notations, not XML notations. Multiple notations are allowed in order to
represent multiple editorial levels. The set of notations will be refined and expanded over time, especially
to handle more instrument-specific technical notations.

-- ** Notations
-- |

type Notations = [(Editorial ,Notations)]
-- |

read Notations :: Eq i ⇒ STM Result [Content i] Notations
read Notations = do

y ← read ELEMENT "notations"

read 1 (read LIST read Notations aux1) (childs y)
-- |

show Notations :: Notations → [Content ()]
show Notations a =

show ELEMENT "notations" [] (show LIST show Notations aux1 a)
-- |

read Notations aux1 :: Eq i ⇒ STM Result [Content i] (Editorial ,Notations)
read Notations aux1 = do

y1 ← read Editorial
y2 ← read Notations
return (y1 , y2)
-- |

show Notations aux1 :: (Editorial ,Notations)→ [Content ()]
show Notations aux1 (a, b) = show Editorial a ++ show Notations b

-- |
data Notations = Notations 1 Tied
| Notations 2 Slur
| Notations 3 Tuplet
| Notations 4 Glissando
| Notations 5 Slide
| Notations 6 Ornaments
| Notations 7 Technical
| Notations 8 Articulations
| Notations 9 Dynamics

106

| Notations 10 Fermata
| Notations 11 Arpeggiate
| Notations 12 Non Arpeggiate
| Notations 13 Accidental Mark
| Notations 14 Other Notation
deriving (Eq ,Show)
-- |

read Notations :: Eq i ⇒ STM Result [Content i] Notations
read Notations =

(read Tied >>= return ·Notations 1) ‘mplus‘
(read Slur >>= return ·Notations 2) ‘mplus‘
(read Tuplet >>= return ·Notations 3) ‘mplus‘
(read Glissando >>= return ·Notations 4) ‘mplus‘
(read Slide >>= return ·Notations 5) ‘mplus‘
(read Ornaments >>= return ·Notations 6) ‘mplus‘
(read Technical >>= return ·Notations 7) ‘mplus‘
(read Articulations >>= return ·Notations 8) ‘mplus‘
(read Dynamics >>= return ·Notations 9) ‘mplus‘
(read Fermata >>= return ·Notations 10) ‘mplus‘
(read Arpeggiate >>= return ·Notations 11) ‘mplus‘
(read Non Arpeggiate >>= return ·Notations 12) ‘mplus‘
(read Accidental Mark >>= return ·Notations 13) ‘mplus‘
(read Other Notation >>= return ·Notations 14)
-- |

show Notations :: Notations → [Content ()]
show Notations (Notations 1 x) = show Tied x
show Notations (Notations 2 x) = show Slur x
show Notations (Notations 3 x) = show Tuplet x
show Notations (Notations 4 x) = show Glissando x
show Notations (Notations 5 x) = show Slide x
show Notations (Notations 6 x) = show Ornaments x
show Notations (Notations 7 x) = show Technical x
show Notations (Notations 8 x) = show Articulations x
show Notations (Notations 9 x) = show Dynamics x
show Notations (Notations 10 x) = show Fermata x
show Notations (Notations 11 x) = show Arpeggiate x
show Notations (Notations 12 x) = show Non Arpeggiate x
show Notations (Notations 13 x) = show Accidental Mark x
show Notations (Notations 14 x) = show Other Notation x

-- *** Tied
-- |

type Tied = ((Start Stop,Maybe Number Level ,Line Type,Position,Placement ,
Orientation,Bezier ,Color), ())

-- |
read Tied :: STM Result [Content i] Tied
read Tied = do

y ← read ELEMENT "tied"

y1 ← read 8 (read REQUIRED "type" read Start Stop)
(read IMPLIED "number" read Number Level)
read Line Type read Position read Placement
read Orientation read Bezier read Color (attributes y)

return (y1 , ())
-- |

show Tied :: Tied → [Content ()]
show Tied ((a, b, c, d , e, f , g , h),) =

show ELEMENT "tied"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level b ++

107

show Line Type c ++
show Position d ++
show Placement e ++
show Orientation f ++
show Bezier g ++
show Color h) []

Slur elements are empty. Most slurs are represented with two elements: one with a start type, and
one with a stop type. Slurs can add more elements using a continue type. This is typically used to specify
the formatting of cross- system slurs, or to specify the shape of very complex slurs.

-- *** Slur
-- |

type Slur = ((Start Stop Continue,Number Level ,Line Type,Position,Placement ,
Orientation,Bezier ,Color), ())

-- |
read Slur :: STM Result [Content i] Slur
read Slur = do

y ← read ELEMENT "slur"

y1 ← read 8 (read REQUIRED "type" read Start Stop Continue)
(read DEFAULT "number" read Number Level Number Level 1)
read Line Type read Position read Placement
read Orientation read Bezier read Color (attributes y)

return (y1 , ())
-- |

show Slur :: Slur → [Content ()]
show Slur ((a, b, c, d , e, f , g , h),) =

show ELEMENT "slur"

(show REQUIRED "type" show Start Stop Continue a ++
show IMPLIED "number" show Number Level (Just b) ++
show Line Type c ++
show Position d ++
show Placement e ++
show Orientation f ++
show Bezier g ++
show Color h) []

A tuplet element is present when a tuplet is to be displayed graphically, in addition to the sound
data provided by the time-modification elements. The number attribute is used to distinguish nested
tuplets. The bracket attribute is used to indicate the presence of a bracket. If unspecified, the results are
implementation-dependent. The line-shape attribute is used to specify whether the bracket is straight or
in the older curved or slurred style. It is straight by default.

Whereas a time-modification element shows how the cumulative, sounding effect of tuplets compare
to the written note type, the tuplet element describes how this is displayed. The tuplet-actual and tuplet-
normal elements provide optional full control over tuplet specifications. Each allows the number and note
type (including dots) describing a single tuplet. If any of these elements are absent, their values are based
on the time-modification element.

The show-number attribute is used to display either the number of actual notes, the number of both
actual and normal notes, or neither. It is actual by default. The show-type attribute is used to display
either the actual type, both the actual and normal types, or neither. It is none by default.

-- *** Tuplet
-- |

type Tuplet = ((Start Stop,Maybe Number Level ,Maybe Yes No,Maybe Tuplet ,
Maybe Tuplet ,Line Shape,Position,Placement),

(Maybe Tuplet Actual ,Maybe Tuplet Normal))
-- |

read Tuplet :: Eq i ⇒ STM Result [Content i] Tuplet
read Tuplet = do

y ← read ELEMENT "tuplet"

108

y1 ← read 8 (read REQUIRED "type" read Start Stop)
(read IMPLIED "number" read Number Level)
(read IMPLIED "bracket" read Yes No)
(read IMPLIED "show-number" read Tuplet)
(read IMPLIED "show-type" read Tuplet)
read Line Shape read Position read Placement
(attributes y)

y2 ← read 2 (read MAYBE read Tuplet Actual)
(read MAYBE read Tuplet Normal)
(childs y)

return (y1 , y2)
-- |

show Tuplet :: Tuplet → [Content ()]
show Tuplet ((a, b, c, d , e, f , g , h), (i , j)) =

show ELEMENT "tuplet"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level b ++
show IMPLIED "bracket" show Yes No c ++
show IMPLIED "show-number" show Tuplet d ++
show IMPLIED "show-type" show Tuplet e ++
show Line Shape f ++ show Position g ++
show Placement h)

(show MAYBE show Tuplet Actual i ++
show MAYBE show Tuplet Normal j)

-- |
data Tuplet = Tuplet 1 | Tuplet 2 | Tuplet 3

deriving (Eq ,Show)
-- |

read Tuplet :: Data.Char .String → Result Tuplet
read Tuplet "actual" = return Tuplet 1
read Tuplet "both" = return Tuplet 2
read Tuplet "none" = return Tuplet 3
read Tuplet = fail "wrong value at tuplet"

-- |
show Tuplet :: Tuplet → Data.Char .String
show Tuplet Tuplet 1 = "actual"

show Tuplet Tuplet 2 = "both"

show Tuplet Tuplet 3 = "none"

-- |
type Tuplet Actual = (Maybe Tuplet Number ,Maybe Tuplet Type, [Tuplet Dot])

-- |
read Tuplet Actual :: Eq i ⇒ STM Result [Content i] Tuplet Actual
read Tuplet Actual = do

y ← read ELEMENT "tuplet-actual"

read 3 (read MAYBE read Tuplet Number)
(read MAYBE read Tuplet Type)
(read LIST read Tuplet Dot) (childs y)

-- |
show Tuplet Actual :: Tuplet Actual → [Content ()]
show Tuplet Actual (a, b, c) =

show ELEMENT "tuplet-actual" []
(show MAYBE show Tuplet Number a ++

show MAYBE show Tuplet Type b ++
show LIST show Tuplet Dot c)

-- |
type Tuplet Normal = (Maybe Tuplet Number ,Maybe Tuplet Type, [Tuplet Dot])

-- |
read Tuplet Normal :: Eq i ⇒ STM Result [Content i] Tuplet Normal

109

read Tuplet Normal = do
y ← read ELEMENT "tuplet-normal"

read 3 (read MAYBE read Tuplet Number)
(read MAYBE read Tuplet Type)
(read LIST read Tuplet Dot) (childs y)

-- |
show Tuplet Normal :: Tuplet Normal → [Content ()]
show Tuplet Normal (a, b, c) =

show ELEMENT "tuplet-normal" []
(show MAYBE show Tuplet Number a ++

show MAYBE show Tuplet Type b ++
show LIST show Tuplet Dot c)

-- |
type Tuplet Number = ((Font ,Color),PCDATA)

-- |
read Tuplet Number :: STM Result [Content i] Tuplet Number
read Tuplet Number = do

y ← read ELEMENT "tuplet-number"

y1 ← read 2 read Font read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Tuplet Number :: Tuplet Number → [Content ()]
show Tuplet Number ((a, b), c) =

show ELEMENT "tuplet-number"

(show Font a ++ show Color b)
(show PCDATA c)

-- |
type Tuplet Type = ((Font ,Color),PCDATA)

-- |
read Tuplet Type :: STM Result [Content i] Tuplet Type
read Tuplet Type = do

y ← read ELEMENT "tuplet-type"

y1 ← read 2 read Font read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Tuplet Type :: Tuplet Type → [Content ()]
show Tuplet Type ((a, b), c) =

show ELEMENT "tuplet-type"

(show Font a ++ show Color b)
(show PCDATA c)

-- |
type Tuplet Dot = ((Font ,Color), ())

-- |
read Tuplet Dot :: STM Result [Content i] Tuplet Dot
read Tuplet Dot = do

y ← read ELEMENT "tuplet-dot"

y1 ← read 2 read Font read Color (attributes y)
return (y1 , ())
-- |

show Tuplet Dot :: Tuplet Dot → [Content ()]
show Tuplet Dot ((a, b),) =

show ELEMENT "tuplet-dot"

(show Font a ++ show Color b) []

Glissando and slide elements both indicate rapidly moving from one pitch to the other so that individual
notes are not discerned. The distinction is similar to that between NIFF’s glissando and portamento
elements. A glissando sounds the half notes in between the slide and defaults to a wavy line. A slide is

110

continuous between two notes and defaults to a solid line. The optional text for a glissando or slide is
printed alongside the line.

-- *** Glissando
-- |

type Glissando = ((Start Stop,Number Level ,Line Type,Print Style),Text)
-- |

read Glissando :: STM Result [Content i] Glissando
read Glissando = do

y ← read ELEMENT "glissando"

y1 ← read 4 (read REQUIRED "type" read Start Stop)
(read DEFAULT "number" read Number Level Number Level 1)
read Line Type read Print Style (attributes y)

y2 ← read 1 read Text (childs y)
return (y1 , y2)
-- |

show Glissando :: Glissando → [Content ()]
show Glissando ((a, b, c, d), e) =

show ELEMENT "glissando"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level (Just b) ++
show Line Type c ++ show Print Style d)

(show Text e)
-- *** Slide
-- |

type Slide = ((Start Stop,Number Level ,Line Type,Print Style,Bend Sound),Text)
-- |

read Slide :: STM Result [Content i] Slide
read Slide = do

y ← read ELEMENT "slide"

y1 ← read 5 (read REQUIRED "type" read Start Stop)
(read DEFAULT "number" read Number Level Number Level 1)
read Line Type read Print Style read Bend Sound
(attributes y)

y2 ← read 1 read Text (childs y)
return (y1 , y2)
-- |

show Slide :: Slide → [Content ()]
show Slide ((a, b, c, d , e), f) =

show ELEMENT "slide"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level (Just b) ++
show Line Type c ++ show Print Style d ++
show Bend Sound e)

(show Text f)

The other-notation element is used to define any notations not yet in the MusicXML format. This
allows extended representation, though without application interoperability. It handles notations where
more specific extension elements such as other-dynamics and other-technical are not appropriate.

-- |
type Other Notation = ((Start Stop Single,Number Level ,Print Object ,

Print Style,Placement),PCDATA)
-- |

read Other Notation :: STM Result [Content i] Other Notation
read Other Notation = do

y ← read ELEMENT "other-notation"

y1 ← read 5 (read REQUIRED "type" read Start Stop Single)
(read DEFAULT "number" read Number Level Number Level 1)
read Print Object read Print Style read Placement

111

(attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Other Notation :: Other Notation → [Content ()]
show Other Notation ((a, b, c, d , e), f) =

show ELEMENT "other-notation"

(show REQUIRED "type" show Start Stop Single a ++
show IMPLIED "number" show Number Level (Just b) ++
show Print Object c ++ show Print Style d ++
show Placement e)

(show PCDATA f)

Ornaments can be any of several types, followed optionally by accidentals. The accidental-mark
element’s content is represented the same as an accidental element, but with a different name to reflect
the different musical meaning.

-- *** Ornaments
-- |

type Ornaments = [(Ornaments , [Accidental Mark])]
-- |

read Ornaments :: Eq i ⇒ STM Result [Content i] Ornaments
read Ornaments = do

y ← read ELEMENT "ornaments"

read 1 (read LIST read Ornaments aux1) (childs y)
read Ornaments aux1 :: Eq i ⇒ STM Result [Content i] (Ornaments , [Accidental Mark])
read Ornaments aux1 = do

y1 ← read Ornaments
y2 ← read LIST read Accidental Mark
return (y1 , y2)
-- |

show Ornaments :: Ornaments → [Content ()]
show Ornaments l =

show ELEMENT "ornaments" [] (show LIST show Ornaments aux1 l)
show Ornaments aux1 :: (Ornaments , [Accidental Mark])→ [Content ()]
show Ornaments aux1 (a, b) =

show Ornaments a ++ show LIST show Accidental Mark b
-- |

data Ornaments = Ornaments 1 Trill Mark
| Ornaments 2 Turn
| Ornaments 3 Delayed Turn
| Ornaments 4 Inverted Turn
| Ornaments 5 Shake
| Ornaments 6 Wavy Line
| Ornaments 7 Mordent
| Ornaments 8 Inverted Mordent
| Ornaments 9 Schleifer
| Ornaments 10 Tremolo
| Ornaments 11 Other Ornament
deriving (Eq ,Show)

-- |
read Ornaments :: STM Result [Content i] Ornaments
read Ornaments =

(read Trill Mark >>= return ·Ornaments 1) ‘mplus‘
(read Turn >>= return ·Ornaments 2) ‘mplus‘
(read Delayed Turn >>= return ·Ornaments 3) ‘mplus‘
(read Inverted Turn >>= return ·Ornaments 4) ‘mplus‘
(read Shake >>= return ·Ornaments 5) ‘mplus‘
(read Wavy Line >>= return ·Ornaments 6) ‘mplus‘

112

(read Mordent >>= return ·Ornaments 7) ‘mplus‘
(read Inverted Mordent >>= return ·Ornaments 8) ‘mplus‘
(read Schleifer >>= return ·Ornaments 9) ‘mplus‘
(read Tremolo >>= return ·Ornaments 10) ‘mplus‘
(read Other Ornament >>= return ·Ornaments 11)
-- |

show Ornaments :: Ornaments → [Content ()]
show Ornaments (Ornaments 1 x) = show Trill Mark x
show Ornaments (Ornaments 2 x) = show Turn x
show Ornaments (Ornaments 3 x) = show Delayed Turn x
show Ornaments (Ornaments 4 x) = show Inverted Turn x
show Ornaments (Ornaments 5 x) = show Shake x
show Ornaments (Ornaments 6 x) = show Wavy Line x
show Ornaments (Ornaments 7 x) = show Mordent x
show Ornaments (Ornaments 8 x) = show Inverted Mordent x
show Ornaments (Ornaments 9 x) = show Schleifer x
show Ornaments (Ornaments 10 x) = show Tremolo x
show Ornaments (Ornaments 11 x) = show Other Ornament x

-- |
type Trill Mark = ((Print Style,Placement ,Trill Sound), ())

-- |
read Trill Mark :: STM Result [Content i] Trill Mark
read Trill Mark = do

y ← read ELEMENT "trill-mark"

y1 ← read 3 read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Trill Mark :: Trill Mark → [Content ()]
show Trill Mark ((a, b, c),) =

show ELEMENT "trill-mark"

(show Print Style a ++
show Placement b ++
show Trill Sound c) []

The turn and delayed-turn elements are the normal turn shape which goes up then down. The delayed-
turn element indicates a turn that is delayed until the end of the current note. The inverted-turn element
has the shape which goes down and then up.

-- |
type Turn = ((Print Style,Placement ,Trill Sound), ())

-- |
read Turn :: STM Result [Content i] Turn
read Turn = do

y ← read ELEMENT "turn"

y1 ← read 3 read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Turn :: Turn → [Content ()]
show Turn ((a, b, c),) =

show ELEMENT "turn"

(show Print Style a ++
show Placement b ++
show Trill Sound c) []

-- |
type Delayed Turn = ((Print Style,Placement ,Trill Sound), ())

-- |
read Delayed Turn :: STM Result [Content i] Delayed Turn

113

read Delayed Turn = do
y ← read ELEMENT "delayed-turn"

y1 ← read 3 read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Delayed Turn :: Delayed Turn → [Content ()]
show Delayed Turn ((a, b, c),) =

show ELEMENT "delayed-turn"

(show Print Style a ++
show Placement b ++
show Trill Sound c) []

-- |
type Inverted Turn = ((Print Style,Placement ,Trill Sound), ())

-- |
read Inverted Turn :: STM Result [Content i] Inverted Turn
read Inverted Turn = do

y ← read ELEMENT "inverted-turn"

y1 ← read 3 read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Inverted Turn :: Inverted Turn → [Content ()]
show Inverted Turn ((a, b, c),) =

show ELEMENT "inverted-turn"

(show Print Style a ++
show Placement b ++
show Trill Sound c) []

-- |
type Shake = ((Print Style,Placement ,Trill Sound), ())

-- |
read Shake :: STM Result [Content i] Shake
read Shake = do

y ← read ELEMENT "shake"

y1 ← read 3 read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Shake :: Shake → [Content ()]
show Shake ((a, b, c),) =

show ELEMENT "shake"

(show Print Style a ++
show Placement b ++
show Trill Sound c) []

The wavy-line element is defined in the Common.lhs file, as it applies to more than just note elements.
The long attribute for the mordent and inverted-mordent elements is ”no” by default. The mordent

element represents the sign with the vertical line; the inverted-mordent element represents the sign without
the vertical line.

-- |
type Mordent = ((Maybe Yes No,Print Style,Placement ,Trill Sound), ())

-- |
read Mordent :: STM Result [Content i] Mordent
read Mordent = do

y ← read ELEMENT "mordent"

y1 ← read 4 (read IMPLIED "long" read Yes No)
read Print Style read Placement read Trill Sound
(attributes y)

114

return (y1 , ())
-- |

show Mordent :: Mordent → [Content ()]
show Mordent ((a, b, c, d),) =

show ELEMENT "mordent"

(show IMPLIED [] show Yes No a ++
show Print Style b ++
show Placement c ++
show Trill Sound d) []

-- |
type Inverted Mordent = ((Maybe Yes No,Print Style,Placement ,Trill Sound), ())

-- |
read Inverted Mordent :: STM Result [Content i] Inverted Mordent
read Inverted Mordent = do

y ← read ELEMENT "inverted-mordent"

y1 ← read 4 (read IMPLIED "long" read Yes No)
read Print Style read Placement read Trill Sound
(attributes y)

return (y1 , ())
-- |

show Inverted Mordent :: Inverted Mordent → [Content ()]
show Inverted Mordent ((a, b, c, d),) =

show ELEMENT "inverted-mordent"

(show IMPLIED [] show Yes No a ++
show Print Style b ++
show Placement c ++
show Trill Sound d) []

The name for this ornament is based on the German, to avoid confusion with the more common slide
element defined earlier.

-- |
type Schleifer = ((Print Style,Placement), ())

-- |
read Schleifer :: STM Result [Content i] Schleifer
read Schleifer = do

y ← read ELEMENT "schleifer"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Schleifer :: Schleifer → [Content ()]
show Schleifer ((a, b),) =

show ELEMENT "schleifer" (show Print Style a ++ show Placement b) []

While using repeater beams is the preferred method for indicating tremolos, often playback and display
are not well-enough integrated in an application to make that feasible. The tremolo ornament can be used
to indicate either single-note or double-note tremolos. Single-note tremolos use the single type, while
double-note tremolos use the start and stop types. The default is ”single” for compatibility with Version
1.1. The text of the element indicates the number of tremolo marks and is an integer from 0 to 6. Note
that the number of attached beams is not included in this value, but is represented separately using the
beam element.

-- |
type Tremolo = ((Start Stop Single,Print Style,Placement),PCDATA)

-- |
read Tremolo :: STM Result [Content i] Tremolo
read Tremolo = do

y ← read ELEMENT "tremolo"

y1 ← read 3 (read DEFAULT "type" read Start Stop Single Start Stop Single 3)
read Print Style read Placement (attributes y)

115

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Tremolo :: Tremolo → [Content ()]
show Tremolo ((a, b, c), d) =

show ELEMENT "tremolo"

(show IMPLIED "type" show Start Stop Single (Just a) ++
show Print Style b ++ show Placement c)

(show PCDATA d)

The other-ornament element is used to define any ornaments not yet in the MusicXML format. This
allows extended representation, though without application interoperability.

-- |
type Other Ornament = ((Print Style,Placement),PCDATA)

-- |
read Other Ornament :: STM Result [Content i] Other Ornament
read Other Ornament = do

y ← read ELEMENT "other-ornament"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Other Ornament :: Other Ornament → [Content ()]
show Other Ornament ((a, b), c) =

show ELEMENT "other-ornament"

(show Print Style a ++ show Placement b)
(show PCDATA c)

An accidental-mark can be used as a separate notation or as part of an ornament. When used in an
ornament, position and placement are relative to the ornament, not relative to the note.

-- |
type Accidental Mark = ((Print Style,Placement),CDATA)

-- |
read Accidental Mark :: STM Result [Content i] Accidental Mark
read Accidental Mark = do

y ← read ELEMENT "accidental-mark"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Accidental Mark :: Accidental Mark → [Content ()]
show Accidental Mark ((a, b), c) =

show ELEMENT "accidental-mark"

(show Print Style a ++ show Placement b)
(show PCDATA c)

Technical indications give performance information for individual instruments.

-- *** Technical
-- |

type Technical = [Technical]
-- |

read Technical :: Eq i ⇒ STM Result [Content i] Technical
read Technical = do

y ← read ELEMENT "technical"

read 1 (read LIST read Technical) (childs y)
-- |

show Technical :: Technical → [Content ()]

116

show Technical x =
show ELEMENT "technical" [] (show LIST show Technical x)
-- |

data Technical = Technical 1 Up Bow
| Technical 2 Down Bow
| Technical 3 Harmonic
| Technical 4 Open String
| Technical 5 Thumb Position
| Technical 6 Fingering
| Technical 7 Pluck
| Technical 8 Double Tongue
| Technical 9 Triple Tongue
| Technical 10 Stopped
| Technical 11 Snap Pizzicato
| Technical 12 Fret
| Technical 13 String
| Technical 14 Hammer On
| Technical 15 Pull Off
| Technical 16 Bend
| Technical 17 Tap
| Technical 18 Heel
| Technical 19 Toe
| Technical 20 Fingernails
| Technical 21 Other Technical
deriving (Eq ,Show)

-- |
read Technical :: STM Result [Content i] Technical
read Technical =

(read Up Bow >>= return · Technical 1) ‘mplus‘
(read Down Bow >>= return · Technical 2) ‘mplus‘
(read Harmonic >>= return · Technical 3) ‘mplus‘
(read Open String >>= return · Technical 4) ‘mplus‘
(read Thumb Position >>= return · Technical 5) ‘mplus‘
(read Fingering >>= return · Technical 6) ‘mplus‘
(read Pluck >>= return · Technical 7) ‘mplus‘
(read Double Tongue >>= return · Technical 8) ‘mplus‘
(read Triple Tongue >>= return · Technical 9) ‘mplus‘
(read Stopped >>= return · Technical 10) ‘mplus‘
(read Snap Pizzicato >>= return · Technical 11) ‘mplus‘
(read Fret >>= return · Technical 12) ‘mplus‘
(read String >>= return · Technical 13) ‘mplus‘
(read Hammer On >>= return · Technical 14) ‘mplus‘
(read Pull Off >>= return · Technical 15) ‘mplus‘
(read Bend >>= return · Technical 16) ‘mplus‘
(read Tap >>= return · Technical 17) ‘mplus‘
(read Heel >>= return · Technical 18) ‘mplus‘
(read Toe >>= return · Technical 19) ‘mplus‘
(read Fingernails >>= return · Technical 20) ‘mplus‘
(read Other Technical >>= return · Technical 21)
-- |

show Technical :: Technical → [Content ()]
show Technical (Technical 1 x) = show Up Bow x
show Technical (Technical 2 x) = show Down Bow x
show Technical (Technical 3 x) = show Harmonic x
show Technical (Technical 4 x) = show Open String x
show Technical (Technical 5 x) = show Thumb Position x
show Technical (Technical 6 x) = show Fingering x
show Technical (Technical 7 x) = show Pluck x

117

show Technical (Technical 8 x) = show Double Tongue x
show Technical (Technical 9 x) = show Triple Tongue x
show Technical (Technical 10 x) = show Stopped x
show Technical (Technical 11 x) = show Snap Pizzicato x
show Technical (Technical 12 x) = show Fret x
show Technical (Technical 13 x) = show String x
show Technical (Technical 14 x) = show Hammer On x
show Technical (Technical 15 x) = show Pull Off x
show Technical (Technical 16 x) = show Bend x
show Technical (Technical 17 x) = show Tap x
show Technical (Technical 18 x) = show Heel x
show Technical (Technical 19 x) = show Toe x
show Technical (Technical 20 x) = show Fingernails x
show Technical (Technical 21 x) = show Other Technical x

The up-bow and down-bow elements represent the symbol that is used both for bowing indications on
bowed instruments, and up-stroke / down-stoke indications on plucked instruments.

-- |
type Up Bow = ((Print Style,Placement), ())

-- |
read Up Bow :: STM Result [Content i] Up Bow
read Up Bow = do

y ← read ELEMENT "up-bow"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Up Bow :: Up Bow → [Content ()]
show Up Bow ((a, b),) =

show ELEMENT "up-bow"

(show Print Style a ++ show Placement b) []
-- |

type Down Bow = ((Print Style,Placement), ())
-- |

read Down Bow :: STM Result [Content i] Down Bow
read Down Bow = do

y ← read ELEMENT "down-bow"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Down Bow :: Down Bow → [Content ()]
show Down Bow ((a, b),) =

show ELEMENT "down-bow"

(show Print Style a ++ show Placement b) []

The harmonic element indicates natural and artificial harmonics. Natural harmonics usually notate
the base pitch rather than the sounding pitch. Allowing the type of pitch to be specified, combined with
controls for appearance/playback differences, allows both the notation and the sound to be represented.
Artificial harmonics can add a notated touching-pitch; the pitch or fret at which the string is touched
lightly to produce the harmonic. Artificial pinch harmonics will usually not notate a touching pitch. The
attributes for the harmonic element refer to the use of the circular harmonic symbol, typically but not
always used with natural harmonics.

type Harmonic = ((Print Object ,Print Style,Placement),
(Maybe Harmonic A,Maybe Harmonic B))
-- |

read Harmonic :: STM Result [Content i] Harmonic
read Harmonic = do

y ← read ELEMENT "harmonic"

y1 ← read 3 read Print Object read Print Style

118

read Placement (attributes y)
y2 ← read 2 (read MAYBE read Harmonic A)

(read MAYBE read Harmonic B) (childs y)
return (y1 , y2)
-- |

show Harmonic :: Harmonic → [Content ()]
show Harmonic ((a, b, c), (d , e)) =

show ELEMENT "harmonic"

(show Print Object a ++
show Print Style b ++
show Placement c)

(show MAYBE show Harmonic A d ++
show MAYBE show Harmonic B e)

data Harmonic A = Harmonic 1 Natural
| Harmonic 2 Artificial
deriving (Eq ,Show)

-- |
read Harmonic A :: STM Result [Content i] Harmonic A
read Harmonic A =

(read Natural >>= return ·Harmonic 1) ‘mplus‘
(read Artificial >>= return ·Harmonic 2)
-- |

show Harmonic A :: Harmonic A→ [Content ()]
show Harmonic A (Harmonic 1 x) = show Natural x
show Harmonic A (Harmonic 2 x) = show Artificial x

-- |
data Harmonic B = Harmonic 3 Base Pitch
| Harmonic 4 Touching Pitch
| Harmonic 5 Sounding Pitch
deriving (Eq ,Show)

-- |
read Harmonic B :: STM Result [Content i] Harmonic B
read Harmonic B =

(read Base Pitch >>= return ·Harmonic 3) ‘mplus‘
(read Touching Pitch >>= return ·Harmonic 4) ‘mplus‘
(read Sounding Pitch >>= return ·Harmonic 5)
-- |

show Harmonic B :: Harmonic B → [Content ()]
show Harmonic B (Harmonic 3 x) = show Base Pitch x
show Harmonic B (Harmonic 4 x) = show Touching Pitch x
show Harmonic B (Harmonic 5 x) = show Sounding Pitch x

-- |
type Natural = ()

-- |
read Natural :: STM Result [Content i] Natural
read Natural = do

read ELEMENT "natural">> return ()
-- |

show Natural :: Natural → [Content ()]
show Natural = show ELEMENT "natural" [] []

-- |
type Artificial = ()

-- |
read Artificial :: STM Result [Content i] Artificial
read Artificial = do

read ELEMENT "artificial">> return ()
-- |

show Artificial :: Artificial → [Content ()]

119

show Artificial = show ELEMENT "artificial" [] []
-- |

type Base Pitch = ()
-- |

read Base Pitch :: STM Result [Content i] Base Pitch
read Base Pitch = do

read ELEMENT "base-picth">> return ()
-- |

show Base Pitch :: Base Pitch → [Content ()]
show Base Pitch = show ELEMENT "base-pitch" [] []

-- |
type Touching Pitch = ()

-- |
read Touching Pitch :: STM Result [Content i] Touching Pitch
read Touching Pitch = do

read ELEMENT "touching-pitch">> return ()
-- |

show Touching Pitch :: Touching Pitch → [Content ()]
show Touching Pitch = show ELEMENT "touching-picth" [] []

-- |
type Sounding Pitch = ()

-- |
read Sounding Pitch :: STM Result [Content i] Sounding Pitch
read Sounding Pitch = do

read ELEMENT "sounding-picth">> return ()
-- |

show Sounding Pitch :: Sounding Pitch → [Content ()]
show Sounding Pitch = show ELEMENT "sounding-pitch" [] []

-- |
type Open String = ((Print Style,Placement), ())

-- |
read Open String :: STM Result [Content i] Open String
read Open String = do

y ← read ELEMENT "open-string"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Open String :: Open String → [Content ()]
show Open String ((a, b),) =

show ELEMENT "open-string"

(show Print Style a ++ show Placement b) []
-- |

type Thumb Position = ((Print Style,Placement), ())
-- |

read Thumb Position :: STM Result [Content i] Thumb Position
read Thumb Position = do

y ← read ELEMENT "thumb-position"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Thumb Position :: Thumb Position → [Content ()]
show Thumb Position ((a, b),) =

show ELEMENT "thumb-position"

(show Print Style a ++ show Placement b) []

The pluck element is used to specify the plucking fingering on a fretted instrument, where the fingering
element refers to the fretting fingering. Typical values are p, i, m, a for pulgar/thumb, indicio/index,
medio/middle, and anular/ring fingers.

120

-- |
type Pluck = ((Print Style,Placement),PCDATA)

-- |
read Pluck :: STM Result [Content i] Pluck
read Pluck = do

y ← read ELEMENT "pluck"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Pluck :: Pluck → [Content ()]
show Pluck ((a, b), c) =

show ELEMENT "pluck"

(show Print Style a ++ show Placement b)
(show PCDATA c)

-- |
type Double Tongue = ((Print Style,Placement), ())

-- |
read Double Tongue :: STM Result [Content i] Double Tongue
read Double Tongue = do

y ← read ELEMENT "double-tongue"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Double Tongue :: Double Tongue → [Content ()]
show Double Tongue ((a, b),) =

show ELEMENT "double-tongue"

(show Print Style a ++ show Placement b) []
-- |

type Triple Tongue = ((Print Style,Placement), ())
-- |

read Triple Tongue :: STM Result [Content i] Triple Tongue
read Triple Tongue = do

y ← read ELEMENT "triple-tongue"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Triple Tongue :: Triple Tongue → [Content ()]
show Triple Tongue ((a, b),) =

show ELEMENT "triple-tongue"

(show Print Style a ++ show Placement b) []
-- |

type Stopped = ((Print Style,Placement), ())
-- |

read Stopped :: STM Result [Content i] Stopped
read Stopped = do

y ← read ELEMENT "stopped"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Stopped :: Stopped → [Content ()]
show Stopped ((a, b),) =

show ELEMENT "stopped"

(show Print Style a ++ show Placement b) []
-- |

type Snap Pizzicato = ((Print Style,Placement), ())
-- |

read Snap Pizzicato :: STM Result [Content i] Snap Pizzicato

121

read Snap Pizzicato = do
y ← read ELEMENT "snap-pizzicato"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Snap Pizzicato :: Snap Pizzicato → [Content ()]
show Snap Pizzicato ((a, b),) =

show ELEMENT "snap-pizzicato"

(show Print Style a ++ show Placement b) []

The hammer-on and pull-off elements are used in guitar and fretted instrument notation. Since a single
slur can be marked over many notes, the hammer-on and pull-off elements are separate so the individual
pair of notes can be specified. The element content can be used to specify how the hammer-on or pull-off
should be notated. An empty element leaves this choice up to the application.

-- |
type Hammer On = ((Start Stop,Number Level ,Print Style,Placement),PCDATA)

-- |
read Hammer On :: STM Result [Content i] Hammer On
read Hammer On = do

y ← read ELEMENT "hammer-on"

y1 ← read 4 (read REQUIRED "type" read Start Stop)
(read DEFAULT "number" read Number Level Number Level 1)

read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Hammer On :: Hammer On → [Content ()]
show Hammer On ((a, b, c, d), e) =

show ELEMENT "hammer-on"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level (Just b) ++
show Print Style c ++ show Placement d)

(show PCDATA e)
-- |

type Pull Off = ((Start Stop,Number Level ,Print Style,Placement),PCDATA)
-- |

read Pull Off :: STM Result [Content i] Pull Off
read Pull Off = do

y ← read ELEMENT "pull-off"

y1 ← read 4 (read REQUIRED "type" read Start Stop)
(read DEFAULT "number" read Number Level Number Level 1)
read Print Style read Placement (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Pull Off :: Pull Off → [Content ()]
show Pull Off ((a, b, c, d), e) =

show ELEMENT "pull-off"

(show REQUIRED "type" show Start Stop a ++
show IMPLIED "number" show Number Level (Just b) ++
show Print Style c ++ show Placement d)

(show PCDATA e)

The bend element is used in guitar and tablature. The bend-alter element indicates the number of
steps in the bend, similar to the alter element. As with the alter element, numbers like 0.5 can be used to
indicate microtones. Negative numbers indicate pre-bends or releases; the pre-bend and release elements
are used to distinguish what is intended. A with-bar element indicates that the bend is to be done at the
bridge with a whammy or vibrato bar. The content of the element indicates how this should be notated.

122

-- |
type Bend = ((Print Style,Bend Sound),

(Bend Alter ,Maybe Bend ,Maybe With Bar))
-- |

read Bend :: STM Result [Content i] Bend
read Bend = do

y ← read ELEMENT "bend"

y1 ← read 2 read Print Style read Bend Sound (attributes y)
y2 ← read 3 read Bend Alter (read MAYBE read Bend)

(read MAYBE read With Bar) (childs y)
return (y1 , y2)
-- |

show Bend :: Bend → [Content ()]
show Bend ((a, b), (c, d , e)) =

show ELEMENT "bend"

(show Print Style a ++ show Bend Sound b)
(show Bend Alter c ++

show MAYBE show Bend d ++
show MAYBE show With Bar e)

-- |
data Bend = Bend 1 Pre Bend | Bend 2 Release

deriving (Eq ,Show)
-- |

read Bend :: STM Result [Content i] Bend
read Bend =

(read Pre Bend >>= return · Bend 1) ‘mplus‘
(read Release >>= return · Bend 2)
-- |

show Bend :: Bend → [Content ()]
show Bend (Bend 1 x) = show Pre Bend x
show Bend (Bend 2 x) = show Release x

-- |
type Bend Alter = PCDATA

-- |
read Bend Alter :: STM Result [Content i] Bend Alter
read Bend Alter = do

y ← read ELEMENT "bend-alter"

read 1 read PCDATA (childs y)
-- |

show Bend Alter :: Bend Alter → [Content ()]
show Bend Alter a = show ELEMENT "bend-alter" [] (show PCDATA a)

-- |
type Pre Bend = ()

-- |
read Pre Bend :: STM Result [Content i] Pre Bend
read Pre Bend = read ELEMENT "pre-bend">> return ()

-- |
show Pre Bend :: Pre Bend → [Content ()]
show Pre Bend = show ELEMENT "pre-bend" [] []

-- |
type Release = ()

-- |
read Release :: STM Result [Content i] Release
read Release = read ELEMENT "release">> return ()

-- |
show Release :: Release → [Content ()]
show Release = show ELEMENT "release" [] []

-- |

123

type With Bar = ((Print Style,Placement),CDATA)
-- |

read With Bar :: STM Result [Content i] With Bar
read With Bar = do

y ← read ELEMENT "with-bar"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show With Bar :: With Bar → [Content ()]
show With Bar ((a, b), c) =

show ELEMENT "with-bar"

(show Print Style a ++ show Placement b)
(show PCDATA c)

The tap element indicates a tap on the fretboard. The element content allows specification of the
notation; + and T are common choices. If empty, the display is application-specific.

-- |
type Tap = ((Print Style,Placement),CDATA)

-- |
read Tap :: STM Result [Content i] Tap
read Tap = do

y ← read ELEMENT "tap"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Tap :: Tap → [Content ()]
show Tap ((a, b), c) =

show ELEMENT "tap"

(show Print Style a ++ show Placement b)
(show PCDATA c)

The heel and toe element are used with organ pedals. The substitution value is ”no” if the attribute
is not present.

-- |
type Heel = ((Maybe Yes No,Print Style,Placement), ())

-- |
read Heel :: STM Result [Content i] Heel
read Heel = do

y ← read ELEMENT "heel"

y1 ← read 3 (read IMPLIED "substitution" read Yes No)
read Print Style read Placement (attributes y)

return (y1 , ())
-- |

show Heel :: Heel → [Content ()]
show Heel ((a, b, c),) =

show ELEMENT "heel"

(show IMPLIED "substitution" show Yes No a ++
show Print Style b ++
show Placement c) []

-- |
type Toe = ((Maybe Yes No,Print Style,Placement), ())

-- |
read Toe :: STM Result [Content i] Toe
read Toe = do

y ← read ELEMENT "toe"

y1 ← read 3 (read IMPLIED "substitution" read Yes No)

124

read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Toe :: Toe → [Content ()]
show Toe ((a, b, c),) =

show ELEMENT "toe"

(show IMPLIED "substitution" show Yes No a ++
show Print Style b ++
show Placement c) []

The fingernails element is used in harp notation.

-- |
type Fingernails = ((Print Style,Placement), ())

-- |
read Fingernails :: STM Result [Content i] Fingernails
read Fingernails = do

y ← read ELEMENT "fingernails"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Fingernails :: Fingernails → [Content ()]
show Fingernails ((a, b),) =

show ELEMENT "fingernails"

(show Print Style a ++ show Placement b) []

The other-technical element is used to define any technical indications not yet in the MusicXML
format. This allows extended representation, though without application interoperability.

-- |
type Other Technical = ((Print Style,Placement),CDATA)

-- |
read Other Technical :: STM Result [Content i] Other Technical
read Other Technical = do

y ← read ELEMENT "other-technical"

y1 ← read 2 read Print Style read Placement (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Other Technical :: Other Technical → [Content ()]
show Other Technical ((a, b), c) =

show ELEMENT "other-technical"

(show Print Style a ++ show Placement b)
(show PCDATA c)

Articulations and accents are grouped together here.

-- *** Articulations
-- |

type Articulations = [Articulations]
-- |

read Articulations :: Eq i ⇒ STM Result [Content i] Articulations
read Articulations = do

y ← read ELEMENT "articulations"

read 1 (read LIST read Articulations) (childs y)
-- |

show Articulations :: Articulations → [Content ()]
show Articulations a =

show ELEMENT "articulations" [] (show LIST show Articulations a)
data Articulations = Articulations 1 Accent

125

| Articulations 2 Strong Accent
| Articulations 3 Staccato
| Articulations 4 Tenuto
| Articulations 5 Detached Legato
| Articulations 6 Staccatissimo
| Articulations 7 Spiccato
| Articulations 8 Scoop
| Articulations 9 Plop
| Articulations 10 Doit
| Articulations 11 Falloff
| Articulations 12 Breath Mark
| Articulations 13 Caesura
| Articulations 14 Stress
| Articulations 15 Unstress
| Articulations 16 Other Articulation
deriving (Eq ,Show)

-- |
read Articulations :: STM Result [Content i] Articulations
read Articulations =

(read Accent >>= return ·Articulations 1) ‘mplus‘
(read Strong Accent >>= return ·Articulations 2) ‘mplus‘
(read Staccato >>= return ·Articulations 3) ‘mplus‘
(read Tenuto >>= return ·Articulations 4) ‘mplus‘
(read Detached Legato >>= return ·Articulations 5) ‘mplus‘
(read Staccatissimo >>= return ·Articulations 6) ‘mplus‘
(read Spiccato >>= return ·Articulations 7) ‘mplus‘
(read Scoop >>= return ·Articulations 8) ‘mplus‘
(read Plop >>= return ·Articulations 9) ‘mplus‘
(read Doit >>= return ·Articulations 10) ‘mplus‘
(read Falloff >>= return ·Articulations 11) ‘mplus‘
(read Breath Mark >>= return ·Articulations 12) ‘mplus‘
(read Caesura >>= return ·Articulations 13) ‘mplus‘
(read Stress >>= return ·Articulations 14) ‘mplus‘
(read Unstress >>= return ·Articulations 15) ‘mplus‘
(read Other Articulation >>= return ·Articulations 16)
-- |

show Articulations :: Articulations → [Content ()]
show Articulations (Articulations 1 x) = show Accent x
show Articulations (Articulations 2 x) = show Strong Accent x
show Articulations (Articulations 3 x) = show Staccato x
show Articulations (Articulations 4 x) = show Tenuto x
show Articulations (Articulations 5 x) = show Detached Legato x
show Articulations (Articulations 6 x) = show Staccatissimo x
show Articulations (Articulations 7 x) = show Spiccato x
show Articulations (Articulations 8 x) = show Scoop x
show Articulations (Articulations 9 x) = show Plop x
show Articulations (Articulations 10 x) = show Doit x
show Articulations (Articulations 11 x) = show Falloff x
show Articulations (Articulations 12 x) = show Breath Mark x
show Articulations (Articulations 13 x) = show Caesura x
show Articulations (Articulations 14 x) = show Stress x
show Articulations (Articulations 15 x) = show Unstress x
show Articulations (Articulations 16 x) = show Other Articulation x

-- |
type Accent = ((Print Style,Placement), ())

-- |
read Accent :: STM Result [Content i] Accent
read Accent = do

126

y ← read ELEMENT "accent"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Accent :: Accent → [Content ()]
show Accent ((a, b),) =

show ELEMENT "accent"

(show Print Style a ++ show Placement b) []
-- |

type Strong Accent = ((Print Style,Placement ,Up Down), ())
-- |

read Strong Accent :: STM Result [Content i] Strong Accent
read Strong Accent = do

y ← read ELEMENT "strong-accent"

y1 ← read 3 read Print Style read Placement
(read DEFAULT "type" read Up Down Up Down 1) (attributes y)

return (y1 , ())
-- |

show Strong Accent :: Strong Accent → [Content ()]
show Strong Accent ((a, b, c),) =

show ELEMENT "strong-accent"

(show Print Style a ++ show Placement b ++
show REQUIRED "type" show Up Down c) []

The staccato element is used for a dot articulation, as opposed to a stroke or a wedge.

-- |
type Staccato = ((Print Style,Placement), ())

-- |
read Staccato :: STM Result [Content i] Staccato
read Staccato = do

y ← read ELEMENT "staccato"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Staccato :: Staccato → [Content ()]
show Staccato ((a, b),) =

show ELEMENT "staccato"

(show Print Style a ++ show Placement b) []
-- |

type Tenuto = ((Print Style,Placement), ())
-- |

read Tenuto :: STM Result [Content i] Tenuto
read Tenuto = do

y ← read ELEMENT "tenuto"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Tenuto :: Tenuto → [Content ()]
show Tenuto ((a, b),) =

show ELEMENT "tenuto"

(show Print Style a ++ show Placement b) []
-- |

type Detached Legato = ((Print Style,Placement), ())
-- |

read Detached Legato :: STM Result [Content i] Detached Legato
read Detached Legato = do

y ← read ELEMENT "detached-legato"

y1 ← read 2 read Print Style read Placement (attributes y)

127

return (y1 , ())
-- |

show Detached Legato :: Detached Legato → [Content ()]
show Detached Legato ((a, b),) =

show ELEMENT "detached-legato"

(show Print Style a ++ show Placement b) []

The staccatissimo element is used for a wedge articulation, as opposed to a dot or a stroke.

-- |
type Staccatissimo = ((Print Style,Placement), ())

-- |
read Staccatissimo :: STM Result [Content i] Staccato
read Staccatissimo = do

y ← read ELEMENT "staccatissimo"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Staccatissimo :: Staccatissimo → [Content ()]
show Staccatissimo ((a, b),) =

show ELEMENT "staccatissimo"

(show Print Style a ++ show Placement b) []

The spiccato element is used for a stroke articulation, as opposed to a dot or a wedge.

-- |
type Spiccato = ((Print Style,Placement), ())

-- |
read Spiccato :: STM Result [Content i] Spiccato
read Spiccato = do

y ← read ELEMENT "spiccato"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Spiccato :: Spiccato → [Content ()]
show Spiccato ((a, b),) =

show ELEMENT "spiccato"

(show Print Style a ++ show Placement b) []

The scoop, plop, doit, and falloff elements are indeterminate slides attached to a single note. Scoops
and plops come before the main note, coming from below and above the pitch, respectively. Doits and
falloffs come after the main note, going above and below the pitch, respectively.

-- |
type Scoop = ((Line Shape,Line Type,Print Style,Placement), ())

-- |
read Scoop :: STM Result [Content i] Scoop
read Scoop = do

y ← read ELEMENT "scoop"

y1 ← read 4 read Line Shape read Line Type
read Print Style read Placement (attributes y)

return (y1 , ())
-- |

show Scoop :: Scoop → [Content ()]
show Scoop ((a, b, c, d),) =

show ELEMENT "scoop"

(show Line Shape a ++ show Line Type b ++
show Print Style c ++ show Placement d) []

-- |
type Plop = ((Line Shape,Line Type,Print Style,Placement), ())

128

-- |
read Plop :: STM Result [Content i] Plop
read Plop = do

y ← read ELEMENT "plop"

y1 ← read 4 read Line Shape read Line Type
read Print Style read Placement (attributes y)

return (y1 , ())
-- |

show Plop :: Plop → [Content ()]
show Plop ((a, b, c, d),) =

show ELEMENT "plop"

(show Line Shape a ++ show Line Type b ++
show Print Style c ++ show Placement d) []

-- |
type Doit = ((Line Shape,Line Type,Print Style,Placement), ())

-- |
read Doit :: STM Result [Content i] Doit
read Doit = do

y ← read ELEMENT "doit"

y1 ← read 4 read Line Shape read Line Type
read Print Style read Placement (attributes y)

return (y1 , ())
-- |

show Doit :: Doit → [Content ()]
show Doit ((a, b, c, d),) =

show ELEMENT "doit"

(show Line Shape a ++ show Line Type b ++
show Print Style c ++ show Placement d) []

-- |
type Falloff = ((Line Shape,Line Type,Print Style,Placement), ())

-- |
read Falloff :: STM Result [Content i] Falloff
read Falloff = do

y ← read ELEMENT "falloff"

y1 ← read 4 read Line Shape read Line Type
read Print Style read Placement (attributes y)

return (y1 , ())
-- |

show Falloff :: Falloff → [Content ()]
show Falloff ((a, b, c, d),) =

show ELEMENT "falloff"

(show Line Shape a ++ show Line Type b ++
show Print Style c ++ show Placement d) []

-- |
type Breath Mark = ((Print Style,Placement), ())

-- |
read Breath Mark :: STM Result [Content i] Breath Mark
read Breath Mark = do

y ← read ELEMENT "breath-mark"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Breath Mark :: Breath Mark → [Content ()]
show Breath Mark ((a, b),) =

show ELEMENT "breath-mark"

(show Print Style a ++ show Placement b) []
-- |

type Caesura = ((Print Style,Placement), ())

129

-- |
read Caesura :: STM Result [Content i] Caesura
read Caesura = do

y ← read ELEMENT "caesura"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Caesura :: Caesura → [Content ()]
show Caesura ((a, b),) =

show ELEMENT "caesura"

(show Print Style a ++ show Placement b) []
-- |

type Stress = ((Print Style,Placement), ())
-- |

read Stress :: STM Result [Content i] Stress
read Stress = do

y ← read ELEMENT "stress"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Stress :: Stress → [Content ()]
show Stress ((a, b),) =

show ELEMENT "stress"

(show Print Style a ++ show Placement b) []
-- |

type Unstress = ((Print Style,Placement), ())
-- |

read Unstress :: STM Result [Content i] Unstress
read Unstress = do

y ← read ELEMENT "unstress"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Unstress :: Staccato → [Content ()]
show Unstress ((a, b),) =

show ELEMENT "unstress"

(show Print Style a ++ show Placement b) []

The other-articulation element is used to define any articulations not yet in the MusicXML format.
This allows extended representation, though without application interoperability.

-- |
type Other Articulation = ((Print Style,Placement), ())

-- |
read Other Articulation :: STM Result [Content i] Other Articulation
read Other Articulation = do

y ← read ELEMENT "other-articulation"

y1 ← read 2 read Print Style read Placement (attributes y)
return (y1 , ())
-- |

show Other Articulation :: Other Articulation → [Content ()]
show Other Articulation ((a, b),) =

show ELEMENT "other-articulation"

(show Print Style a ++ show Placement b) []

The dynamics and fermata elements are defined in the common.mod file as they apply to more than
just note elements.

The arpeggiate element indicates that this note is part of an arpeggiated chord. The number attribute
can be used to distinguish between two simultaneous chords arpeggiated separately (different numbers)

130

or together (same number). The up-down attribute is used if there is an arrow on the arpeggio sign. By
default, arpeggios go from the lowest to highest note.

-- *** Arpeggiate
-- |

type Arpeggiate = ((Maybe Number Level ,Maybe Up Down,Position,Placement ,
Color), ())
-- |

read Arpeggiate :: STM Result [Content i] Arpeggiate
read Arpeggiate = do

y ← read ELEMENT "arpeggiate"

y1 ← read 5 (read IMPLIED "number" read Number Level)
(read IMPLIED "direction" read Up Down)
read Position read Placement read Color (attributes y)

return (y1 , ())
-- |

show Arpeggiate :: Arpeggiate → [Content ()]
show Arpeggiate ((a, b, c, d , e),) =

show ELEMENT "arpeggiate" (show IMPLIED "number" show Number Level a ++
show IMPLIED "direction" show Up Down b ++
show Position c ++ show Placement d ++
show Color e) []

The non-arpeggiate element indicates that this note is at the top or bottom of a bracket indicating
to not arpeggiate these notes. Since this does not involve playback, it is only used on the top or bottom
notes, not on each note as for the arpeggiate element.

-- *** Non Arpeggiate
-- |

type Non Arpeggiate =
((Top Bottom,Maybe Number Level ,Position,Placement ,Color), ())
-- |

read Non Arpeggiate :: STM Result [Content i] Non Arpeggiate
read Non Arpeggiate = do

y ← read ELEMENT "non-arpeggiate"

y1 ← read 5 (read REQUIRED "type" read Top Bottom)
(read IMPLIED "number" read Number Level)
read Position read Placement read Color
(attributes y)

return (y1 , ())
-- |

show Non Arpeggiate :: Non Arpeggiate → [Content ()]
show Non Arpeggiate ((a, b, c, d , e),) =

show ELEMENT "non-arpeggiate"

(show REQUIRED "type" show Top Bottom a ++
show IMPLIED "number" show Number Level b ++
show Position c ++ show Placement d ++
show Color e) []

Text underlays for lyrics, based on Humdrum with support for other formats. The lyric number indi-
cates multiple lines, though a name can be used as well (as in Finale’s verse/chorus/section specification).
Word extensions are represented using the extend element. Hyphenation is indicated by the syllabic ele-
ment, which can be single, begin, end, or middle. These represent single-syllable words, word-beginning
syllables, word-ending syllables, and mid-word syllables. Multiple syllables on a single note are separated
by elision elements. A hyphen in the text element should only be used for an actual hyphenated word.
Two text elements that are not separated by an elision element are part of the same syllable, but may
have different text formatting.

Humming and laughing representations are taken from Humdrum. The end-line and end-paragraph
elements come from RP-017 for Standard MIDI File Lyric meta-events; they help facilitate lyric display

131

for Karaoke and similar applications. Language names for text elements come from ISO 639, with optional
country subcodes from ISO 3166. Justification is center by default; placement is below by default.

-- ** Lyric
-- |

type Lyric = ((Maybe CDATA,Maybe CDATA,
Justify ,Position,Placement ,Color),

(Lyric ,Maybe End Line,Maybe End Paragraph,Editorial))
read Lyric :: Eq i ⇒ STM Result [Content i] Lyric
read Lyric = do

y ← read ELEMENT "lyric"

y1 ← read 6 (read IMPLIED "number" read CDATA)
(read IMPLIED "name" read CDATA)
read Justify read Position read Placement
read Color (attributes y)

y2 ← read 4 read Lyric (read MAYBE read End Line)
(read MAYBE read End Paragraph) read Editorial
(childs y)

return (y1 , y2)

show Lyric :: Lyric → [Content ()]
show Lyric ((a, b, c, d , e, f), (g , h, i , j)) =

show ELEMENT "lyric" (show IMPLIED "number" show CDATA a ++
show IMPLIED "name" show CDATA b ++
show Justify c ++ show Position d ++
show Placement e ++ show Color f)

(show Lyric g ++ show MAYBE show End Line h ++
show MAYBE show End Paragraph i ++
show Editorial j)

-- |
data Lyric = Lyric 1 ((Maybe Syllabic,Text),

[(Maybe Elision,Maybe Syllabic,Text)],Maybe Extend)
| Lyric 2 Extend
| Lyric 3 Laughing
| Lyric 4 Humming
deriving (Eq ,Show)

read Lyric :: Eq i ⇒ STM Result [Content i] Lyric
read Lyric =

(read Lyric aux1 >>= (return · Lyric 1)) ‘mplus‘
(read Extend >>= (return · Lyric 2)) ‘mplus‘
(read Laughing >>= (return · Lyric 3)) ‘mplus‘
(read Humming >>= (return · Lyric 4)) ‘mplus‘
fail "No lyric_ parsed"

read Lyric aux1 :: Eq i ⇒ STM Result [Content i] ((Maybe Syllabic,Text),
[(Maybe Elision,Maybe Syllabic,Text)],Maybe Extend)

read Lyric aux1 = do
y1 ← read MAYBE read Syllabic
y2 ← read Text
y3 ← read LIST read Lyric aux2
y4 ← read MAYBE read Extend
return ((y1 , y2), y3 , y4)

read Lyric aux2 :: STM Result [Content i] (Maybe Elision,Maybe Syllabic,Text)
read Lyric aux2 = do

y1 ← read MAYBE read Elision
y2 ← read MAYBE read Syllabic
y3 ← read Text
return (y1 , y2 , y3)

show Lyric :: Lyric → [Content ()]
show Lyric (Lyric 1 ((a, b), c, d)) =

132

show MAYBE show Syllabic a ++ show Text b ++
show LIST show Lyric aux1 c ++ show MAYBE show Extend d

show Lyric (Lyric 2 x) = show Extend x
show Lyric (Lyric 3 x) = show Laughing x
show Lyric (Lyric 4 x) = show Humming x

show Lyric aux1 :: (Maybe Elision,Maybe Syllabic,Text)→ [Content ()]
show Lyric aux1 (a, b, c) = show MAYBE show Elision a ++

show MAYBE show Syllabic b ++ show Text c
-- |

type Text = ((Font ,Color ,Text Decoration,Text Rotation,Letter Spacing ,
Maybe CDATA,Text Direction),CDATA)

-- |
read Text :: STM Result [Content i] Text
read Text = do

y ← read ELEMENT "text"

y1 ← read 7 read Font read Color read Text Decoration
read Text Rotation read Letter Spacing
(read IMPLIED "xml:lang" read CDATA)
read Text Direction (attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Text :: Text → [Content ()]
show Text ((a, b, c, d , e, f , g), h) =

show ELEMENT "text"

(show Font a ++ show Color b ++
show Text Decoration c ++
show Text Rotation d ++
show Letter Spacing e ++
show IMPLIED "xml:lang" show CDATA f ++
show Text Direction g)

(show PCDATA h)
-- |

type Syllabic = PCDATA
-- |

read Syllabic :: STM Result [Content i] Syllabic
read Syllabic = do

y ← read ELEMENT "syllabic"

read 1 read PCDATA (childs y)
-- |

show Syllabic :: Syllabic → [Content ()]
show Syllabic a = show ELEMENT "syllabic" [] (show PCDATA a)

In Version 2.0, the elision element text is used to specify the symbol used to display the elision.
Common values are a no-break space (Unicode 00A0), an underscore (Unicode 005F), or an undertie
(Unicode 203F).

type Elision = ((Font ,Color),CDATA)
-- |

read Elision :: STM Result [Content i] Elision
read Elision = do

y ← read ELEMENT "elision"

y1 ← read 2 read Font read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Elision :: Elision → [Content ()]
show Elision ((a, b), c) =

show ELEMENT "elision"

133

(show Font a ++ show Color b)
(show PCDATA c)

type Extend = ((Font ,Color), ())
-- |

read Extend :: STM Result [Content i] Extend
read Extend = do

y ← read ELEMENT "extend"

y1 ← read 2 read Font read Color (attributes y)
return (y1 , ())
-- |

show Extend :: Extend → [Content ()]
show Extend ((a, b),) =

show ELEMENT "extend" (show Font a ++ show Color b) []
-- |

type Laughing = ()
-- |

read Laughing :: STM Result [Content i] Laughing
read Laughing = read ELEMENT "laughing">> return ()

-- |
show Laughing :: Laughing → [Content ()]
show Laughing = show ELEMENT "laughing" [] []

-- |
type Humming = ()

-- |
read Humming :: STM Result [Content i] Humming
read Humming = read ELEMENT "humming">> return ()

-- |
show Humming :: Humming → [Content ()]
show Humming = show ELEMENT "humming" [] []

-- |
type End Line = ()

-- |
read End Line :: STM Result [Content i] End Line
read End Line = read ELEMENT "end-line">> return ()

-- |
show End Line :: End Line → [Content ()]
show End Line = show ELEMENT "end-line" [] []

-- |
type End Paragraph = ()

-- |
read End Paragraph :: STM Result [Content i] End Paragraph
read End Paragraph = read ELEMENT "end-paragraph">> return ()

-- |
show End Paragraph :: End Paragraph → [Content ()]
show End Paragraph = show ELEMENT "end-paragraph" [] []

-- |

Figured bass elements take their position from the first regular note that follows. Figures are ordered
from top to bottom. A figure-number is a number. Values for prefix and suffix include the accidental
values sharp, flat, natural, double-sharp, flat-flat, and sharp-sharp. Suffixes include both symbols that
come after the figure number and those that overstrike the figure number. The suffix value slash is used for
slashed numbers indicating chromatic alteration. The orientation and display of the slash usually depends
on the figure number. The prefix and suffix elements may contain additional values for symbols specific
to particular figured bass styles. The value of parentheses is ”no” if not present.

-- |
type Figured Bass = ((Print Style,Printout ,Maybe Yes No),

([Figure],Maybe Duration,Editorial))
-- |

134

read Figured Bass :: Eq i ⇒ STM Result [Content i] Figured Bass
read Figured Bass = do

y ← read ELEMENT "figured-bass"

y1 ← read 3 read Print Style read Printout
(read IMPLIED "parentheses" read Yes No) (attributes y)

y2 ← read 3 (read LIST read Figure) (read MAYBE read Duration)
read Editorial (childs y)

return (y1 , y2)
-- |

show Figured Bass :: Figured Bass → [Content ()]
show Figured Bass ((a, b, c), (d , e, f)) =

show ELEMENT "figured-bass"

(show Print Style a ++ show Printout b ++
show IMPLIED "parentheses" show Yes No c)

(show LIST show Figure d ++ show MAYBE show Duration e ++
show Editorial f)

-- |
type Figure = (Maybe Prefix ,Maybe Figure Number ,Maybe Suffix ,Maybe Extend)

-- |
read Figure :: STM Result [Content i] Figure
read Figure = do

y ← read ELEMENT "figure"

read 4 (read MAYBE read Prefix) (read MAYBE read Figure Number)
(read MAYBE read Suffix) (read MAYBE read Extend) (childs y)

-- |
show Figure :: Figure → [Content ()]
show Figure (a, b, c, d) =

show ELEMENT "figure" []
(show MAYBE show Prefix a ++

show MAYBE show Figure Number b ++
show MAYBE show Suffix c ++
show MAYBE show Extend d)

-- |
type Prefix = (Print Style,CDATA)

-- |
read Prefix :: STM Result [Content i] Prefix
read Prefix = do

y ← read ELEMENT "prefix"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Prefix :: Prefix → [Content ()]
show Prefix (a, b) =

show ELEMENT "prefix"

(show Print Style a)
(show PCDATA b)

-- |
type Figure Number = (Print Style,PCDATA)

-- |
read Figure Number :: STM Result [Content i] Figure Number
read Figure Number = do

y ← read ELEMENT "figure-number"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Figure Number :: Figure Number → [Content ()]

135

show Figure Number (a, b) =
show ELEMENT "figure-number"

(show Print Style a)
(show PCDATA b)

-- |
type Suffix = (Print Style,PCDATA)

-- |
read Suffix :: STM Result [Content i] Suffix
read Suffix = do

y ← read ELEMENT "suffix"

y1 ← read 1 read Print Style (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Suffix :: Suffix → [Content ()]
show Suffix (a, b) =

show ELEMENT "suffix"

(show Print Style a)
(show PCDATA b)

The backup and forward elements are required to coordinate multiple voices in one part, including
music on multiple staves. The forward element is generally used within voices and staves, while the
backup element is generally used to move between voices and staves. Thus the backup element does not
include voice or staff elements. Duration values should always be positive, and should not cross measure
boundaries.

-- |
type Backup = (Duration,Editorial)

-- |
read Backup :: STM Result [Content i] Backup
read Backup = do

y ← read ELEMENT "backup"

read 2 read Duration read Editorial (childs y)
-- |

show Backup :: Backup → [Content ()]
show Backup (a, b) =

show ELEMENT "backup" []
(show Duration a ++

show Editorial b)
-- |

type Forward = (Duration,Editorial Voice,Maybe Staff)
-- |

read Forward :: STM Result [Content i] Forward
read Forward = do

y ← read ELEMENT "forward"

read 3 read Duration read Editorial Voice
(read MAYBE read Staff) (childs y)

-- |
show Forward :: Forward → [Content ()]
show Forward (a, b, c) =

show ELEMENT "forward" []
(show Duration a ++

show Editorial Voice b ++
show MAYBE show Staff c)

136

2.11 Opus

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Opus where
import Text .XML.MusicXML.Common
import Text .XML.MusicXML.Link
import Text .XML.HaXml .Types (Content ,

DocTypeDecl (. .),ExternalID (. .),PubidLiteral (. .),SystemLiteral (. .))
import Control .Monad (MonadPlus (. .))
import Prelude (FilePath,Maybe (. .),Show ,Eq ,Monad (. .), (++), (·),

map, concat)

An opus collects MusicXML scores together into a larger entity. The individual scores could be
movements in a symphony, scenes or acts in an opera, or songs in an album. The opus definition allows
arbitrary nesting either via an opus (included in the document) or an opus-link (linked like scores). Future
versions of the MusicXML format may expand this DTD to include reference data and other metadata
related to musical scores.

Suggested use:

<!DOCTYPE opus PUBLIC

"-//Recordare//DTD MusicXML 2.0 Opus//EN"

"http://www.musicxml.org/dtds/opus.dtd">

-- |
doctype :: DocTypeDecl
doctype = DTD "opus"

(Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Opus//EN")
(SystemLiteral "http://www.musicxml.org/dtds/opus.dtd")))
[]

-- |
getFiles :: Opus → [FilePath]
getFiles (, (, l)) = concat (map (λx → getFiles aux1 x) l)

where getFiles aux1 (Opus 1 o) = getFiles o
getFiles aux1 (Opus 2 (x ,)) = [getFiles aux2 x]
getFiles aux1 (Opus 3 ((x ,),)) = [getFiles aux2 x]
getFiles aux2 (, x , , , , ,) = x

Opus is the document element. The document-attributes entity includes the version attribute and is
defined in the common.mod file.

-- * Opus
-- |

type Opus = (Document Attributes, (Maybe Title, [Opus]))
-- |

read Opus :: Eq i ⇒ STM Result [Content i] Opus
read Opus = do

y ← read ELEMENT "opus"

y1 ← read 1 read Document Attributes (attributes y)
y2 ← read 2 (read MAYBE read Title) (read LIST read Opus) (childs y)
return (y1 , y2)
-- |

show Opus :: Opus → [Content ()]
show Opus (a, (b, c)) =

show ELEMENT "opus"

137

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Opus where
import Text.XML.MusicXML.Common
import Text.XML.MusicXML.Link
import Text.XML.HaXml.Types (Content,
 DocTypeDecl(..), ExternalID(..), PubidLiteral(..), SystemLiteral(..))
import Control.Monad (MonadPlus(..))
import Prelude (FilePath, Maybe(..), Show, Eq, Monad(..), (++), (.),
 map, concat)
\end{code}

\begin{musicxml}
	An opus collects MusicXML scores together into a larger
	entity. The individual scores could be movements in a
	symphony, scenes or acts in an opera, or songs in an
	album. The opus definition allows arbitrary nesting
	either via an opus (included in the document) or an
	opus-link (linked like scores). Future versions of the
	MusicXML format may expand this DTD to include reference
	data and other metadata related to musical scores.
	
	Suggested use:
\begin{verbatim}	
	<!DOCTYPE opus PUBLIC
		"-//Recordare//DTD MusicXML 2.0 Opus//EN"
		"http://www.musicxml.org/dtds/opus.dtd">
\end{verbatim}
\end{musicxml}
\begin{code}
-- |
doctype :: DocTypeDecl
doctype = DTD "opus"
 (Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Opus//EN")
 (SystemLiteral "http://www.musicxml.org/dtds/opus.dtd")))
 []
-- |
getFiles :: Opus -> [FilePath]
getFiles (_,(_,l)) = concat (map (\ x -> getFiles_aux1 x) l)
 where getFiles_aux1 (Opus_1 o) = getFiles o
 getFiles_aux1 (Opus_2 (x,_)) = [getFiles_aux2 x]
 getFiles_aux1 (Opus_3 ((x,_),_)) = [getFiles_aux2 x]
 getFiles_aux2 (_,x,_,_,_,_,_) = x
\end{code}

\begin{musicxml}
	Opus is the document element. The document-attributes
	entity includes the version attribute and is defined in
	the common.mod file.
\end{musicxml}
\begin{code}
-- * Opus
-- |
type Opus = (Document_Attributes, (Maybe Title, [Opus_]))
-- |
read_Opus :: Eq i => STM Result [Content i] Opus
read_Opus = do
 y <- read_ELEMENT "opus"
 y1 <- read_1 read_Document_Attributes (attributes y)
 y2 <- read_2 (read_MAYBE read_Title) (read_LIST read_Opus_) (childs y)
 return (y1,y2)
-- |
show_Opus :: Opus -> [Content ()]
show_Opus (a,(b,c)) =
 show_ELEMENT "opus"
 (show_Document_Attributes a)
 (show_MAYBE show_Title b ++ show_LIST show_Opus_ c)
-- |
data Opus_ = Opus_1 Opus | Opus_2 Opus_Link | Opus_3 Score
 deriving (Eq, Show)
-- |
read_Opus_ :: Eq i => STM Result [Content i] Opus_
read_Opus_ =
 (read_Opus >>= return . Opus_1) `mplus`
 (read_Opus_Link >>= return . Opus_2) `mplus`
 (read_Score >>= return . Opus_3)
-- |
show_Opus_ :: Opus_ -> [Content ()]
show_Opus_ (Opus_1 x) = show_Opus x
show_Opus_ (Opus_2 x) = show_Opus_Link x
show_Opus_ (Opus_3 x) = show_Score x
\end{code}

\begin{musicxml}
	The score elements provide the links to the individual
	movements. The new-page attribute, added in Version
	2.0, is used to indicate if the first page of the score is
	different than the last page of the previous score. If
	new-page is "yes", then a different page is used; if
	"no", then the same page is used. The default value is
	implementation-dependent.
\end{musicxml}
\begin{code}
-- |
type Score = ((Link_Attributes, Maybe Yes_No), ())
-- |
read_Score :: STM Result [Content i] Score
read_Score = do
 y <- read_ELEMENT "score"
 y1 <- read_2 read_Link_Attributes
 (read_IMPLIED "new-page" read_Yes_No) (attributes y)
 return (y1,())
-- |
show_Score :: Score -> [Content ()]
show_Score ((a,b),_) =
 show_ELEMENT "score"
 (show_Link_Attributes a ++ show_IMPLIED "new-page" show_Yes_No b) []
\end{code}

\begin{musicxml}
	An opus-link provides a link to another opus document,
	allowing for multiple levels of opus collections via
	linking as well as nesting.
\end{musicxml}
\begin{code}
-- |
type Opus_Link = (Link_Attributes, ())
-- |
read_Opus_Link :: STM Result [Content i] Opus_Link
read_Opus_Link = do
 y <- read_ELEMENT "opus-link"
 y1 <- read_1 read_Link_Attributes (attributes y)
 return (y1,())
-- |
show_Opus_Link :: Opus_Link -> [Content ()]
show_Opus_Link (a,_) =
 show_ELEMENT "opus-link" (show_Link_Attributes a) []
\end{code}

\begin{musicxml}
	Future versions may include metadata elements. In
	this version, we just include the title of the opus.
\end{musicxml}
\begin{code}
-- |
type Title = PCDATA
-- |
read_Title :: STM Result [Content i] Title
read_Title = do
 y <- read_ELEMENT "title"
 read_1 read_PCDATA (childs y)
-- |
show_Title :: Title -> [Content ()]
show_Title a =
 show_ELEMENT "title" [] (show_PCDATA a)
\end{code}

(show Document Attributes a)
(show MAYBE show Title b ++ show LIST show Opus c)

-- |
data Opus = Opus 1 Opus | Opus 2 Opus Link | Opus 3 Score

deriving (Eq ,Show)
-- |

read Opus :: Eq i ⇒ STM Result [Content i] Opus
read Opus =

(read Opus >>= return ·Opus 1) ‘mplus‘
(read Opus Link >>= return ·Opus 2) ‘mplus‘
(read Score >>= return ·Opus 3)
-- |

show Opus :: Opus → [Content ()]
show Opus (Opus 1 x) = show Opus x
show Opus (Opus 2 x) = show Opus Link x
show Opus (Opus 3 x) = show Score x

The score elements provide the links to the individual movements. The new-page attribute, added in
Version 2.0, is used to indicate if the first page of the score is different than the last page of the previous
score. If new-page is ”yes”, then a different page is used; if ”no”, then the same page is used. The default
value is implementation-dependent.

-- |
type Score = ((Link Attributes,Maybe Yes No), ())

-- |
read Score :: STM Result [Content i] Score
read Score = do

y ← read ELEMENT "score"

y1 ← read 2 read Link Attributes
(read IMPLIED "new-page" read Yes No) (attributes y)

return (y1 , ())
-- |

show Score :: Score → [Content ()]
show Score ((a, b),) =

show ELEMENT "score"

(show Link Attributes a ++ show IMPLIED "new-page" show Yes No b) []

An opus-link provides a link to another opus document, allowing for multiple levels of opus collections
via linking as well as nesting.

-- |
type Opus Link = (Link Attributes, ())

-- |
read Opus Link :: STM Result [Content i] Opus Link
read Opus Link = do

y ← read ELEMENT "opus-link"

y1 ← read 1 read Link Attributes (attributes y)
return (y1 , ())
-- |

show Opus Link :: Opus Link → [Content ()]
show Opus Link (a,) =

show ELEMENT "opus-link" (show Link Attributes a) []

Future versions may include metadata elements. In this version, we just include the title of the opus.

-- |
type Title = PCDATA

-- |
read Title :: STM Result [Content i] Title
read Title = do

138

y ← read ELEMENT "title"

read 1 read PCDATA (childs y)
-- |

show Title :: Title → [Content ()]
show Title a =

show ELEMENT "title" [] (show PCDATA a)

2.12 Partwise

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Partwise where
import Text .XML.MusicXML.Common
import Text .XML.MusicXML.Identity
import Text .XML.MusicXML.Score
import Text .XML.HaXml .Types (Content ,

DocTypeDecl (. .),ExternalID (. .),PubidLiteral (. .),SystemLiteral (. .))
import Prelude (Maybe (. .),Monad (. .),Eq , (++))

The MusicXML format is designed to represent musical scores, specifically common western musical
notation from the 17th century onwards. It is designed as an interchange format for notation, analysis,
retrieval, and performance applications. Therefore it is intended to be sufficient, not optimal, for these
applications.

The MusicXML format is based on the MuseData and Humdrum formats. Humdrum explicitly rep-
resents the two-dimensional nature of musical scores by a 2-D layout notation. Since the XML format is
hierarchical, we cannot do this explicitly. Instead, there are two top-level formats:

partwise.dtd Represents scores by part/instrument timewise.dtd Represents scores by time/measure
Thus partwise.dtd contains measures within each part, while timewise.dtd contains parts within each

measure. XSLT stylesheets are provided to convert between the two formats.
The partwise and timewise score DTDs represent a single movement of music. Multiple movements or

other musical collections are presented using opus.dtd. An opus document contains XLinks to individual
scores.

Suggested use:

<!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 2.0 Partwise//EN"

"http://www.musicxml.org/dtds/partwise.dtd">

This DTD is made up of a series of component DTD modules, all of which are included here.

-- |
doctype :: DocTypeDecl
doctype = DTD "score-partwise"

(Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Partwise//EN")
(SystemLiteral "http://www.musicxml.org/dtds/partwise.dtd")))
[]

The score is the root element for the DTD. It includes the score-header entity, followed either by a series
of parts with measures inside (score-partwise) or a series of measures with parts inside (score-timewise).
Having distinct top-level elements for partwise and timewise scores makes it easy to ensure that an XSLT
stylesheet does not try to transform a document already in the desired format. The document-attributes
entity includes the version attribute and is defined in the common.mod file.

139

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Partwise where
import Text.XML.MusicXML.Common
import Text.XML.MusicXML.Identity
import Text.XML.MusicXML.Score
import Text.XML.HaXml.Types (Content,
 DocTypeDecl(..), ExternalID(..), PubidLiteral(..), SystemLiteral(..))
import Prelude (Maybe(..), Monad(..), Eq, (++))
\end{code}

\begin{musicxml}
	The MusicXML format is designed to represent musical scores,
	specifically common western musical notation from the 17th
	century onwards. It is designed as an interchange format
	for notation, analysis, retrieval, and performance
	applications. Therefore it is intended to be sufficient,
	not optimal, for these applications.
	
	The MusicXML format is based on the MuseData and Humdrum
	formats. Humdrum explicitly represents the two-dimensional
	nature of musical scores by a 2-D layout notation. Since the
	XML format is hierarchical, we cannot do this explicitly.
	Instead, there are two top-level formats:
	
	partwise.dtd Represents scores by part/instrument
	timewise.dtd Represents scores by time/measure
	
	Thus partwise.dtd contains measures within each part,
	while timewise.dtd contains parts within each measure.
	XSLT stylesheets are provided to convert between the
	two formats.
	
	The partwise and timewise score DTDs represent a single
	movement of music. Multiple movements or other musical
	collections are presented using opus.dtd. An opus
	document contains XLinks to individual scores.
	
	Suggested use:
\begin{verbatim}	
	<!DOCTYPE score-partwise PUBLIC
		"-//Recordare//DTD MusicXML 2.0 Partwise//EN"
		"http://www.musicxml.org/dtds/partwise.dtd">
\end{verbatim}	
	This DTD is made up of a series of component DTD modules,
	all of which are included here.
\end{musicxml}
\begin{code}
-- |
doctype :: DocTypeDecl
doctype = DTD "score-partwise"
 (Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Partwise//EN")
 (SystemLiteral "http://www.musicxml.org/dtds/partwise.dtd")))
 []
\end{code}

\begin{musicxml}
	The score is the root element for the DTD. It includes
	the score-header entity, followed either by a series of
	parts with measures inside (score-partwise) or a series
	of measures with parts inside (score-timewise). Having
	distinct top-level elements for partwise and timewise
	scores makes it easy to ensure that an XSLT stylesheet
	does not try to transform a document already in the
	desired format. The document-attributes entity includes the
	version attribute and is defined in the common.mod file.

 In either format, the part element has an id attribute that
	is an IDREF back to a score-part in the part-list. Measures
	have a required number attribute (going from partwise to
	timewise, measures are grouped via the number).

 The implicit attribute is set to "yes" for measures where
	the measure number should never appear, such as pickup
	measures and the last half of mid-measure repeats. The
	value is "no" if not specified.
	
	The non-controlling attribute is intended for use in
	multimetric music like the Don Giovanni minuet. If set
	to "yes", the left barline in this measure does not
	coincide with the left barline of measures in other
	parts. The value is "no" if not specified.

	In partwise files, the number attribute should be the same
	for measures in different parts that share the same left
	barline. While the number attribute is often numeric, it
	does not have to be. Non-numeric values are typically used
	together with the implicit or non-controlling attributes
	being set to "yes". For a pickup measure, the number
	attribute is typically set to "0" and the implicit attribute
	is typically set to "yes". Further details about measure
	numbering can be defined using the measure-numbering
	element defined in the direction.mod file

	Measure width is specified in tenths. These are the
	global tenths specified in the scaling element, not
	local tenths as modified by the staff-size element.
\end{musicxml}
\begin{code}
-- * Score_Partwise
-- |
type Score_Partwise = (Document_Attributes, (Score_Header, [Part]))
-- |
read_Score_Partwise :: Eq i => STM Result [Content i] Score_Partwise
read_Score_Partwise = do
 y <- read_ELEMENT "score-partwise"
 y1 <- read_1 read_Document_Attributes (attributes y)
 y2 <- read_2 read_Score_Header (read_LIST1 read_Part) (childs y)
 return (y1,y2)
-- |
show_Score_Partwise :: Score_Partwise -> [Content ()]
show_Score_Partwise (a,(b,c)) =
 show_ELEMENT "score-partwise" (show_Document_Attributes a)
 (show_Score_Header b ++
 show_LIST1 show_Part c)
-- |
update_Score_Partwise :: ([Software], Encoding_Date) ->
 Score_Partwise -> Score_Partwise
update_Score_Partwise x (a,(b,c)) = (a,(update_Score_Header x b, c))
-- |
type Part = (ID, [Measure])
-- |
read_Part :: Eq i => STM Result [Content i] Part
read_Part = do
 y <- read_ELEMENT "part"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 y2 <- read_1 (read_LIST1 read_Measure) (childs y)
 return (y1,y2)
show_Part :: Part -> [Content ()]
show_Part (a,b) = show_ELEMENT "part" (show_REQUIRED "id" show_ID a)
 (show_LIST1 show_Measure b)
-- |
type Measure = ((CDATA, Maybe Yes_No, Maybe Yes_No, Maybe Tenths), Music_Data)
-- |
read_Measure :: Eq i => STM Result [Content i] Measure
read_Measure = do
 y <- read_ELEMENT "measure"
 y1 <- read_4 (read_REQUIRED "number" read_CDATA)
 (read_IMPLIED "implicit" read_Yes_No)
 (read_IMPLIED "non-controlling" read_Yes_No)
 (read_IMPLIED "width" read_Tenths)
 (attributes y)
 y2 <- read_1 read_Music_Data (childs y)
 return (y1,y2)
-- |
show_Measure :: Measure -> [Content ()]
show_Measure ((a,b,c,d),e) =
 show_ELEMENT "measure" (show_REQUIRED "number" show_CDATA a ++
 show_IMPLIED "implicit" show_Yes_No b ++
 show_IMPLIED "non-controlling" show_Yes_No c ++
 show_IMPLIED "width" show_Tenths d)
 (show_Music_Data e)
\end{code}

In either format, the part element has an id attribute that is an IDREF back to a score-part in the
part-list. Measures have a required number attribute (going from partwise to timewise, measures are
grouped via the number).

The implicit attribute is set to ”yes” for measures where the measure number should never appear,
such as pickup measures and the last half of mid-measure repeats. The value is ”no” if not specified.

The non-controlling attribute is intended for use in multimetric music like the Don Giovanni minuet.
If set to ”yes”, the left barline in this measure does not coincide with the left barline of measures in other
parts. The value is ”no” if not specified.

In partwise files, the number attribute should be the same for measures in different parts that share
the same left barline. While the number attribute is often numeric, it does not have to be. Non-numeric
values are typically used together with the implicit or non-controlling attributes being set to ”yes”. For
a pickup measure, the number attribute is typically set to ”0” and the implicit attribute is typically set
to ”yes”. Further details about measure numbering can be defined using the measure-numbering element
defined in the direction.mod file

Measure width is specified in tenths. These are the global tenths specified in the scaling element, not
local tenths as modified by the staff-size element.

-- * Score Partwise
-- |

type Score Partwise = (Document Attributes, (Score Header , [Part]))
-- |

read Score Partwise :: Eq i ⇒ STM Result [Content i] Score Partwise
read Score Partwise = do

y ← read ELEMENT "score-partwise"

y1 ← read 1 read Document Attributes (attributes y)
y2 ← read 2 read Score Header (read LIST1 read Part) (childs y)
return (y1 , y2)
-- |

show Score Partwise :: Score Partwise → [Content ()]
show Score Partwise (a, (b, c)) =

show ELEMENT "score-partwise" (show Document Attributes a)
(show Score Header b ++

show LIST1 show Part c)
-- |

update Score Partwise :: ([Software],Encoding Date)→
Score Partwise → Score Partwise

update Score Partwise x (a, (b, c)) = (a, (update Score Header x b, c))
-- |

type Part = (ID , [Measure])
-- |

read Part :: Eq i ⇒ STM Result [Content i] Part
read Part = do

y ← read ELEMENT "part"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
y2 ← read 1 (read LIST1 read Measure) (childs y)
return (y1 , y2)

show Part :: Part → [Content ()]
show Part (a, b) = show ELEMENT "part" (show REQUIRED "id" show ID a)

(show LIST1 show Measure b)
-- |

type Measure = ((CDATA,Maybe Yes No,Maybe Yes No,Maybe Tenths),Music Data)
-- |

read Measure :: Eq i ⇒ STM Result [Content i] Measure
read Measure = do

y ← read ELEMENT "measure"

y1 ← read 4 (read REQUIRED "number" read CDATA)
(read IMPLIED "implicit" read Yes No)
(read IMPLIED "non-controlling" read Yes No)
(read IMPLIED "width" read Tenths)

140

(attributes y)
y2 ← read 1 read Music Data (childs y)
return (y1 , y2)
-- |

show Measure :: Measure → [Content ()]
show Measure ((a, b, c, d), e) =

show ELEMENT "measure" (show REQUIRED "number" show CDATA a ++
show IMPLIED "implicit" show Yes No b ++
show IMPLIED "non-controlling" show Yes No c ++
show IMPLIED "width" show Tenths d)
(show Music Data e)

2.13 Score

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Score where
import Text .XML.MusicXML.Common
import Text .XML.MusicXML.Attributes
import Text .XML.MusicXML.Link
import Text .XML.MusicXML.Barline
import Text .XML.MusicXML.Note
import Text .XML.MusicXML.Layout hiding (Tenths)
import Text .XML.MusicXML.Identity
import Text .XML.MusicXML.Direction
import Text .XML.HaXml .Types (Content)
import Control .Monad (MonadPlus (. .))
import Prelude (Maybe (. .),Monad (. .),Functor (. .),Show ,Eq , (++), (·))

Works and movements are optionally identified by number and title. The work element also may
indicate a link to the opus document that composes multiple movements into a collection.

-- * Work
-- |

type Work = (Maybe Work Number ,Maybe Work Title,Maybe Opus)
-- |

read Work :: STM Result [Content i] Work
read Work = do

y ← read ELEMENT "work"

read 3 (read MAYBE read Work Number)
(read MAYBE read Work Title)
(read MAYBE read Opus) (childs y)

-- |
show Work :: Work → [Content ()]
show Work (a, b, c) =

show ELEMENT "work" []
(show MAYBE show Work Number a ++

show MAYBE show Work Title b ++
show MAYBE show Opus c)

-- |
type Work Number = PCDATA

-- |

141

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Score where
import Text.XML.MusicXML.Common
import Text.XML.MusicXML.Attributes
import Text.XML.MusicXML.Link
import Text.XML.MusicXML.Barline
import Text.XML.MusicXML.Note
import Text.XML.MusicXML.Layout hiding (Tenths)
import Text.XML.MusicXML.Identity
import Text.XML.MusicXML.Direction
import Text.XML.HaXml.Types (Content)
import Control.Monad (MonadPlus(..))
import Prelude (Maybe(..), Monad(..), Functor(..), Show, Eq, (++), (.))
\end{code}

\begin{musicxml}
	Works and movements are optionally identified by number
	and title. The work element also may indicate a link
	to the opus document that composes multiple movements
	into a collection.
\end{musicxml}
\begin{code}
-- * Work
-- |
type Work = (Maybe Work_Number, Maybe Work_Title, Maybe Opus)
-- |
read_Work :: STM Result [Content i] Work
read_Work = do
 y <- read_ELEMENT "work"
 read_3 (read_MAYBE read_Work_Number)
 (read_MAYBE read_Work_Title)
 (read_MAYBE read_Opus) (childs y)
-- |
show_Work :: Work -> [Content ()]
show_Work (a,b,c) =
 show_ELEMENT "work" []
 (show_MAYBE show_Work_Number a ++
 show_MAYBE show_Work_Title b ++
 show_MAYBE show_Opus c)
-- |
type Work_Number = PCDATA
-- |
read_Work_Number :: STM Result [Content i] Work_Number
read_Work_Number = do
 y <- read_ELEMENT "work-number"
 read_1 read_PCDATA (childs y)
-- |
show_Work_Number :: Work_Number -> [Content ()]
show_Work_Number a = show_ELEMENT "work-number" [] (show_PCDATA a)
-- |
type Work_Title = PCDATA
-- |
read_Work_Title :: STM Result [Content i] Work_Title
read_Work_Title = do
 y <- read_ELEMENT "work-title"
 read_1 read_PCDATA (childs y)
-- |
show_Work_Title :: Work_Title -> [Content ()]
show_Work_Title a = show_ELEMENT "work-title" [] (show_PCDATA a)
-- |
type Opus = (Link_Attributes, ())
-- |
read_Opus :: STM Result [Content i] Opus
read_Opus = do
 y <- read_ELEMENT "opus"
 y1 <- read_1 read_Link_Attributes (attributes y)
 return (y1,())
-- |
show_Opus :: Opus -> [Content ()]
show_Opus (a,_) = show_ELEMENT "opus" (show_Link_Attributes a) []
-- |
type Movement_Number = PCDATA
-- |
read_Movement_Number :: STM Result [Content i] Movement_Number
read_Movement_Number = do
 y <- read_ELEMENT "movement-number"
 read_1 read_PCDATA (childs y)
-- |
show_Movement_Number :: Movement_Number -> [Content ()]
show_Movement_Number a = show_ELEMENT "movement-number" [] (show_PCDATA a)
-- |
type Movement_Title = PCDATA
-- |
read_Movement_Title :: STM Result [Content i] Movement_Title
read_Movement_Title = do
 y <- read_ELEMENT "movement-title"
 read_1 read_PCDATA (childs y)
-- |
show_Movement_Title :: Movement_Title -> [Content ()]
show_Movement_Title a = show_ELEMENT "movement-title" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	Collect score-wide defaults. This includes scaling
	and layout, defined in layout.mod, and default values
	for the music font, word font, lyric font, and
	lyric language. The number and name attributes in
	lyric-font and lyric-language elements are typically
	used when lyrics are provided in multiple languages.
	If the number and name attributes are omitted, the
	lyric-font and lyric-language values apply to all
	numbers and names.
\end{musicxml}
\begin{code}
-- * Defaults
-- |
type Defaults = (Maybe Scaling, Maybe Page_Layout,
 Maybe System_Layout, [Staff_Layout], Maybe Appearance,
 Maybe Music_Font, Maybe Word_Font, [Lyric_Font], [Lyric_Language])
-- |
read_Defaults :: Eq i => STM Result [Content i] Defaults
read_Defaults = do
 y <- read_ELEMENT "defaults"
 read_9 (read_MAYBE read_Scaling) (read_MAYBE read_Page_Layout)
 (read_MAYBE read_System_Layout)
 (read_LIST read_Staff_Layout) (read_MAYBE read_Appearance)
 (read_MAYBE read_Music_Font) (read_MAYBE read_Word_Font)
 (read_LIST read_Lyric_Font) (read_LIST read_Lyric_Language)
 (childs y)
-- |
show_Defaults :: Defaults -> [Content ()]
show_Defaults (a,b,c,d,e,f,g,h,i) =
 show_ELEMENT "defaults" []
 (show_MAYBE show_Scaling a ++ show_MAYBE show_Page_Layout b ++
 show_MAYBE show_System_Layout c ++
 show_LIST show_Staff_Layout d ++ show_MAYBE show_Appearance e ++
 show_MAYBE show_Music_Font f ++ show_MAYBE show_Word_Font g ++
 show_LIST show_Lyric_Font h ++ show_LIST show_Lyric_Language i)
-- |
type Music_Font = (Font, ())
-- |
read_Music_Font :: Eq i => STM Result [Content i] Music_Font
read_Music_Font = do
 y <- read_ELEMENT "music-font"
 y1 <- read_1 read_Font (attributes y)
 return (y1,())
-- |
show_Music_Font :: Music_Font -> [Content ()]
show_Music_Font (a,_) =
 show_ELEMENT "music-font" (show_Font a) []
-- |
type Word_Font = (Font, ())
-- |
read_Word_Font :: Eq i => STM Result [Content i] Word_Font
read_Word_Font = do
 y <- read_ELEMENT "word-font"
 y1 <- read_1 read_Font (attributes y)
 return (y1,())
-- |
show_Word_Font :: Word_Font -> [Content ()]
show_Word_Font (a,_) =
 show_ELEMENT "word-font" (show_Font a) []
-- |
type Lyric_Font = ((Maybe CDATA, Maybe CDATA, Font), ())
-- |
read_Lyric_Font :: Eq i => STM Result [Content i] Lyric_Font
read_Lyric_Font = do
 y <- read_ELEMENT "lyric-font"
 y1 <- read_3 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "name" read_CDATA)
 read_Font (attributes y)
 return (y1,())
-- |
show_Lyric_Font :: Lyric_Font -> [Content ()]
show_Lyric_Font ((a,b,c),_) =
 show_ELEMENT "lyric-font"
 (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "name" show_CDATA b ++ show_Font c) []
-- |
type Lyric_Language = ((Maybe CDATA, Maybe CDATA, CDATA), ())
-- |
read_Lyric_Language :: Eq i => STM Result [Content i] Lyric_Language
read_Lyric_Language = do
 y <- read_ELEMENT "lyric-language"
 y1 <- read_3 (read_IMPLIED "number" read_CDATA)
 (read_IMPLIED "name" read_CDATA)
 (read_REQUIRED "xml:lang" read_CDATA) (attributes y)
 return (y1,())
-- |
show_Lyric_Language :: Lyric_Language -> [Content ()]
show_Lyric_Language ((a,b,c),_) =
 show_ELEMENT "lyric-language"
 (show_IMPLIED "number" show_CDATA a ++
 show_IMPLIED "name" show_CDATA b ++
 show_REQUIRED "xml:lang" show_CDATA c) []
\end{code}

\begin{musicxml}
	Credit elements refer to the title, composer, arranger,
	lyricist, copyright, dedication, and other text that usually
	appears on the first page of a score. The credit-words
	and credit-image elements are similar to the words and
	image elements for directions. However, since the
	credit is not part of a measure, the default-x and
	default-y attributes adjust the origin relative to the
	bottom left-hand corner of the first page. The
	enclosure for credit-words is none by default.

	By default, a series of credit-words elements within a
	single credit element follow one another in sequence
	visually. Non-positional formatting attributes are carried
	over from the previous element by default.

	The page attribute for the credit element, new in Version
	2.0, specifies the page number where the credit should
	appear. This is an integer value that starts with 1 for the
	first page. Its value is 1 by default. Since credits occur
	before the music, these page numbers do not refer to the
	page numbering specified by the print element's page-number
	attribute.

	In the initial release of Version 2.0, the credit element
	had a non-deterministic definition. The current credit
	element definition has the same meaning, but avoids the
	validity errors arising from a non-deterministic definition.
\end{musicxml}
\begin{code}
-- * Credit
-- |
type Credit = (Maybe CDATA, ([Link], [Bookmark], Credit_))
-- |
read_Credit :: Eq i => STM Result [Content i] Credit
read_Credit = do
 y <- read_ELEMENT "credit"
 y1 <- read_1 (read_IMPLIED "page" read_CDATA) (attributes y)
 y2 <- read_3 (read_LIST read_Link) (read_LIST read_Bookmark)
 read_Credit_ (childs y)
 return (y1,y2)
-- |
show_Credit :: Credit -> [Content ()]
show_Credit (a,(b,c,d)) =
 show_ELEMENT "credit"
 (show_IMPLIED "page" show_CDATA a)
 (show_LIST show_Link b ++ show_LIST show_Bookmark c ++ show_Credit_ d)
-- |
data Credit_ = Credit_1 Credit_Image
 | Credit_2 (Credit_Words, [([Link], [Bookmark], Credit_Words)])
 deriving (Eq, Show)
-- |
read_Credit_ :: Eq i => STM Result [Content i] Credit_
read_Credit_ =
 (read_Credit_Image >>= return . Credit_1) `mplus`
 (read_Credit_aux1 >>= return . Credit_2)
-- |
show_Credit_ :: Credit_ -> [Content ()]
show_Credit_ (Credit_1 a) = show_Credit_Image a
show_Credit_ (Credit_2 (a,b)) =
 show_Credit_Words a ++ show_LIST show_Credit_aux1 b
-- |
read_Credit_aux1 :: Eq i => STM Result [Content i]
 (Credit_Words, [([Link], [Bookmark], Credit_Words)])
read_Credit_aux1 = do
 y1 <- read_Credit_Words
 y2 <- read_LIST read_Credit_aux2
 return (y1,y2)
-- |
read_Credit_aux2 :: Eq i => STM Result [Content i] ([Link],[Bookmark],Credit_Words)
read_Credit_aux2 = do
 y1 <- read_LIST read_Link
 y2 <- read_LIST read_Bookmark
 y3 <- read_Credit_Words
 return (y1,y2,y3)
-- |
show_Credit_aux1 :: ([Link],[Bookmark],Credit_Words) -> [Content ()]
show_Credit_aux1 (a,b,c) =
 show_LIST show_Link a ++ show_LIST show_Bookmark b ++
 show_Credit_Words c
-- |
type Credit_Words = (Text_Formatting, PCDATA)
-- |
read_Credit_Words :: STM Result [Content i] Credit_Words
read_Credit_Words = do
 y <- read_ELEMENT "credit-words"
 y1 <- read_1 read_Text_Formatting (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Credit_Words :: Credit_Words -> [Content ()]
show_Credit_Words (a,b) =
 show_ELEMENT "credit-words" (show_Text_Formatting a) (show_PCDATA b)
-- |
type Credit_Image = ((CDATA, CDATA,
 Position, Halign, Valign_Image), ())
-- |
read_Credit_Image :: STM Result [Content i] Credit_Image
read_Credit_Image = do
 y <- read_ELEMENT "credit-image"
 y1 <- read_5 (read_REQUIRED "source" read_CDATA)
 (read_REQUIRED "type" read_CDATA) read_Position
 read_Halign read_Valign_Image (attributes y)
 return (y1,())
-- |
show_Credit_Image :: Credit_Image -> [Content ()]
show_Credit_Image ((a,b,c,d,e),_) =
 show_ELEMENT "credit-image"
 (show_REQUIRED "source" show_CDATA a ++
 show_REQUIRED "type" show_CDATA b ++
 show_Position c ++ show_Halign d ++
 show_Valign_Image e) []
-- |
\end{code}

\begin{musicxml}
	The part-list identifies the different musical parts in
	this movement. Each part has an ID that is used later
	within the musical data. Since parts may be encoded
	separately and combined later, identification elements
	are present at both the score and score-part levels.
	There must be at least one score-part, combined as
	desired with part-group elements that indicate braces
	and brackets. Parts are ordered from top to bottom in
	a score based on the order in which they appear in the
	part-list.
	
	Each MusicXML part corresponds to a track in a Standard
	MIDI Format 1 file. The score-instrument elements are
	used when there are multiple instruments per track.
	The midi-device element is used to make a MIDI device
	or port assignment for the given track. Initial
	midi-instrument assignments may be made here as well.

	The part-name and part-abbreviation elements are defined
	in the common.mod file, as they can be used within both the
	part-list and print elements.
\end{musicxml}
\begin{code}
-- * Part_List
-- |
type Part_List = ([Part_Group], Score_Part, [Part_List_])
-- |
read_Part_List :: Eq i => STM Result [Content i] Part_List
read_Part_List = do
 y <- read_ELEMENT "part-list"
 read_3 (read_LIST read_Part_Group) read_Score_Part
 (read_LIST read_Part_List_) (childs y)
-- |
show_Part_List :: Part_List -> [Content ()]
show_Part_List (a,b,c) =
 show_ELEMENT "part-list" []
 (show_LIST show_Part_Group a ++ show_Score_Part b ++
 show_LIST show_Part_List_ c)
-- |
data Part_List_ = Part_List_1 Part_Group
 | Part_List_2 Score_Part
 deriving (Eq, Show)
-- |
read_Part_List_ :: Eq i => STM Result [Content i] Part_List_
read_Part_List_ =
 (read_Part_Group >>= return . Part_List_1) `mplus`
 (read_Score_Part >>= return . Part_List_2)
-- |
show_Part_List_ :: Part_List_ -> [Content ()]
show_Part_List_ (Part_List_1 a) = show_Part_Group a
show_Part_List_ (Part_List_2 a) = show_Score_Part a
-- |
type Score_Part = (ID, (Maybe Identification,
 Part_Name, Maybe Part_Name_Display,
 Maybe Part_Abbreviation, Maybe Part_Abbreviation_Display,
 [Group], [Score_Instrument], Maybe Midi_Device, [Midi_Instrument]))
-- |
read_Score_Part :: Eq i => STM Result [Content i] Score_Part
read_Score_Part = do
 y <- read_ELEMENT "score-part"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 y2 <- read_9 (read_MAYBE read_Identification) read_Part_Name
 (read_MAYBE read_Part_Name_Display)
 (read_MAYBE read_Part_Abbreviation)
 (read_MAYBE read_Part_Abbreviation_Display)
 (read_LIST read_Group)
 (read_LIST read_Score_Instrument)
 (read_MAYBE read_Midi_Device)
 (read_LIST read_Midi_Instrument) (childs y)
 return (y1,y2)
-- |
show_Score_Part :: Score_Part -> [Content ()]
show_Score_Part (a,(b,c,d,e,f,g,h,i,j)) =
 show_ELEMENT "score-part" (show_REQUIRED "id" show_ID a)
 (show_MAYBE show_Identification b ++
 show_Part_Name c ++
 show_MAYBE show_Part_Name_Display d ++
 show_MAYBE show_Part_Abbreviation e ++
 show_MAYBE show_Part_Abbreviation_Display f ++
 show_LIST show_Group g ++
 show_LIST show_Score_Instrument h ++
 show_MAYBE show_Midi_Device i ++
 show_LIST show_Midi_Instrument j)
\end{code}

\begin{musicxml}
	The part-name indicates the full name of the musical part.
	The part-abbreviation indicates the abbreviated version of
	the name of the musical part. The part-name will often
	precede the first system, while the part-abbreviation will
	precede the other systems. The formatting attributes for
	these elements are deprecated in Version 2.0 in favor of
	the new part-name-display and part-abbreviation-display
	elements. These are defined in the common.mod file as they
	are used in both the part-list and print elements. They
	provide more complete formatting control for how part names
	and abbreviations appear in a score.
\end{musicxml}
\begin{code}
-- |
type Part_Name = ((Print_Style, Print_Object, Justify), PCDATA)
-- |
read_Part_Name :: STM Result [Content i] Part_Name
read_Part_Name = do
 y <- read_ELEMENT "part-name"
 y1 <- read_3 read_Print_Style read_Print_Object read_Justify
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Part_Name :: Part_Name -> [Content ()]
show_Part_Name ((a,b,c),d) =
 show_ELEMENT "part-name"
 (show_Print_Style a ++ show_Print_Object b ++ show_Justify c)
 (show_PCDATA d)
-- |
type Part_Abbreviation = ((Print_Style, Print_Object, Justify), PCDATA)
-- |
read_Part_Abbreviation :: STM Result [Content i] Part_Abbreviation
read_Part_Abbreviation = do
 y <- read_ELEMENT "part-abbreviation"
 y1 <- read_3 read_Print_Style read_Print_Object read_Justify
 (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Part_Abbreviation :: Part_Abbreviation -> [Content ()]
show_Part_Abbreviation ((a,b,c),d) =
 show_ELEMENT "part-abbreviation"
 (show_Print_Style a ++ show_Print_Object b ++ show_Justify c)
 (show_PCDATA d)
\end{code}

\begin{musicxml}
	The part-group element indicates groupings of parts in the
	score, usually indicated by braces and brackets. Braces
	that are used for multi-staff parts should be defined in
	the attributes element for that part. The part-group start
	element appears before the first score-part in the group.
	The part-group stop element appears after the last
	score-part in the group.
	
	The number attribute is used to distinguish overlapping
	and nested part-groups, not the sequence of groups. As
	with parts, groups can have a name and abbreviation.
	Formatting attributes for group-name and group-abbreviation
	are deprecated in Version 2.0 in favor of the new
	group-name-display and group-abbreviation-display elements.
	Formatting specified in the group-name-display and
	group-abbreviation-display elements overrides formatting
	specified in the group-name and group-abbreviation
	elements, respectively.

	The group-symbol element indicates how the symbol for
	a group is indicated in the score. Values include none,
	brace, line, and bracket; the default is none. The
	group-barline element indicates if the group should have
	common barlines. Values can be yes, no, or Mensurstrich.
	The group-time element indicates that the displayed time
	signatures should stretch across all parts and staves in
	the group. Values for the child elements are ignored at
	the stop of a group.

	A part-group element is not needed for a single multi-staff
	part. By default, multi-staff parts include a brace symbol
	and (if appropriate given the bar-style) common barlines.
	The symbol formatting for a multi-staff part can be more
	fully specified using the part-symbol element, defined in
	the attributes.mod file.
\end{musicxml}
\begin{code}
-- |
type Part_Group = ((Start_Stop, CDATA),
 (Maybe Group_Name, Maybe Group_Name_Display,
 Maybe Group_Abbreviation, Maybe Group_Abbreviation_Display,
 Maybe Group_Symbol, Maybe Group_Barline, Maybe Group_Time, Editorial))
-- |
read_Part_Group :: Eq i => STM Result [Content i] Part_Group
read_Part_Group = do
 y <- read_ELEMENT "part-group"
 y1 <- read_2 (read_REQUIRED "type" read_Start_Stop)
 (read_DEFAULT "number" read_CDATA "1") (attributes y)
 y2 <- read_8 (read_MAYBE read_Group_Name)
 (read_MAYBE read_Group_Name_Display)
 (read_MAYBE read_Group_Abbreviation)
 (read_MAYBE read_Group_Abbreviation_Display)
 (read_MAYBE read_Group_Symbol) (read_MAYBE read_Group_Barline)
 (read_MAYBE read_Group_Time) read_Editorial (childs y)
 return (y1,y2)
-- |
show_Part_Group :: Part_Group -> [Content ()]
show_Part_Group ((a,b),(c,d,e,f,g,h,i,j)) =
 show_ELEMENT "part-group"
 (show_REQUIRED "type" show_Start_Stop a ++
 show_DEFAULT "number" show_CDATA b)
 (show_MAYBE show_Group_Name c ++
 show_MAYBE show_Group_Name_Display d ++
 show_MAYBE show_Group_Abbreviation e ++
 show_MAYBE show_Group_Abbreviation_Display f ++
 show_MAYBE show_Group_Symbol g ++
 show_MAYBE show_Group_Barline h ++
 show_MAYBE show_Group_Time i ++ show_Editorial j)
-- |
type Group_Name = ((Print_Style, Justify), PCDATA)
-- |
read_Group_Name :: STM Result [Content i] Group_Name
read_Group_Name = do
 y <- read_ELEMENT "group-name"
 y1 <- read_2 read_Print_Style read_Justify (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Group_Name :: Group_Name -> [Content ()]
show_Group_Name ((a,b),c) =
 show_ELEMENT "group-name"
 (show_Print_Style a ++ show_Justify b)
 (show_PCDATA c)
-- |
type Group_Name_Display = (Print_Object, [Group_Name_Display_])
-- |
read_Group_Name_Display :: Eq i => STM Result [Content i] Group_Name_Display
read_Group_Name_Display = do
 y <- read_ELEMENT "group-name-display"
 y1 <- read_1 read_Print_Object (attributes y)
 y2 <- read_1 (read_LIST read_Group_Name_Display_) (childs y)
 return (y1,y2)
-- |
show_Group_Name_Display :: Group_Name_Display -> [Content ()]
show_Group_Name_Display (a,b) =
 show_ELEMENT "group-name-display"
 (show_Print_Object a) (show_LIST show_Group_Name_Display_ b)
-- |
data Group_Name_Display_ = Group_Name_Display_1 Display_Text
 | Group_Name_Display_2 Accidental_Text
 deriving (Eq, Show)
-- |
read_Group_Name_Display_ :: STM Result [Content i] Group_Name_Display_
read_Group_Name_Display_ =
 (read_Display_Text >>= return . Group_Name_Display_1) `mplus`
 (read_Accidental_Text >>= return . Group_Name_Display_2)
-- |
show_Group_Name_Display_ :: Group_Name_Display_ -> [Content ()]
show_Group_Name_Display_ (Group_Name_Display_1 a) = show_Display_Text a
show_Group_Name_Display_ (Group_Name_Display_2 a) = show_Accidental_Text a
-- |
type Group_Abbreviation = ((Print_Style, Justify), PCDATA)
-- |
read_Group_Abbreviation :: STM Result [Content i] Group_Abbreviation
read_Group_Abbreviation = do
 y <- read_ELEMENT "group-abbreviation"
 y1 <- read_2 read_Print_Style read_Justify (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Group_Abbreviation :: Group_Abbreviation -> [Content ()]
show_Group_Abbreviation ((a,b),c) =
 show_ELEMENT "group-abbreviation"
 (show_Print_Style a ++ show_Justify b)
 (show_PCDATA c)
-- |
type Group_Abbreviation_Display = (Print_Object, [Group_Abbreviation_Display_])
-- |
read_Group_Abbreviation_Display :: Eq i =>
 STM Result [Content i] Group_Abbreviation_Display
read_Group_Abbreviation_Display = do
 y <- read_ELEMENT "group-abbreviation-display"
 y1 <- read_1 read_Print_Object (attributes y)
 y2 <- read_1 (read_LIST read_Group_Abbreviation_Display_) (childs y)
 return (y1,y2)
-- |
show_Group_Abbreviation_Display ::
 Group_Abbreviation_Display -> [Content ()]
show_Group_Abbreviation_Display (a,b) =
 show_ELEMENT "group-abbreviation-display"
 (show_Print_Object a) (show_LIST show_Group_Abbreviation_Display_ b)
-- |
data Group_Abbreviation_Display_ =
 Group_Abbreviation_Display_1 Display_Text
 | Group_Abbreviation_Display_2 Accidental_Text
 deriving (Eq, Show)
-- |
read_Group_Abbreviation_Display_ ::
 STM Result [Content i] Group_Abbreviation_Display_
read_Group_Abbreviation_Display_ =
 (read_Display_Text >>= return . Group_Abbreviation_Display_1) `mplus`
 (read_Accidental_Text >>= return . Group_Abbreviation_Display_2)
-- |
show_Group_Abbreviation_Display_ ::
 Group_Abbreviation_Display_ -> [Content ()]
show_Group_Abbreviation_Display_ (Group_Abbreviation_Display_1 a) =
 show_Display_Text a
show_Group_Abbreviation_Display_ (Group_Abbreviation_Display_2 a) =
 show_Accidental_Text a
-- |
type Group_Symbol = ((Position, Color), PCDATA)
-- |
read_Group_Symbol :: STM Result [Content i] Group_Symbol
read_Group_Symbol = do
 y <- read_ELEMENT "group-symbol"
 y1 <- read_2 read_Position read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Group_Symbol :: Group_Symbol -> [Content ()]
show_Group_Symbol ((a,b),c) =
 show_ELEMENT "group-symbol"
 (show_Position a ++ show_Color b) (show_PCDATA c)
-- |
type Group_Barline = (Color, PCDATA)
-- |
read_Group_Barline :: STM Result [Content i] Group_Barline
read_Group_Barline = do
 y <- read_ELEMENT "group-barline"
 y1 <- read_1 read_Color (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Group_Barline :: Group_Barline -> [Content ()]
show_Group_Barline (a,b) =
 show_ELEMENT "group-barline" (show_Color a) (show_PCDATA b)
-- |
type Group_Time = ()
-- |
read_Group_Time :: STM Result [Content i] Group_Time
read_Group_Time = read_ELEMENT "group-time" >> return ()
-- |
show_Group_Time :: Group_Time -> [Content ()]
show_Group_Time _ = show_ELEMENT "group-time" [] []
\end{code}

\begin{musicxml}
	The score-instrument element allows for multiple
	instruments per score-part. As with the score-part
	element, each score-instrument has a required ID
	attribute, a name, and an optional abbreviation. The
	instrument-name and instrument-abbreviation are
	typically used within a software application, rather
	than appearing on the printed page of a score.

	A score-instrument element is also required if the
	score specifies MIDI 1.0 channels, banks, or programs.
	An initial midi-instrument assignment can also
	be made here. MusicXML software should be able to
	automatically assign reasonable channels and
	instruments without these elements in simple cases,
	such as where part names match General MIDI
	instrument names.

	The solo and ensemble elements are new as of Version
	2.0. The solo element is present if performance is
	intended by a solo instrument. The ensemble element
	is present if performance is intended by an ensemble
	such as an orchestral section. The text of the
	ensemble element contains the size of the section,
	or is empty if the ensemble size is not specified.
	
	The midi-instrument element is defined in the common.mod
	file, as it can be used within both the score-part and
	sound elements.
\end{musicxml}
\begin{code}
-- |
type Score_Instrument = (ID, (Instrument_Name, Maybe Instrument_Abbreviation,
 Maybe Score_Instrument_))
-- |
read_Score_Instrument :: STM Result [Content i] Score_Instrument
read_Score_Instrument = do
 y <- read_ELEMENT "score-instrument"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 y2 <- read_3 read_Instrument_Name
 (read_MAYBE read_Instrument_Abbreviation)
 (read_MAYBE read_Score_Instrument_) (childs y)
 return (y1,y2)
-- |
show_Score_Instrument :: Score_Instrument -> [Content ()]
show_Score_Instrument (a,(b,c,d)) =
 show_ELEMENT "score-instrument" (show_REQUIRED "id" show_ID a)
 (show_Instrument_Name b ++
 show_MAYBE show_Instrument_Abbreviation c ++
 show_MAYBE show_Score_Instrument_ d)
-- |
data Score_Instrument_ = Score_Instrument_1 Solo
 | Score_Instrument_2 Ensemble
 deriving (Eq, Show)
-- |
read_Score_Instrument_ :: STM Result [Content i] Score_Instrument_
read_Score_Instrument_ =
 (read_Solo >>= return . Score_Instrument_1) `mplus`
 (read_Ensemble >>= return . Score_Instrument_2)
-- |
show_Score_Instrument_ :: Score_Instrument_ -> [Content ()]
show_Score_Instrument_ (Score_Instrument_1 a) = show_Solo a
show_Score_Instrument_ (Score_Instrument_2 a) = show_Ensemble a
-- |
type Instrument_Name = PCDATA
-- |
read_Instrument_Name :: STM Result [Content i] Instrument_Name
read_Instrument_Name = do
 y <- read_ELEMENT "instrument-name"
 read_1 read_PCDATA (childs y)
-- |
show_Instrument_Name :: Instrument_Name -> [Content ()]
show_Instrument_Name a = show_ELEMENT "instrument-name" [] (show_PCDATA a)
-- |
type Instrument_Abbreviation = PCDATA
-- |
read_Instrument_Abbreviation :: STM Result [Content i] Instrument_Abbreviation
read_Instrument_Abbreviation = do
 y <- read_ELEMENT "instrument-abbreviation"
 read_1 read_PCDATA (childs y)
-- |
show_Instrument_Abbreviation :: Instrument_Abbreviation -> [Content ()]
show_Instrument_Abbreviation a =
 show_ELEMENT "instrument-abbreviation" [] (show_PCDATA a)
-- |
type Solo = ()
-- |
read_Solo :: STM Result [Content i] Solo
read_Solo = read_ELEMENT "solo" >> return ()
-- |
show_Solo :: Solo -> [Content ()]
show_Solo _ = show_ELEMENT "solo" [] []
-- |
type Ensemble = PCDATA
-- |
read_Ensemble :: STM Result [Content i] Ensemble
read_Ensemble = do
 y <- read_ELEMENT "ensemble"
 read_1 read_PCDATA (childs y)
-- |
show_Ensemble :: Ensemble -> [Content ()]
show_Ensemble a = show_ELEMENT "ensemble" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	The midi-device content corresponds to the DeviceName
	meta event in Standard MIDI Files. The optional port
	attribute is a number from 1 to 16 that can be used
	with the unofficial MIDI port (or cable) meta event.
\end{musicxml}
\begin{code}
-- |
type Midi_Device = (Maybe CDATA, PCDATA)
-- |
read_Midi_Device :: STM Result [Content i] Midi_Device
read_Midi_Device = do
 y <- read_ELEMENT "midi-device"
 y1 <- read_1 (read_IMPLIED "port" read_CDATA) (attributes y)
 y2 <- read_1 read_PCDATA (childs y)
 return (y1,y2)
-- |
show_Midi_Device :: Midi_Device -> [Content ()]
show_Midi_Device (a,b) =
 show_ELEMENT "midi-device" (show_IMPLIED "port" show_CDATA a)
 (show_PCDATA b)
\end{code}

\begin{musicxml}
	The group element allows the use of different versions of
	the part for different purposes. Typical values include
	score, parts, sound, and data. Ordering information that is
	directly encoded in MuseData can be derived from the
	ordering within a MusicXML score or opus.
\end{musicxml}
\begin{code}
-- |
type Group = PCDATA
-- |
read_Group :: STM Result [Content i] Group
read_Group = do
 y <- read_ELEMENT "group"
 read_1 read_PCDATA (childs y)
-- |
show_Group :: Group -> [Content ()]
show_Group a = show_ELEMENT "group" [] (show_PCDATA a)
\end{code}

\begin{musicxml}
	Here is the basic musical data that is either associated
	with a part or a measure, depending on whether partwise
	or timewise hierarchy is used.
\end{musicxml}
\begin{code}
-- * Music_Data
-- |
type Music_Data = [Music_Data_]
-- |
read_Music_Data :: Eq i => STM Result [Content i] Music_Data
read_Music_Data = read_LIST read_Music_Data_
-- |
show_Music_Data :: Music_Data -> [Content ()]
show_Music_Data x = show_LIST show_Music_Data_ x
-- |
data Music_Data_ = Music_Data_1 Note
 | Music_Data_2 Backup
 | Music_Data_3 Forward
 | Music_Data_4 Direction
 | Music_Data_5 Attributes
 | Music_Data_6 Harmony
 | Music_Data_7 Figured_Bass
 | Music_Data_8 Print
 | Music_Data_9 Sound
 | Music_Data_10 Barline
 | Music_Data_11 Grouping
 | Music_Data_12 Link
 | Music_Data_13 Bookmark
 deriving (Eq, Show)
-- |
read_Music_Data_ :: Eq i => STM Result [Content i] Music_Data_
read_Music_Data_ =
 (read_Note >>= return . Music_Data_1) `mplus`
 (read_Backup >>= return . Music_Data_2) `mplus`
 (read_Forward >>= return . Music_Data_3) `mplus`
 (read_Direction >>= return . Music_Data_4) `mplus`
 (read_Attributes >>= return . Music_Data_5) `mplus`
 (read_Harmony >>= return . Music_Data_6) `mplus`
 (read_Figured_Bass >>= return . Music_Data_7) `mplus`
 (read_Print >>= return . Music_Data_8) `mplus`
 (read_Sound >>= return . Music_Data_9) `mplus`
 (read_Barline >>= return . Music_Data_10) `mplus`
 (read_Grouping >>= return . Music_Data_11) `mplus`
 (read_Link >>= return . Music_Data_12) `mplus`
 (read_Bookmark >>= return . Music_Data_13)
-- |
show_Music_Data_ :: Music_Data_ -> [Content ()]
show_Music_Data_ (Music_Data_1 x) = show_Note x
show_Music_Data_ (Music_Data_2 x) = show_Backup x
show_Music_Data_ (Music_Data_3 x) = show_Forward x
show_Music_Data_ (Music_Data_4 x) = show_Direction x
show_Music_Data_ (Music_Data_5 x) = show_Attributes x
show_Music_Data_ (Music_Data_6 x) = show_Harmony x
show_Music_Data_ (Music_Data_7 x) = show_Figured_Bass x
show_Music_Data_ (Music_Data_8 x) = show_Print x
show_Music_Data_ (Music_Data_9 x) = show_Sound x
show_Music_Data_ (Music_Data_10 x) = show_Barline x
show_Music_Data_ (Music_Data_11 x) = show_Grouping x
show_Music_Data_ (Music_Data_12 x) = show_Link x
show_Music_Data_ (Music_Data_13 x) = show_Bookmark x

\end{code}

\begin{musicxml}
	The score-header entity contains basic score metadata
	about the work and movement, score-wide defaults for
	layout and fonts, credits that appear on the first page,
	and the part list.
\end{musicxml}
\begin{code}
-- * Score_Header
-- |
type Score_Header = (Maybe Work, Maybe Movement_Number,
 Maybe Movement_Title, Maybe Identification,
 Maybe Defaults, [Credit], Part_List)
-- |
read_Score_Header :: Eq i => STM Result [Content i] Score_Header
read_Score_Header = do
 y1 <- read_MAYBE read_Work
 y2 <- read_MAYBE read_Movement_Number
 y3 <- read_MAYBE read_Movement_Title
 y4 <- read_MAYBE read_Identification
 y5 <- read_MAYBE read_Defaults
 y6 <- read_LIST read_Credit
 y7 <- read_Part_List
 return (y1,y2,y3,y4,y5,y6,y7)
-- |
show_Score_Header :: Score_Header -> [Content ()]
show_Score_Header (a,b,c,d,e,f,g) =
 show_MAYBE show_Work a ++
 show_MAYBE show_Movement_Number b ++
 show_MAYBE show_Movement_Title c ++
 show_MAYBE show_Identification d ++
 show_MAYBE show_Defaults e ++
 show_LIST show_Credit f ++
 show_Part_List g
-- |
update_Score_Header :: ([Software], Encoding_Date) -> Score_Header -> Score_Header
update_Score_Header x (a,b,c,d,e,f,g) =
 (a, b, c, fmap (update_Identification x) d, e, f, g)
\end{code}

read Work Number :: STM Result [Content i] Work Number
read Work Number = do

y ← read ELEMENT "work-number"

read 1 read PCDATA (childs y)
-- |

show Work Number :: Work Number → [Content ()]
show Work Number a = show ELEMENT "work-number" [] (show PCDATA a)

-- |
type Work Title = PCDATA

-- |
read Work Title :: STM Result [Content i] Work Title
read Work Title = do

y ← read ELEMENT "work-title"

read 1 read PCDATA (childs y)
-- |

show Work Title :: Work Title → [Content ()]
show Work Title a = show ELEMENT "work-title" [] (show PCDATA a)

-- |
type Opus = (Link Attributes, ())

-- |
read Opus :: STM Result [Content i] Opus
read Opus = do

y ← read ELEMENT "opus"

y1 ← read 1 read Link Attributes (attributes y)
return (y1 , ())
-- |

show Opus :: Opus → [Content ()]
show Opus (a,) = show ELEMENT "opus" (show Link Attributes a) []

-- |
type Movement Number = PCDATA

-- |
read Movement Number :: STM Result [Content i] Movement Number
read Movement Number = do

y ← read ELEMENT "movement-number"

read 1 read PCDATA (childs y)
-- |

show Movement Number :: Movement Number → [Content ()]
show Movement Number a = show ELEMENT "movement-number" [] (show PCDATA a)

-- |
type Movement Title = PCDATA

-- |
read Movement Title :: STM Result [Content i] Movement Title
read Movement Title = do

y ← read ELEMENT "movement-title"

read 1 read PCDATA (childs y)
-- |

show Movement Title :: Movement Title → [Content ()]
show Movement Title a = show ELEMENT "movement-title" [] (show PCDATA a)

Collect score-wide defaults. This includes scaling and layout, defined in layout.mod, and default values
for the music font, word font, lyric font, and lyric language. The number and name attributes in lyric-
font and lyric-language elements are typically used when lyrics are provided in multiple languages. If the
number and name attributes are omitted, the lyric-font and lyric-language values apply to all numbers
and names.

-- * Defaults
-- |

type Defaults = (Maybe Scaling ,Maybe Page Layout ,
Maybe System Layout , [Staff Layout],Maybe Appearance,

142

Maybe Music Font ,Maybe Word Font , [Lyric Font], [Lyric Language])
-- |

read Defaults :: Eq i ⇒ STM Result [Content i] Defaults
read Defaults = do

y ← read ELEMENT "defaults"

read 9 (read MAYBE read Scaling) (read MAYBE read Page Layout)
(read MAYBE read System Layout)
(read LIST read Staff Layout) (read MAYBE read Appearance)
(read MAYBE read Music Font) (read MAYBE read Word Font)
(read LIST read Lyric Font) (read LIST read Lyric Language)
(childs y)

-- |
show Defaults :: Defaults → [Content ()]
show Defaults (a, b, c, d , e, f , g , h, i) =

show ELEMENT "defaults" []
(show MAYBE show Scaling a ++ show MAYBE show Page Layout b ++

show MAYBE show System Layout c ++
show LIST show Staff Layout d ++ show MAYBE show Appearance e ++
show MAYBE show Music Font f ++ show MAYBE show Word Font g ++
show LIST show Lyric Font h ++ show LIST show Lyric Language i)

-- |
type Music Font = (Font , ())

-- |
read Music Font :: Eq i ⇒ STM Result [Content i] Music Font
read Music Font = do

y ← read ELEMENT "music-font"

y1 ← read 1 read Font (attributes y)
return (y1 , ())
-- |

show Music Font :: Music Font → [Content ()]
show Music Font (a,) =

show ELEMENT "music-font" (show Font a) []
-- |

type Word Font = (Font , ())
-- |

read Word Font :: Eq i ⇒ STM Result [Content i] Word Font
read Word Font = do

y ← read ELEMENT "word-font"

y1 ← read 1 read Font (attributes y)
return (y1 , ())
-- |

show Word Font :: Word Font → [Content ()]
show Word Font (a,) =

show ELEMENT "word-font" (show Font a) []
-- |

type Lyric Font = ((Maybe CDATA,Maybe CDATA,Font), ())
-- |

read Lyric Font :: Eq i ⇒ STM Result [Content i] Lyric Font
read Lyric Font = do

y ← read ELEMENT "lyric-font"

y1 ← read 3 (read IMPLIED "number" read CDATA)
(read IMPLIED "name" read CDATA)
read Font (attributes y)

return (y1 , ())
-- |

show Lyric Font :: Lyric Font → [Content ()]
show Lyric Font ((a, b, c),) =

show ELEMENT "lyric-font"

143

(show IMPLIED "number" show CDATA a ++
show IMPLIED "name" show CDATA b ++ show Font c) []

-- |
type Lyric Language = ((Maybe CDATA,Maybe CDATA,CDATA), ())

-- |
read Lyric Language :: Eq i ⇒ STM Result [Content i] Lyric Language
read Lyric Language = do

y ← read ELEMENT "lyric-language"

y1 ← read 3 (read IMPLIED "number" read CDATA)
(read IMPLIED "name" read CDATA)
(read REQUIRED "xml:lang" read CDATA) (attributes y)

return (y1 , ())
-- |

show Lyric Language :: Lyric Language → [Content ()]
show Lyric Language ((a, b, c),) =

show ELEMENT "lyric-language"

(show IMPLIED "number" show CDATA a ++
show IMPLIED "name" show CDATA b ++
show REQUIRED "xml:lang" show CDATA c) []

Credit elements refer to the title, composer, arranger, lyricist, copyright, dedication, and other text
that usually appears on the first page of a score. The credit-words and credit-image elements are similar
to the words and image elements for directions. However, since the credit is not part of a measure, the
default-x and default-y attributes adjust the origin relative to the bottom left-hand corner of the first
page. The enclosure for credit-words is none by default.

By default, a series of credit-words elements within a single credit element follow one another in
sequence visually. Non-positional formatting attributes are carried over from the previous element by
default.

The page attribute for the credit element, new in Version 2.0, specifies the page number where the
credit should appear. This is an integer value that starts with 1 for the first page. Its value is 1 by default.
Since credits occur before the music, these page numbers do not refer to the page numbering specified by
the print element’s page-number attribute.

In the initial release of Version 2.0, the credit element had a non-deterministic definition. The cur-
rent credit element definition has the same meaning, but avoids the validity errors arising from a non-
deterministic definition.

-- * Credit
-- |

type Credit = (Maybe CDATA, ([Link], [Bookmark],Credit))
-- |

read Credit :: Eq i ⇒ STM Result [Content i] Credit
read Credit = do

y ← read ELEMENT "credit"

y1 ← read 1 (read IMPLIED "page" read CDATA) (attributes y)
y2 ← read 3 (read LIST read Link) (read LIST read Bookmark)

read Credit (childs y)
return (y1 , y2)
-- |

show Credit :: Credit → [Content ()]
show Credit (a, (b, c, d)) =

show ELEMENT "credit"

(show IMPLIED "page" show CDATA a)
(show LIST show Link b ++ show LIST show Bookmark c ++ show Credit d)

-- |
data Credit = Credit 1 Credit Image
| Credit 2 (Credit Words, [([Link], [Bookmark],Credit Words)])
deriving (Eq ,Show)

-- |
read Credit :: Eq i ⇒ STM Result [Content i] Credit

144

read Credit =
(read Credit Image >>= return · Credit 1) ‘mplus‘
(read Credit aux1 >>= return · Credit 2)
-- |

show Credit :: Credit → [Content ()]
show Credit (Credit 1 a) = show Credit Image a
show Credit (Credit 2 (a, b)) =

show Credit Words a ++ show LIST show Credit aux1 b
-- |

read Credit aux1 :: Eq i ⇒ STM Result [Content i]
(Credit Words, [([Link], [Bookmark],Credit Words)])

read Credit aux1 = do
y1 ← read Credit Words
y2 ← read LIST read Credit aux2
return (y1 , y2)
-- |

read Credit aux2 :: Eq i ⇒ STM Result [Content i] ([Link], [Bookmark],Credit Words)
read Credit aux2 = do

y1 ← read LIST read Link
y2 ← read LIST read Bookmark
y3 ← read Credit Words
return (y1 , y2 , y3)
-- |

show Credit aux1 :: ([Link], [Bookmark],Credit Words)→ [Content ()]
show Credit aux1 (a, b, c) =

show LIST show Link a ++ show LIST show Bookmark b ++
show Credit Words c
-- |

type Credit Words = (Text Formatting ,PCDATA)
-- |

read Credit Words :: STM Result [Content i] Credit Words
read Credit Words = do

y ← read ELEMENT "credit-words"

y1 ← read 1 read Text Formatting (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Credit Words :: Credit Words → [Content ()]
show Credit Words (a, b) =

show ELEMENT "credit-words" (show Text Formatting a) (show PCDATA b)
-- |

type Credit Image = ((CDATA,CDATA,
Position,Halign,Valign Image), ())

-- |
read Credit Image :: STM Result [Content i] Credit Image
read Credit Image = do

y ← read ELEMENT "credit-image"

y1 ← read 5 (read REQUIRED "source" read CDATA)
(read REQUIRED "type" read CDATA) read Position
read Halign read Valign Image (attributes y)

return (y1 , ())
-- |

show Credit Image :: Credit Image → [Content ()]
show Credit Image ((a, b, c, d , e),) =

show ELEMENT "credit-image"

(show REQUIRED "source" show CDATA a ++
show REQUIRED "type" show CDATA b ++
show Position c ++ show Halign d ++

145

show Valign Image e) []
-- |

The part-list identifies the different musical parts in this movement. Each part has an ID that is used
later within the musical data. Since parts may be encoded separately and combined later, identification
elements are present at both the score and score-part levels. There must be at least one score-part,
combined as desired with part-group elements that indicate braces and brackets. Parts are ordered from
top to bottom in a score based on the order in which they appear in the part-list.

Each MusicXML part corresponds to a track in a Standard MIDI Format 1 file. The score-instrument
elements are used when there are multiple instruments per track. The midi-device element is used to make
a MIDI device or port assignment for the given track. Initial midi-instrument assignments may be made
here as well.

The part-name and part-abbreviation elements are defined in the common.mod file, as they can be
used within both the part-list and print elements.

-- * Part List
-- |

type Part List = ([Part Group],Score Part , [Part List])
-- |

read Part List :: Eq i ⇒ STM Result [Content i] Part List
read Part List = do

y ← read ELEMENT "part-list"

read 3 (read LIST read Part Group) read Score Part
(read LIST read Part List) (childs y)

-- |
show Part List :: Part List → [Content ()]
show Part List (a, b, c) =

show ELEMENT "part-list" []
(show LIST show Part Group a ++ show Score Part b ++

show LIST show Part List c)
-- |

data Part List = Part List 1 Part Group
| Part List 2 Score Part
deriving (Eq ,Show)

-- |
read Part List :: Eq i ⇒ STM Result [Content i] Part List
read Part List =

(read Part Group >>= return · Part List 1) ‘mplus‘
(read Score Part >>= return · Part List 2)
-- |

show Part List :: Part List → [Content ()]
show Part List (Part List 1 a) = show Part Group a
show Part List (Part List 2 a) = show Score Part a

-- |
type Score Part = (ID , (Maybe Identification,

Part Name,Maybe Part Name Display ,
Maybe Part Abbreviation,Maybe Part Abbreviation Display ,
[Group], [Score Instrument],Maybe Midi Device, [Midi Instrument]))
-- |

read Score Part :: Eq i ⇒ STM Result [Content i] Score Part
read Score Part = do

y ← read ELEMENT "score-part"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
y2 ← read 9 (read MAYBE read Identification) read Part Name

(read MAYBE read Part Name Display)
(read MAYBE read Part Abbreviation)
(read MAYBE read Part Abbreviation Display)
(read LIST read Group)
(read LIST read Score Instrument)

146

(read MAYBE read Midi Device)
(read LIST read Midi Instrument) (childs y)

return (y1 , y2)
-- |

show Score Part :: Score Part → [Content ()]
show Score Part (a, (b, c, d , e, f , g , h, i , j)) =

show ELEMENT "score-part" (show REQUIRED "id" show ID a)
(show MAYBE show Identification b ++

show Part Name c ++
show MAYBE show Part Name Display d ++
show MAYBE show Part Abbreviation e ++
show MAYBE show Part Abbreviation Display f ++
show LIST show Group g ++
show LIST show Score Instrument h ++
show MAYBE show Midi Device i ++
show LIST show Midi Instrument j)

The part-name indicates the full name of the musical part. The part-abbreviation indicates the abbre-
viated version of the name of the musical part. The part-name will often precede the first system, while
the part-abbreviation will precede the other systems. The formatting attributes for these elements are
deprecated in Version 2.0 in favor of the new part-name-display and part-abbreviation-display elements.
These are defined in the common.mod file as they are used in both the part-list and print elements. They
provide more complete formatting control for how part names and abbreviations appear in a score.

-- |
type Part Name = ((Print Style,Print Object , Justify),PCDATA)

-- |
read Part Name :: STM Result [Content i] Part Name
read Part Name = do

y ← read ELEMENT "part-name"

y1 ← read 3 read Print Style read Print Object read Justify
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Part Name :: Part Name → [Content ()]
show Part Name ((a, b, c), d) =

show ELEMENT "part-name"

(show Print Style a ++ show Print Object b ++ show Justify c)
(show PCDATA d)

-- |
type Part Abbreviation = ((Print Style,Print Object , Justify),PCDATA)

-- |
read Part Abbreviation :: STM Result [Content i] Part Abbreviation
read Part Abbreviation = do

y ← read ELEMENT "part-abbreviation"

y1 ← read 3 read Print Style read Print Object read Justify
(attributes y)

y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Part Abbreviation :: Part Abbreviation → [Content ()]
show Part Abbreviation ((a, b, c), d) =

show ELEMENT "part-abbreviation"

(show Print Style a ++ show Print Object b ++ show Justify c)
(show PCDATA d)

The part-group element indicates groupings of parts in the score, usually indicated by braces and
brackets. Braces that are used for multi-staff parts should be defined in the attributes element for that

147

part. The part-group start element appears before the first score-part in the group. The part-group stop
element appears after the last score-part in the group.

The number attribute is used to distinguish overlapping and nested part-groups, not the sequence of
groups. As with parts, groups can have a name and abbreviation. Formatting attributes for group-name
and group-abbreviation are deprecated in Version 2.0 in favor of the new group-name-display and group-
abbreviation-display elements. Formatting specified in the group-name-display and group-abbreviation-
display elements overrides formatting specified in the group-name and group-abbreviation elements, re-
spectively.

The group-symbol element indicates how the symbol for a group is indicated in the score. Values
include none, brace, line, and bracket; the default is none. The group-barline element indicates if the
group should have common barlines. Values can be yes, no, or Mensurstrich. The group-time element
indicates that the displayed time signatures should stretch across all parts and staves in the group. Values
for the child elements are ignored at the stop of a group.

A part-group element is not needed for a single multi-staff part. By default, multi-staff parts include
a brace symbol and (if appropriate given the bar-style) common barlines. The symbol formatting for a
multi-staff part can be more fully specified using the part-symbol element, defined in the attributes.mod
file.

-- |
type Part Group = ((Start Stop,CDATA),

(Maybe Group Name,Maybe Group Name Display ,
Maybe Group Abbreviation,Maybe Group Abbreviation Display ,
Maybe Group Symbol ,Maybe Group Barline,Maybe Group Time,Editorial))
-- |

read Part Group :: Eq i ⇒ STM Result [Content i] Part Group
read Part Group = do

y ← read ELEMENT "part-group"

y1 ← read 2 (read REQUIRED "type" read Start Stop)
(read DEFAULT "number" read CDATA "1") (attributes y)

y2 ← read 8 (read MAYBE read Group Name)
(read MAYBE read Group Name Display)
(read MAYBE read Group Abbreviation)
(read MAYBE read Group Abbreviation Display)
(read MAYBE read Group Symbol) (read MAYBE read Group Barline)
(read MAYBE read Group Time) read Editorial (childs y)

return (y1 , y2)
-- |

show Part Group :: Part Group → [Content ()]
show Part Group ((a, b), (c, d , e, f , g , h, i , j)) =

show ELEMENT "part-group"

(show REQUIRED "type" show Start Stop a ++
show DEFAULT "number" show CDATA b)

(show MAYBE show Group Name c ++
show MAYBE show Group Name Display d ++
show MAYBE show Group Abbreviation e ++
show MAYBE show Group Abbreviation Display f ++
show MAYBE show Group Symbol g ++
show MAYBE show Group Barline h ++
show MAYBE show Group Time i ++ show Editorial j)

-- |
type Group Name = ((Print Style, Justify),PCDATA)

-- |
read Group Name :: STM Result [Content i] Group Name
read Group Name = do

y ← read ELEMENT "group-name"

y1 ← read 2 read Print Style read Justify (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

148

show Group Name :: Group Name → [Content ()]
show Group Name ((a, b), c) =

show ELEMENT "group-name"

(show Print Style a ++ show Justify b)
(show PCDATA c)

-- |
type Group Name Display = (Print Object , [Group Name Display])

-- |
read Group Name Display :: Eq i ⇒ STM Result [Content i] Group Name Display
read Group Name Display = do

y ← read ELEMENT "group-name-display"

y1 ← read 1 read Print Object (attributes y)
y2 ← read 1 (read LIST read Group Name Display) (childs y)
return (y1 , y2)
-- |

show Group Name Display :: Group Name Display → [Content ()]
show Group Name Display (a, b) =

show ELEMENT "group-name-display"

(show Print Object a) (show LIST show Group Name Display b)
-- |

data Group Name Display = Group Name Display 1 Display Text
| Group Name Display 2 Accidental Text
deriving (Eq ,Show)

-- |
read Group Name Display :: STM Result [Content i] Group Name Display
read Group Name Display =

(read Display Text >>= return ·Group Name Display 1) ‘mplus‘
(read Accidental Text >>= return ·Group Name Display 2)
-- |

show Group Name Display :: Group Name Display → [Content ()]
show Group Name Display (Group Name Display 1 a) = show Display Text a
show Group Name Display (Group Name Display 2 a) = show Accidental Text a

-- |
type Group Abbreviation = ((Print Style, Justify),PCDATA)

-- |
read Group Abbreviation :: STM Result [Content i] Group Abbreviation
read Group Abbreviation = do

y ← read ELEMENT "group-abbreviation"

y1 ← read 2 read Print Style read Justify (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Group Abbreviation :: Group Abbreviation → [Content ()]
show Group Abbreviation ((a, b), c) =

show ELEMENT "group-abbreviation"

(show Print Style a ++ show Justify b)
(show PCDATA c)

-- |
type Group Abbreviation Display = (Print Object , [Group Abbreviation Display])

-- |
read Group Abbreviation Display :: Eq i ⇒

STM Result [Content i] Group Abbreviation Display
read Group Abbreviation Display = do

y ← read ELEMENT "group-abbreviation-display"

y1 ← read 1 read Print Object (attributes y)
y2 ← read 1 (read LIST read Group Abbreviation Display) (childs y)
return (y1 , y2)
-- |

149

show Group Abbreviation Display ::
Group Abbreviation Display → [Content ()]

show Group Abbreviation Display (a, b) =
show ELEMENT "group-abbreviation-display"

(show Print Object a) (show LIST show Group Abbreviation Display b)
-- |

data Group Abbreviation Display =
Group Abbreviation Display 1 Display Text
| Group Abbreviation Display 2 Accidental Text
deriving (Eq ,Show)

-- |
read Group Abbreviation Display ::

STM Result [Content i] Group Abbreviation Display
read Group Abbreviation Display =

(read Display Text >>= return ·Group Abbreviation Display 1) ‘mplus‘
(read Accidental Text >>= return ·Group Abbreviation Display 2)
-- |

show Group Abbreviation Display ::
Group Abbreviation Display → [Content ()]

show Group Abbreviation Display (Group Abbreviation Display 1 a) =
show Display Text a

show Group Abbreviation Display (Group Abbreviation Display 2 a) =
show Accidental Text a
-- |

type Group Symbol = ((Position,Color),PCDATA)
-- |

read Group Symbol :: STM Result [Content i] Group Symbol
read Group Symbol = do

y ← read ELEMENT "group-symbol"

y1 ← read 2 read Position read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Group Symbol :: Group Symbol → [Content ()]
show Group Symbol ((a, b), c) =

show ELEMENT "group-symbol"

(show Position a ++ show Color b) (show PCDATA c)
-- |

type Group Barline = (Color ,PCDATA)
-- |

read Group Barline :: STM Result [Content i] Group Barline
read Group Barline = do

y ← read ELEMENT "group-barline"

y1 ← read 1 read Color (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Group Barline :: Group Barline → [Content ()]
show Group Barline (a, b) =

show ELEMENT "group-barline" (show Color a) (show PCDATA b)
-- |

type Group Time = ()
-- |

read Group Time :: STM Result [Content i] Group Time
read Group Time = read ELEMENT "group-time">> return ()

-- |
show Group Time :: Group Time → [Content ()]
show Group Time = show ELEMENT "group-time" [] []

150

The score-instrument element allows for multiple instruments per score-part. As with the score-part
element, each score-instrument has a required ID attribute, a name, and an optional abbreviation. The
instrument-name and instrument-abbreviation are typically used within a software application, rather
than appearing on the printed page of a score.

A score-instrument element is also required if the score specifies MIDI 1.0 channels, banks, or programs.
An initial midi-instrument assignment can also be made here. MusicXML software should be able to
automatically assign reasonable channels and instruments without these elements in simple cases, such as
where part names match General MIDI instrument names.

The solo and ensemble elements are new as of Version 2.0. The solo element is present if performance is
intended by a solo instrument. The ensemble element is present if performance is intended by an ensemble
such as an orchestral section. The text of the ensemble element contains the size of the section, or is
empty if the ensemble size is not specified.

The midi-instrument element is defined in the common.mod file, as it can be used within both the
score-part and sound elements.

-- |
type Score Instrument = (ID , (Instrument Name,Maybe Instrument Abbreviation,

Maybe Score Instrument))
-- |

read Score Instrument :: STM Result [Content i] Score Instrument
read Score Instrument = do

y ← read ELEMENT "score-instrument"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
y2 ← read 3 read Instrument Name

(read MAYBE read Instrument Abbreviation)
(read MAYBE read Score Instrument) (childs y)

return (y1 , y2)
-- |

show Score Instrument :: Score Instrument → [Content ()]
show Score Instrument (a, (b, c, d)) =

show ELEMENT "score-instrument" (show REQUIRED "id" show ID a)
(show Instrument Name b ++

show MAYBE show Instrument Abbreviation c ++
show MAYBE show Score Instrument d)

-- |
data Score Instrument = Score Instrument 1 Solo
| Score Instrument 2 Ensemble
deriving (Eq ,Show)

-- |
read Score Instrument :: STM Result [Content i] Score Instrument
read Score Instrument =

(read Solo >>= return · Score Instrument 1) ‘mplus‘
(read Ensemble >>= return · Score Instrument 2)
-- |

show Score Instrument :: Score Instrument → [Content ()]
show Score Instrument (Score Instrument 1 a) = show Solo a
show Score Instrument (Score Instrument 2 a) = show Ensemble a

-- |
type Instrument Name = PCDATA

-- |
read Instrument Name :: STM Result [Content i] Instrument Name
read Instrument Name = do

y ← read ELEMENT "instrument-name"

read 1 read PCDATA (childs y)
-- |

show Instrument Name :: Instrument Name → [Content ()]
show Instrument Name a = show ELEMENT "instrument-name" [] (show PCDATA a)

-- |
type Instrument Abbreviation = PCDATA

151

-- |
read Instrument Abbreviation :: STM Result [Content i] Instrument Abbreviation
read Instrument Abbreviation = do

y ← read ELEMENT "instrument-abbreviation"

read 1 read PCDATA (childs y)
-- |

show Instrument Abbreviation :: Instrument Abbreviation → [Content ()]
show Instrument Abbreviation a =

show ELEMENT "instrument-abbreviation" [] (show PCDATA a)
-- |

type Solo = ()
-- |

read Solo :: STM Result [Content i] Solo
read Solo = read ELEMENT "solo">> return ()

-- |
show Solo :: Solo → [Content ()]
show Solo = show ELEMENT "solo" [] []

-- |
type Ensemble = PCDATA

-- |
read Ensemble :: STM Result [Content i] Ensemble
read Ensemble = do

y ← read ELEMENT "ensemble"

read 1 read PCDATA (childs y)
-- |

show Ensemble :: Ensemble → [Content ()]
show Ensemble a = show ELEMENT "ensemble" [] (show PCDATA a)

The midi-device content corresponds to the DeviceName meta event in Standard MIDI Files. The
optional port attribute is a number from 1 to 16 that can be used with the unofficial MIDI port (or cable)
meta event.

-- |
type Midi Device = (Maybe CDATA,PCDATA)

-- |
read Midi Device :: STM Result [Content i] Midi Device
read Midi Device = do

y ← read ELEMENT "midi-device"

y1 ← read 1 (read IMPLIED "port" read CDATA) (attributes y)
y2 ← read 1 read PCDATA (childs y)
return (y1 , y2)
-- |

show Midi Device :: Midi Device → [Content ()]
show Midi Device (a, b) =

show ELEMENT "midi-device" (show IMPLIED "port" show CDATA a)
(show PCDATA b)

The group element allows the use of different versions of the part for different purposes. Typical values
include score, parts, sound, and data. Ordering information that is directly encoded in MuseData can be
derived from the ordering within a MusicXML score or opus.

-- |
type Group = PCDATA

-- |
read Group :: STM Result [Content i] Group
read Group = do

y ← read ELEMENT "group"

read 1 read PCDATA (childs y)
-- |

152

show Group :: Group → [Content ()]
show Group a = show ELEMENT "group" [] (show PCDATA a)

Here is the basic musical data that is either associated with a part or a measure, depending on whether
partwise or timewise hierarchy is used.

-- * Music Data
-- |

type Music Data = [Music Data]
-- |

read Music Data :: Eq i ⇒ STM Result [Content i] Music Data
read Music Data = read LIST read Music Data

-- |
show Music Data :: Music Data → [Content ()]
show Music Data x = show LIST show Music Data x

-- |
data Music Data = Music Data 1 Note
| Music Data 2 Backup
| Music Data 3 Forward
| Music Data 4 Direction
| Music Data 5 Attributes
| Music Data 6 Harmony
| Music Data 7 Figured Bass
| Music Data 8 Print
| Music Data 9 Sound
| Music Data 10 Barline
| Music Data 11 Grouping
| Music Data 12 Link
| Music Data 13 Bookmark
deriving (Eq ,Show)
-- |

read Music Data :: Eq i ⇒ STM Result [Content i] Music Data
read Music Data =

(read Note >>= return ·Music Data 1) ‘mplus‘
(read Backup >>= return ·Music Data 2) ‘mplus‘
(read Forward >>= return ·Music Data 3) ‘mplus‘
(read Direction >>= return ·Music Data 4) ‘mplus‘
(read Attributes >>= return ·Music Data 5) ‘mplus‘
(read Harmony >>= return ·Music Data 6) ‘mplus‘
(read Figured Bass >>= return ·Music Data 7) ‘mplus‘
(read Print >>= return ·Music Data 8) ‘mplus‘
(read Sound >>= return ·Music Data 9) ‘mplus‘
(read Barline >>= return ·Music Data 10) ‘mplus‘
(read Grouping >>= return ·Music Data 11) ‘mplus‘
(read Link >>= return ·Music Data 12) ‘mplus‘
(read Bookmark >>= return ·Music Data 13)
-- |

show Music Data :: Music Data → [Content ()]
show Music Data (Music Data 1 x) = show Note x
show Music Data (Music Data 2 x) = show Backup x
show Music Data (Music Data 3 x) = show Forward x
show Music Data (Music Data 4 x) = show Direction x
show Music Data (Music Data 5 x) = show Attributes x
show Music Data (Music Data 6 x) = show Harmony x
show Music Data (Music Data 7 x) = show Figured Bass x
show Music Data (Music Data 8 x) = show Print x
show Music Data (Music Data 9 x) = show Sound x
show Music Data (Music Data 10 x) = show Barline x
show Music Data (Music Data 11 x) = show Grouping x

153

show Music Data (Music Data 12 x) = show Link x
show Music Data (Music Data 13 x) = show Bookmark x

The score-header entity contains basic score metadata about the work and movement, score-wide
defaults for layout and fonts, credits that appear on the first page, and the part list.

-- * Score Header
-- |

type Score Header = (Maybe Work ,Maybe Movement Number ,
Maybe Movement Title,Maybe Identification,
Maybe Defaults, [Credit],Part List)
-- |

read Score Header :: Eq i ⇒ STM Result [Content i] Score Header
read Score Header = do

y1 ← read MAYBE read Work
y2 ← read MAYBE read Movement Number
y3 ← read MAYBE read Movement Title
y4 ← read MAYBE read Identification
y5 ← read MAYBE read Defaults
y6 ← read LIST read Credit
y7 ← read Part List
return (y1 , y2 , y3 , y4 , y5 , y6 , y7)
-- |

show Score Header :: Score Header → [Content ()]
show Score Header (a, b, c, d , e, f , g) =

show MAYBE show Work a ++
show MAYBE show Movement Number b ++
show MAYBE show Movement Title c ++
show MAYBE show Identification d ++
show MAYBE show Defaults e ++
show LIST show Credit f ++
show Part List g
-- |

update Score Header :: ([Software],Encoding Date)→ Score Header → Score Header
update Score Header x (a, b, c, d , e, f , g) =

(a, b, c, fmap (update Identification x) d , e, f , g)

2.14 Timewise

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Timewise where
import Text .XML.MusicXML.Common
import Text .XML.MusicXML.Identity
import Text .XML.MusicXML.Score
import Text .XML.HaXml .Types (Content ,

DocTypeDecl (. .),ExternalID (. .),PubidLiteral (. .),SystemLiteral (. .))
import Prelude (Maybe (. .),Monad (. .),Eq , (++))

The MusicXML format is designed to represent musical scores, specifically common western musical
notation from the 17th century onwards. It is designed as an interchange format for notation, analysis,
retrieval, and performance applications. Therefore it is intended to be sufficient, not optimal, for these
applications.

154

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Timewise where
import Text.XML.MusicXML.Common
import Text.XML.MusicXML.Identity
import Text.XML.MusicXML.Score
import Text.XML.HaXml.Types (Content,
 DocTypeDecl(..), ExternalID(..), PubidLiteral(..), SystemLiteral(..))
import Prelude (Maybe(..), Monad(..), Eq, (++))
\end{code}

\begin{musicxml}
	The MusicXML format is designed to represent musical scores,
	specifically common western musical notation from the 17th
	century onwards. It is designed as an interchange format
	for notation, analysis, retrieval, and performance
	applications. Therefore it is intended to be sufficient,
	not optimal, for these applications.
	
	The MusicXML format is based on the MuseData and Humdrum
	formats. Humdrum explicitly represents the two-dimensional
	nature of musical scores by a 2-D layout notation. Since the
	XML format is hierarchical, we cannot do this explicitly.
	Instead, there are two top-level formats:
	
	partwise.dtd Represents scores by part/instrument
	timewise.dtd Represents scores by time/measure
	
	Thus partwise.dtd contains measures within each part,
	while timewise.dtd contains parts within each measure.
	XSLT stylesheets are provided to convert between the
	two formats.
	
	The partwise and timewise score DTDs represent a single
	movement of music. Multiple movements or other musical
	collections are presented using opus.dtd. An opus
	document contains XLinks to individual scores.
	
	Suggested use:
\begin{verbatim}	
	<!DOCTYPE score-timewise PUBLIC
		"-//Recordare//DTD MusicXML 2.0 Timewise//EN"
		"http://www.musicxml.org/dtds/timewise.dtd">
\end{verbatim}	
	This DTD is made up of a series of component DTD modules,
	all of which are included here.
\end{musicxml}
\begin{code}
-- |
doctype :: DocTypeDecl
doctype = DTD "score-timewise"
 (Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Timewise//EN")
 (SystemLiteral "http://www.musicxml.org/dtds/timewise.dtd")))
 []
\end{code}

\begin{musicxml}
	The score is the root element for the DTD. It includes
	the score-header entity, followed either by a series of
	parts with measures inside (score-partwise) or a series
	of measures with parts inside (score-timewise). Having
	distinct top-level elements for partwise and timewise
	scores makes it easy to ensure that an XSLT stylesheet
	does not try to transform a document already in the
	desired format. The document-attributes entity includes the
	version attribute and is defined in the common.mod file.

 In either format, the part element has an id attribute that
	is an IDREF back to a score-part in the part-list. Measures
	have a required number attribute (going from partwise to
	timewise, measures are grouped via the number).

 The implicit attribute is set to "yes" for measures where
	the measure number should never appear, such as pickup
	measures and the last half of mid-measure repeats. The
	value is "no" if not specified.
	
	The non-controlling attribute is intended for use in
	multimetric music like the Don Giovanni minuet. If set
	to "yes", the left barline in this measure does not
	coincide with the left barline of measures in other
	parts. The value is "no" if not specified.

	In partwise files, the number attribute should be the same
	for measures in different parts that share the same left
	barline. While the number attribute is often numeric, it
	does not have to be. Non-numeric values are typically used
	together with the implicit or non-controlling attributes
	being set to "yes". For a pickup measure, the number
	attribute is typically set to "0" and the implicit attribute
	is typically set to "yes". Further details about measure
	numbering can be defined using the measure-numbering
	element defined in the direction.mod file

	Measure width is specified in tenths. These are the
	global tenths specified in the scaling element, not
	local tenths as modified by the staff-size element.
\end{musicxml}
\begin{code}
-- * Score_Timewise
-- |
type Score_Timewise = (Document_Attributes, (Score_Header, [Measure]))
-- |
read_Score_Timewise :: Eq i => STM Result [Content i] Score_Timewise
read_Score_Timewise = do
 y <- read_ELEMENT "score-timewise"
 y1 <- read_1 read_Document_Attributes (attributes y)
 y2 <- read_2 read_Score_Header (read_LIST1 read_Measure) (childs y)
 return (y1,y2)
-- |
show_Score_Timewise :: Score_Timewise -> [Content ()]
show_Score_Timewise (a,(b,c)) =
 show_ELEMENT "score-timewise" (show_Document_Attributes a)
 (show_Score_Header b ++
 show_LIST1 show_Measure c)
-- |
update_Score_Timewise :: ([Software], Encoding_Date) ->
 Score_Timewise -> Score_Timewise
update_Score_Timewise x (a,(b,c)) = (a,(update_Score_Header x b, c))
-- |
type Measure = ((CDATA, Maybe Yes_No, Maybe Yes_No, Maybe Tenths),[Part])
-- |
read_Measure :: Eq i => STM Result [Content i] Measure
read_Measure = do
 y <- read_ELEMENT "measure"
 y1 <- read_4 (read_REQUIRED "number" read_CDATA)
 (read_IMPLIED "implicit" read_Yes_No)
 (read_IMPLIED "non-controlling" read_Yes_No)
 (read_IMPLIED "width" read_Tenths)
 (attributes y)
 y2 <- read_1 (read_LIST1 read_Part) (childs y)
 return (y1,y2)
-- |
show_Measure :: Measure -> [Content ()]
show_Measure ((a,b,c,d),e) =
 show_ELEMENT "measure" (show_REQUIRED "number" show_CDATA a ++
 show_IMPLIED "implicit" show_Yes_No b ++
 show_IMPLIED "non-controlling" show_Yes_No c ++
 show_IMPLIED "width" show_Tenths d)
 (show_LIST1 show_Part e)
-- |
type Part = (ID, Music_Data)
-- |
read_Part :: Eq i => STM Result [Content i] Part
read_Part = do
 y <- read_ELEMENT "part"
 y1 <- read_1 (read_REQUIRED "id" read_ID) (attributes y)
 y2 <- read_1 read_Music_Data (childs y)
 return (y1,y2)
-- |
show_Part :: Part -> [Content ()]
show_Part (a,b) =
 show_ELEMENT "part" (show_REQUIRED "id" show_ID a)
 (show_Music_Data b)
\end{code}

The MusicXML format is based on the MuseData and Humdrum formats. Humdrum explicitly rep-
resents the two-dimensional nature of musical scores by a 2-D layout notation. Since the XML format is
hierarchical, we cannot do this explicitly. Instead, there are two top-level formats:

partwise.dtd Represents scores by part/instrument timewise.dtd Represents scores by time/measure
Thus partwise.dtd contains measures within each part, while timewise.dtd contains parts within each

measure. XSLT stylesheets are provided to convert between the two formats.
The partwise and timewise score DTDs represent a single movement of music. Multiple movements or

other musical collections are presented using opus.dtd. An opus document contains XLinks to individual
scores.

Suggested use:

<!DOCTYPE score-timewise PUBLIC

"-//Recordare//DTD MusicXML 2.0 Timewise//EN"

"http://www.musicxml.org/dtds/timewise.dtd">

This DTD is made up of a series of component DTD modules, all of which are included here.

-- |
doctype :: DocTypeDecl
doctype = DTD "score-timewise"

(Just (PUBLIC (PubidLiteral "-//Recordare//DTD MusicXML 2.0 Timewise//EN")
(SystemLiteral "http://www.musicxml.org/dtds/timewise.dtd")))
[]

The score is the root element for the DTD. It includes the score-header entity, followed either by a series
of parts with measures inside (score-partwise) or a series of measures with parts inside (score-timewise).
Having distinct top-level elements for partwise and timewise scores makes it easy to ensure that an XSLT
stylesheet does not try to transform a document already in the desired format. The document-attributes
entity includes the version attribute and is defined in the common.mod file.

In either format, the part element has an id attribute that is an IDREF back to a score-part in the
part-list. Measures have a required number attribute (going from partwise to timewise, measures are
grouped via the number).

The implicit attribute is set to ”yes” for measures where the measure number should never appear,
such as pickup measures and the last half of mid-measure repeats. The value is ”no” if not specified.

The non-controlling attribute is intended for use in multimetric music like the Don Giovanni minuet.
If set to ”yes”, the left barline in this measure does not coincide with the left barline of measures in other
parts. The value is ”no” if not specified.

In partwise files, the number attribute should be the same for measures in different parts that share
the same left barline. While the number attribute is often numeric, it does not have to be. Non-numeric
values are typically used together with the implicit or non-controlling attributes being set to ”yes”. For
a pickup measure, the number attribute is typically set to ”0” and the implicit attribute is typically set
to ”yes”. Further details about measure numbering can be defined using the measure-numbering element
defined in the direction.mod file

Measure width is specified in tenths. These are the global tenths specified in the scaling element, not
local tenths as modified by the staff-size element.

-- * Score Timewise
-- |

type Score Timewise = (Document Attributes, (Score Header , [Measure]))
-- |

read Score Timewise :: Eq i ⇒ STM Result [Content i] Score Timewise
read Score Timewise = do

y ← read ELEMENT "score-timewise"

y1 ← read 1 read Document Attributes (attributes y)
y2 ← read 2 read Score Header (read LIST1 read Measure) (childs y)
return (y1 , y2)
-- |

show Score Timewise :: Score Timewise → [Content ()]
show Score Timewise (a, (b, c)) =

show ELEMENT "score-timewise" (show Document Attributes a)

155

(show Score Header b ++
show LIST1 show Measure c)

-- |
update Score Timewise :: ([Software],Encoding Date)→

Score Timewise → Score Timewise
update Score Timewise x (a, (b, c)) = (a, (update Score Header x b, c))

-- |
type Measure = ((CDATA,Maybe Yes No,Maybe Yes No,Maybe Tenths), [Part])

-- |
read Measure :: Eq i ⇒ STM Result [Content i] Measure
read Measure = do

y ← read ELEMENT "measure"

y1 ← read 4 (read REQUIRED "number" read CDATA)
(read IMPLIED "implicit" read Yes No)
(read IMPLIED "non-controlling" read Yes No)
(read IMPLIED "width" read Tenths)
(attributes y)

y2 ← read 1 (read LIST1 read Part) (childs y)
return (y1 , y2)
-- |

show Measure :: Measure → [Content ()]
show Measure ((a, b, c, d), e) =

show ELEMENT "measure" (show REQUIRED "number" show CDATA a ++
show IMPLIED "implicit" show Yes No b ++
show IMPLIED "non-controlling" show Yes No c ++
show IMPLIED "width" show Tenths d)
(show LIST1 show Part e)

-- |
type Part = (ID ,Music Data)

-- |
read Part :: Eq i ⇒ STM Result [Content i] Part
read Part = do

y ← read ELEMENT "part"

y1 ← read 1 (read REQUIRED "id" read ID) (attributes y)
y2 ← read 1 read Music Data (childs y)
return (y1 , y2)
-- |

show Part :: Part → [Content ()]
show Part (a, b) =

show ELEMENT "part" (show REQUIRED "id" show ID a)
(show Music Data b)

2.15 Util

-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--

module Text .XML.MusicXML.Util where
import Text .XML.HaXml .Types
import Control .Monad (MonadPlus (. .))
import Data.Char (isSpace)
import Prelude (String ,Maybe (. .), (. .) + ·,Bool (. .),

Monad (. .),Show (. .), Int ,Functor (. .),Eq (. .),

156

\begin{code}
-- |
-- Maintainer : silva.samuel@alumni.uminho.pt
-- Stability : experimental
-- Portability: HaXML
--
module Text.XML.MusicXML.Util where
import Text.XML.HaXml.Types
import Control.Monad (MonadPlus(..))
import Data.Char (isSpace)
import Prelude (String, Maybe(..), Either(..), Bool(..),
 Monad(..), Show(..), Int, Functor(..), Eq(..),
 (.), (++), (&&), error,
 id, map, concat, either, maybe, and,
 const, lookup, unwords)
\end{code}

\begin{code}
-- * Result
-- |
data Result a = Ok a | Error String
 deriving (Eq, Show)
-- |
instance Monad Result where
 (Ok a) >>= b = b a
 (Error msg) >>= _ = Error msg
 return x = Ok x
 fail msg = Error msg
-- |
instance Functor Result where
 fmap f (Ok a) = Ok (f a)
 fmap _ (Error msg) = Error msg
-- |
instance MonadPlus Result where
 mzero = Error "unknow error"
 (Ok a) `mplus` _ = (Ok a)
 (Error _) `mplus` b = b

-- |
isOK :: Result a -> Bool
isOK (Ok _) = True
isOK _ = False
-- |
isError :: Result a -> Bool
isError (Error _) = True
isError _ = False
-- |
fromOK :: Result a -> a
fromOK (Ok a) = a
fromOK (Error msg) = error msg
-- |
fromError :: Result a -> String
fromError (Ok _) = []
fromError (Error msg) = msg

-- * ST
-- |
newtype ST s a = ST {state :: s -> (s,a)}
instance Monad (ST s) where
 return x = ST (\s -> (s,x))
 p >>= f = ST (\s1 -> let (s2, r) = state p s1 in state (f r) s2)
instance Functor (ST s) where
 fmap f st = ST (\s -> (\(x,y) -> (x, f y)) (state st s))
-- |
liftST :: (s -> a) -> ST s a
liftST f = ST (\s -> (s,f s))

-- * STM
-- |
newtype STM m s a = STM {stateM :: s -> m (s, a)}
-- |
instance (Monad m) => Monad (STM m s) where
 return x = STM (\s -> return (s,x))
 p >>= f = STM (\s -> do {
 ; (s',l) <- stateM p s
 ; stateM (f l) s'})
 fail msg = STM (_ -> fail msg)
-- |
instance MonadPlus m => MonadPlus (STM m s) where
 mzero = STM (_ -> mzero)
 a `mplus` b = STM (\s -> (stateM a s) `mplus` (stateM b s))
-- |
instance Monad m => Functor (STM m s) where
 fmap f stm = STM (\s -> stateM stm s >>= (\(s1, a) -> return (s1, f a)))
-- |
liftSTM :: Monad m => ST s (m a) -> STM m s a
liftSTM p = STM (\s -> do {
 ; let (s', l) = (state p s)
 ; lx <- l
 ; return (s',lx)})
-- |
returnSTM :: Monad m => m a -> STM m s a
returnSTM x = STM (\s -> x>>=(\y -> return (s,y)))
\end{code}

\begin{code}
-- * Basic
-- |
type CDATA = Prelude.String
-- |
read_CDATA :: Prelude.String -> Result CDATA
read_CDATA = return
-- |
show_CDATA :: CDATA -> Prelude.String
show_CDATA = id
-- |
type ID = Prelude.String
-- |
read_ID :: Prelude.String -> Result ID
read_ID = return
-- |
show_ID :: ID -> Prelude.String
show_ID = id
\end{code}

\begin{code}
-- * Attributes
-- |
read_IMPLIED' :: String -> (String -> Result a) -> [Attribute] -> Maybe a
read_IMPLIED' key func s = maybe Nothing
 (result . func . unwords .
 map (either id (const "")) . (\(AttValue l) -> l))
 (lookup key s)
 where -- |
 result :: Result a -> Maybe a
 result (Ok x) = Just x
 result (Error _) = Nothing
-- |
read_IMPLIED :: Monad m =>
 String -> (String -> Result a) -> STM m [Attribute] (Maybe a)
read_IMPLIED key func =
 STM (\s-> return (s, read_IMPLIED' key func s))
-- |
show_IMPLIED :: String -> (a -> String) -> Maybe a -> [Attribute]
show_IMPLIED key function = maybe [] (show_REQUIRED key function)
-- |
read_REQUIRED :: Monad m => String -> (String -> Result a) -> STM m [Attribute] a
read_REQUIRED key func =
 read_IMPLIED key func >>=
 maybe (fail ("I expect "++key++" as required attribute")) return
-- |
show_REQUIRED :: String -> (a -> String) -> a -> [Attribute]
show_REQUIRED key function =
 (:[]) . (\x -> (key, x)) . AttValue . (:[]) . Left . function
-- |
read_DEFAULT :: Monad m =>
 String -> (String -> Result a) -> a -> STM m [Attribute] a
read_DEFAULT key func def =
 read_IMPLIED key func >>=
 maybe (return def) return
-- |
show_DEFAULT :: String -> (a -> String) -> a -> [Attribute]
show_DEFAULT = show_REQUIRED
-- |
show_FIXED :: String -> (a -> String) -> a -> [Attribute]
show_FIXED = show_REQUIRED
-- |
read_FIXED :: Monad m =>
 String -> (String -> Result a) -> a -> STM m [Attribute] a
read_FIXED key func def =
 read_IMPLIED key func >>=
 maybe (return def) return
\end{code}

\begin{code}
-- |
read_ELEMENT' :: String -> [Content i] -> ([Content i], Result (Element i))
read_ELEMENT' tag ((CElem (e@(Elem key _ _)) _):t) | key == tag = (t, Ok e)
read_ELEMENT' tag ((CString _ s _):t) | Prelude.and (map isSpace s) =
 read_ELEMENT' tag t
read_ELEMENT' tag (((CMisc _ _):t)) = read_ELEMENT' tag t
read_ELEMENT' tag l =
 (l, Error ("I expect " ++ tag ++ " element" ++ moreinfo))
 where moreinfo :: String
 moreinfo = ": [" ++ concat (map conts l) ++ "]"
 -- |
 conts :: Content i -> String
 conts (CElem (Elem k _ _) _) = "<" ++ k ++ "/>"
 conts (CString _ s _) = s
 conts (CRef _ _) = "(ref)"
 conts (CMisc _ _) = "(misc)"
-- |
read_ELEMENT :: String -> STM Result [Content i] (Element i)
read_ELEMENT tag = liftSTM (ST (\s -> read_ELEMENT' tag s))
-- |
show_ELEMENT :: String -> [Attribute] -> [Content ()] -> [Content ()]
show_ELEMENT tag attr contents = [CElem (Elem tag attr contents) ()]
-- |
attributes :: Element i -> [Attribute]
attributes (Elem _ x _) = x
-- |
childs :: Element i -> [Content i]
childs (Elem _ _ x) = x
-- |
type PCDATA = Prelude.String
-- |
read_PCDATA' :: [Content i] -> ([Content i], Result PCDATA)
read_PCDATA' [] = ([], return [])
read_PCDATA' ((CString _ y _):t) =
 let (a,b) = read_PCDATA' t
 in (a, b >>= return.(y++))
read_PCDATA' ((CRef y _):t) =
 let (a,b) = read_PCDATA' t
 in (a, b >>= return.(read_REF y++))
read_PCDATA' (l@((CElem _ _):_)) = (l, return [])
read_PCDATA' (_:t) = read_PCDATA' t
-- |
read_REF :: Reference -> PCDATA
read_REF (RefEntity x) = '&' : x ++ ";"
read_REF (RefChar x) = '#' : show x
-- |
read_PCDATA :: STM Result [Content i] PCDATA
read_PCDATA = liftSTM (ST (\s -> read_PCDATA' s))
-- |
show_PCDATA :: PCDATA -> [Content ()]
show_PCDATA pcdata = [CString False pcdata ()]
\end{code}

\begin{code}
-- * Elements
-- |
read_MAYBE :: STM Result [Content i] a ->
 STM Result [Content i] (Maybe a)
read_MAYBE st = STM (\s ->
 ((stateM st s) >>= (\(z1,z2) -> return (z1, return z2)))
 `mplus` return (s,Nothing))
-- |
show_MAYBE :: (a -> [Content ()]) -> Maybe a -> [Content ()]
show_MAYBE f = maybe [] f
-- |
read_LIST :: Eq i => STM Result [Content i] a -> STM Result [Content i] [a]
read_LIST st = STM (\s ->
 let x = stateM st s
 in case x of
 Ok (x1,x2) -> if s == x1 then return (s,[x2])
 else let y = stateM (read_LIST st) x1
 in case y of
 Ok (y1,y2) -> return (y1, x2:y2)
 Error _ -> return (x1, [x2])
 Error _ -> return (s, [])
)
-- |
show_LIST :: (a -> [Content ()]) -> [a] -> [Content ()]
show_LIST f = concat . map f
-- |
read_LIST1 :: Eq i => STM Result [Content i] a -> STM Result [Content i] [a]
read_LIST1 st = STM (\s ->
 let x = stateM st s
 in case x of
 Ok (x1,x2) -> if s == x1 then return (s,[x2])
 else let y = stateM (read_LIST1 st) x1
 in case y of
 Ok (y1,y2) -> return (y1, x2:y2)
 Error _ -> return (x1, [x2])
 Error _ -> fail "empty list"
)
-- |
show_LIST1 :: (a -> [Content ()]) -> [a] -> [Content ()]
show_LIST1 = show_LIST
\end{code}

\begin{code}
-- * Read
-- |
read_1 :: Monad m => STM m s a -> s -> STM m s' a
read_1 st1 s = returnSTM (stateM st1 s >>= (\(_,x) -> return x))
-- |
read_2 :: Monad m => STM m s a -> STM m s b -> s -> STM m s' (a,b)
read_2 st1 st2 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (_,b) <- stateM st2 s1
 return (a,b))
-- |
read_3 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 s -> STM m s' (a,b,c)
read_3 st1 st2 st3 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (_,c) <- stateM st3 s2
 return (a,b,c))
-- |
read_4 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> s -> STM m s' (a,b,c,d)
read_4 st1 st2 st3 st4 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (_,d) <- stateM st4 s3
 return (a,b,c,d))
-- |
read_5 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> s -> STM m s' (a,b,c,d,e)
read_5 st1 st2 st3 st4 st5 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (_,e) <- stateM st5 s4
 return (a,b,c,d,e))
-- |
read_6 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> s -> STM m s' (a,b,c,d,e,f)
read_6 st1 st2 st3 st4 st5 st6 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (_,f) <- stateM st6 s5
 return (a,b,c,d,e,f))
-- |
read_7 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 s -> STM m s' (a,b,c,d,e,f,g)
read_7 st1 st2 st3 st4 st5 st6 st7 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (_,g) <- stateM st7 s6
 return (a,b,c,d,e,f,g))
-- |
read_8 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> s -> STM m s' (a,b,c,d,e,f,g,h)
read_8 st1 st2 st3 st4 st5 st6 st7 st8 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (_,h) <- stateM st8 s7
 return (a,b,c,d,e,f,g,h))
-- |
read_9 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> s -> STM m s' (a,b,c,d,e,f,g,h,i)
read_9 st1 st2 st3 st4 st5 st6 st7 st8 st9 s = returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (_,i) <- stateM st9 s8
 return (a,b,c,d,e,f,g,h,i))
-- |
read_10 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> STM m s j ->
 s -> STM m s' (a,b,c,d,e,f,g,h,i,j)
read_10 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 s =
 returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (s9,i) <- stateM st9 s8
 (_,j) <- stateM st10 s9
 return (a,b,c,d,e,f,g,h,i,j))
-- |
read_11 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> STM m s j -> STM m s k ->
 s -> STM m s' (a,b,c,d,e,f,g,h,i,j,k)
read_11 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 s =
 returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (s9,i) <- stateM st9 s8
 (s10,j) <- stateM st10 s9
 (_,k) <- stateM st11 s10
 return (a,b,c,d,e,f,g,h,i,j,k))
-- |
read_12 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> STM m s j -> STM m s k ->
 STM m s l -> s -> STM m s' (a,b,c,d,e,f,g,h,i,j,k,l)
read_12 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 st12 s =
 returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (s9,i) <- stateM st9 s8
 (s10,j) <- stateM st10 s9
 (s11,k) <- stateM st11 s10
 (_,l) <- stateM st12 s11
 return (a,b,c,d,e,f,g,h,i,j,k,l))
-- |
read_13 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> STM m s j -> STM m s k ->
 STM m s l -> STM m s n -> s -> STM m s' (a,b,c,d,e,f,g,h,i,j,k,l,n)
read_13 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 st12 st13 s =
 returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (s9,i) <- stateM st9 s8
 (s10,j) <- stateM st10 s9
 (s11,k) <- stateM st11 s10
 (s12,l) <- stateM st12 s11
 (_,m) <- stateM st13 s12
 return (a,b,c,d,e,f,g,h,i,j,k,l,m))
-- |
read_17 :: Monad m => STM m s a -> STM m s b -> STM m s c ->
 STM m s d -> STM m s e -> STM m s f -> STM m s g ->
 STM m s h -> STM m s i -> STM m s j -> STM m s k ->
 STM m s l -> STM m s n -> STM m s o -> STM m s p ->
 STM m s q -> STM m s r -> s ->
 STM m s' (a,b,c,d,e,f,g,h,i,j,k,l,n,o,p,q,r)
read_17 st1 st2 st3 st4 st5 st6 st7 st8 st9
 st10 st11 st12 st13 st14 st15 st16 st17 s =
 returnSTM (do
 (s1,a) <- stateM st1 s
 (s2,b) <- stateM st2 s1
 (s3,c) <- stateM st3 s2
 (s4,d) <- stateM st4 s3
 (s5,e) <- stateM st5 s4
 (s6,f) <- stateM st6 s5
 (s7,g) <- stateM st7 s6
 (s8,h) <- stateM st8 s7
 (s9,i) <- stateM st9 s8
 (s10,j) <- stateM st10 s9
 (s11,k) <- stateM st11 s10
 (s12,l) <- stateM st12 s11
 (s13,n) <- stateM st13 s12
 (s14,o) <- stateM st14 s13
 (s15,p) <- stateM st15 s14
 (s16,q) <- stateM st16 s15
 (_,r) <- stateM st17 s16
 return (a,b,c,d,e,f,g,h,i,j,k,l,n,o,p,q,r))
\end{code}

\begin{code}
instance (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h,
 Show i, Show j, Show k, Show l, Show m, Show n, Show o, Show p, Show q)
 => Show (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q) where
 show (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q) = "(" ++ show a ++ "," ++
 show b ++ "," ++ show c ++ "," ++ show d ++ "," ++ show e ++ "," ++
 show f ++ "," ++ show g ++ "," ++ show h ++ "," ++ show i ++ "," ++
 show j ++ "," ++ show k ++ "," ++ show l ++ "," ++ show m ++ "," ++
 show n ++ "," ++ show o ++ "," ++ show p ++ "," ++ show q ++ ")"

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h,
 Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o, Eq p, Eq q)
 => Eq (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q) where
 (a1,b1,c1,d1,e1,f1,g1,h1,i1,j1,k1,l1,m1,n1,o1,p1,q1) ==
 (a2,b2,c2,d2,e2,f2,g2,h2,i2,j2,k2,l2,m2,n2,o2,p2,q2) =
 (a1 == a2) && (b1 == b2) && (c1 == c2) && (d1 == d2) && (e1 == e2) &&
 (f1 == f2) && (g1 == g2) && (h1 == h2) && (i1 == i2) && (j1 == j2) &&
 (k1 == k2) && (l1 == l2) && (m1 == m2) && (n1 == n2) && (o1 == o2) &&
 (p1 == p2) && (q1 == q2)
\end{code}

(·), (++), (∧), error ,
id ,map, concat , [·, ·],maybe, and ,
·, lookup, unwords)

-- * Result
-- |

data Result a = Ok a | Error String
deriving (Eq ,Show)
-- |

instance Monad Result where
(Ok a)>>= b = b a
(Error msg)>>= = Error msg
return x = Ok x
fail msg = Error msg
-- |

instance Functor Result where
fmap f (Ok a) = Ok (f a)
fmap (Error msg) = Error msg
-- |

instance MonadPlus Result where
mzero = Error "unknow error"

(Ok a) ‘mplus‘ = (Ok a)
(Error) ‘mplus‘ b = b

-- |
isOK :: Result a → Bool
isOK (Ok) = True
isOK = False

-- |
isError :: Result a → Bool
isError (Error) = True
isError = False

-- |
fromOK :: Result a → a
fromOK (Ok a) = a
fromOK (Error msg) = error msg

-- |
fromError :: Result a → String
fromError (Ok) = []
fromError (Error msg) = msg

-- * ST
-- |

newtype ST s a = ST{state :: s → (s, a)}
instance Monad (ST s) where

return x = ST (λs → (s, x))
p >>= f = ST (λs1 → let (s2 , r) = state p s1 in state (f r) s2)

instance Functor (ST s) where
fmap f st = ST (λs → (λ(x , y)→ (x , f y)) (state st s))
-- |

liftST :: (s → a)→ ST s a
liftST f = ST (λs → (s, f s))

-- * STM
-- |

newtype STM m s a = STM {stateM :: s → m (s, a)}
-- |

instance (Monad m)⇒ Monad (STM m s) where
return x = STM (λs → return (s, x))
p >>= f = STM (λs → do {

; (s ′, l)← stateM p s

157

; stateM (f l) s ′})
fail msg = STM (λ → fail msg)
-- |

instance MonadPlus m ⇒ MonadPlus (STM m s) where
mzero = STM (λ → mzero)
a ‘mplus‘ b = STM (λs → (stateM a s) ‘mplus‘ (stateM b s))
-- |

instance Monad m ⇒ Functor (STM m s) where
fmap f stm = STM (λs → stateM stm s >>= (λ(s1 , a)→ return (s1 , f a)))
-- |

liftSTM :: Monad m ⇒ ST s (m a)→ STM m s a
liftSTM p = STM (λs → do {

; let (s ′, l) = (state p s)
; lx ← l
; return (s ′, lx)})
-- |

returnSTM :: Monad m ⇒ m a → STM m s a
returnSTM x = STM (λs → x >>= (λy → return (s, y)))

-- * Basic
-- |

type CDATA = Prelude.String
-- |

read CDATA :: Prelude.String → Result CDATA
read CDATA = return

-- |
show CDATA :: CDATA→ Prelude.String
show CDATA = id

-- |
type ID = Prelude.String

-- |
read ID :: Prelude.String → Result ID
read ID = return

-- |
show ID :: ID → Prelude.String
show ID = id

-- * Attributes
-- |

read IMPLIED ′ :: String → (String → Result a)→ [Attribute]→ Maybe a
read IMPLIED ′ key func s = maybe Nothing

(result · func · unwords ·
map ([id , ""]) · (λ(AttValue l)→ l))

(lookup key s)
where -- |

result :: Result a → Maybe a
result (Ok x) = Just x
result (Error) = Nothing

-- |
read IMPLIED :: Monad m ⇒

String → (String → Result a)→ STM m [Attribute] (Maybe a)
read IMPLIED key func =

STM (λs → return (s, read IMPLIED ′ key func s))
-- |

show IMPLIED :: String → (a → String)→ Maybe a → [Attribute]
show IMPLIED key function = maybe [] (show REQUIRED key function)

-- |
read REQUIRED :: Monad m ⇒ String → (String → Result a)→ STM m [Attribute] a

158

read REQUIRED key func =
read IMPLIED key func >>=
maybe (fail ("I expect " ++ key ++ " as required attribute")) return
-- |

show REQUIRED :: String → (a → String)→ a → [Attribute]
show REQUIRED key function =

(:[]) · (λx → (key , x)) ·AttValue · (:[]) · i1 · function
-- |

read DEFAULT :: Monad m ⇒
String → (String → Result a)→ a → STM m [Attribute] a

read DEFAULT key func def =
read IMPLIED key func >>=
maybe (return def) return
-- |

show DEFAULT :: String → (a → String)→ a → [Attribute]
show DEFAULT = show REQUIRED

-- |
show FIXED :: String → (a → String)→ a → [Attribute]
show FIXED = show REQUIRED

-- |
read FIXED :: Monad m ⇒

String → (String → Result a)→ a → STM m [Attribute] a
read FIXED key func def =

read IMPLIED key func >>=
maybe (return def) return

-- |
read ELEMENT ′ :: String → [Content i]→ ([Content i],Result (Element i))
read ELEMENT ′ tag ((CElem (e@(Elem key))) : t) | key ≡ tag = (t ,Ok e)
read ELEMENT ′ tag ((CString s) : t) | Prelude.and (map isSpace s) =

read ELEMENT ′ tag t
read ELEMENT ′ tag (((CMisc) : t)) = read ELEMENT ′ tag t
read ELEMENT ′ tag l =

(l ,Error ("I expect " ++ tag ++ " element" ++ moreinfo))
where moreinfo :: String

moreinfo = ": [" ++ concat (map conts l) ++ "]"

-- |
conts :: Content i → String
conts (CElem (Elem k)) = "<" ++ k ++ "/>"

conts (CString s) = s
conts (CRef) = "(ref)"

conts (CMisc) = "(misc)"

-- |
read ELEMENT :: String → STM Result [Content i] (Element i)
read ELEMENT tag = liftSTM (ST (λs → read ELEMENT ′ tag s))

-- |
show ELEMENT :: String → [Attribute]→ [Content ()]→ [Content ()]
show ELEMENT tag attr contents = [CElem (Elem tag attr contents) ()]

-- |
attributes :: Element i → [Attribute]
attributes (Elem x) = x

-- |
childs :: Element i → [Content i]
childs (Elem x) = x

-- |
type PCDATA = Prelude.String

-- |
read PCDATA′ :: [Content i]→ ([Content i],Result PCDATA)

159

read PCDATA′ [] = ([], return [])
read PCDATA′ ((CString y) : t) =

let (a, b) = read PCDATA′ t
in (a, b >>= return · (y++))

read PCDATA′ ((CRef y) : t) =
let (a, b) = read PCDATA′ t
in (a, b >>= return · (read REF y++))

read PCDATA′ (l@((CElem) :)) = (l , return [])
read PCDATA′ (: t) = read PCDATA′ t

-- |
read REF :: Reference → PCDATA
read REF (RefEntity x) = ’&’ : x ++ ";"

read REF (RefChar x) = ’#’ : show x
-- |

read PCDATA :: STM Result [Content i] PCDATA
read PCDATA = liftSTM (ST (λs → read PCDATA′ s))

-- |
show PCDATA :: PCDATA→ [Content ()]
show PCDATA pcdata = [CString False pcdata ()]

-- * Elements
-- |

read MAYBE :: STM Result [Content i] a →
STM Result [Content i] (Maybe a)

read MAYBE st = STM (λs →
((stateM st s)>>= (λ(z1 , z2)→ return (z1 , return z2)))
‘mplus‘ return (s,Nothing))
-- |

show MAYBE :: (a → [Content ()])→ Maybe a → [Content ()]
show MAYBE f = maybe [] f

-- |
read LIST :: Eq i ⇒ STM Result [Content i] a → STM Result [Content i] [a]
read LIST st = STM (λs →

let x = stateM st s
in case x of

Ok (x1 , x2)→ if s ≡ x1 then return (s, [x2])
else let y = stateM (read LIST st) x1

in case y of
Ok (y1 , y2)→ return (y1 , x2 : y2)
Error → return (x1 , [x2])

Error → return (s, [])
)
-- |

show LIST :: (a → [Content ()])→ [a]→ [Content ()]
show LIST f = concat ·map f

-- |
read LIST1 :: Eq i ⇒ STM Result [Content i] a → STM Result [Content i] [a]
read LIST1 st = STM (λs →

let x = stateM st s
in case x of

Ok (x1 , x2)→ if s ≡ x1 then return (s, [x2])
else let y = stateM (read LIST1 st) x1

in case y of
Ok (y1 , y2)→ return (y1 , x2 : y2)
Error → return (x1 , [x2])

Error → fail "empty list"

)
-- |

160

show LIST1 :: (a → [Content ()])→ [a]→ [Content ()]
show LIST1 = show LIST

-- * Read
-- |

read 1 :: Monad m ⇒ STM m s a → s → STM m s ′ a
read 1 st1 s = returnSTM (stateM st1 s >>= (λ(, x)→ return x))

-- |
read 2 :: Monad m ⇒ STM m s a → STM m s b → s → STM m s ′ (a, b)
read 2 st1 st2 s = returnSTM (do

(s1 , a)← stateM st1 s
(, b)← stateM st2 s1
return (a, b))

-- |
read 3 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

s → STM m s ′ (a, b, c)
read 3 st1 st2 st3 s = returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(, c)← stateM st3 s2
return (a, b, c))

-- |
read 4 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → s → STM m s ′ (a, b, c, d)
read 4 st1 st2 st3 st4 s = returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(, d)← stateM st4 s3
return (a, b, c, d))

-- |
read 5 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → s → STM m s ′ (a, b, c, d , e)
read 5 st1 st2 st3 st4 st5 s = returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(, e)← stateM st5 s4
return (a, b, c, d , e))

-- |
read 6 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → s → STM m s ′ (a, b, c, d , e, f)
read 6 st1 st2 st3 st4 st5 st6 s = returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(, f)← stateM st6 s5
return (a, b, c, d , e, f))

-- |
read 7 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
s → STM m s ′ (a, b, c, d , e, f , g)

read 7 st1 st2 st3 st4 st5 st6 st7 s = returnSTM (do
(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1

161

(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(, g)← stateM st7 s6
return (a, b, c, d , e, f , g))

-- |
read 8 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → s → STM m s ′ (a, b, c, d , e, f , g , h)

read 8 st1 st2 st3 st4 st5 st6 st7 st8 s = returnSTM (do
(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(, h)← stateM st8 s7
return (a, b, c, d , e, f , g , h))

-- |
read 9 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → STM m s i → s → STM m s ′ (a, b, c, d , e, f , g , h, i)

read 9 st1 st2 st3 st4 st5 st6 st7 st8 st9 s = returnSTM (do
(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(, i)← stateM st9 s8
return (a, b, c, d , e, f , g , h, i))

-- |
read 10 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → STM m s i → STM m s j →
s → STM m s ′ (a, b, c, d , e, f , g , h, i , j)

read 10 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 s =
returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(s9 , i)← stateM st9 s8
(, j)← stateM st10 s9
return (a, b, c, d , e, f , g , h, i , j))

-- |
read 11 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → STM m s i → STM m s j → STM m s k →
s → STM m s ′ (a, b, c, d , e, f , g , h, i , j , k)

162

read 11 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 s =
returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(s9 , i)← stateM st9 s8
(s10 , j)← stateM st10 s9
(, k)← stateM st11 s10
return (a, b, c, d , e, f , g , h, i , j , k))

-- |
read 12 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → STM m s i → STM m s j → STM m s k →
STM m s l → s → STM m s ′ (a, b, c, d , e, f , g , h, i , j , k , l)

read 12 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 st12 s =
returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(s9 , i)← stateM st9 s8
(s10 , j)← stateM st10 s9
(s11 , k)← stateM st11 s10
(, l)← stateM st12 s11
return (a, b, c, d , e, f , g , h, i , j , k , l))

-- |
read 13 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →
STM m s h → STM m s i → STM m s j → STM m s k →
STM m s l → STM m s n → s → STM m s ′ (a, b, c, d , e, f , g , h, i , j , k , l ,n)

read 13 st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 st12 st13 s =
returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(s9 , i)← stateM st9 s8
(s10 , j)← stateM st10 s9
(s11 , k)← stateM st11 s10
(s12 , l)← stateM st12 s11
(,m)← stateM st13 s12
return (a, b, c, d , e, f , g , h, i , j , k , l ,m))

-- |
read 17 :: Monad m ⇒ STM m s a → STM m s b → STM m s c →

STM m s d → STM m s e → STM m s f → STM m s g →

163

STM m s h → STM m s i → STM m s j → STM m s k →
STM m s l → STM m s n → STM m s o → STM m s p →
STM m s q → STM m s r → s →
STM m s ′ (a, b, c, d , e, f , g , h, i , j , k , l ,n, o, p, q , r)

read 17 st1 st2 st3 st4 st5 st6 st7 st8 st9
st10 st11 st12 st13 st14 st15 st16 st17 s =
returnSTM (do

(s1 , a)← stateM st1 s
(s2 , b)← stateM st2 s1
(s3 , c)← stateM st3 s2
(s4 , d)← stateM st4 s3
(s5 , e)← stateM st5 s4
(s6 , f)← stateM st6 s5
(s7 , g)← stateM st7 s6
(s8 , h)← stateM st8 s7
(s9 , i)← stateM st9 s8
(s10 , j)← stateM st10 s9
(s11 , k)← stateM st11 s10
(s12 , l)← stateM st12 s11
(s13 ,n)← stateM st13 s12
(s14 , o)← stateM st14 s13
(s15 , p)← stateM st15 s14
(s16 , q)← stateM st16 s15
(, r)← stateM st17 s16
return (a, b, c, d , e, f , g , h, i , j , k , l ,n, o, p, q , r))

instance (Show a,Show b,Show c,Show d ,Show e,Show f ,Show g ,Show h,
Show i ,Show j ,Show k ,Show l ,Show m,Show n,Show o,Show p,Show q)
⇒ Show (a, b, c, d , e, f , g , h, i , j , k , l ,m,n, o, p, q) where

show (a, b, c, d , e, f , g , h, i , j , k , l ,m,n, o, p, q) = "(" ++ show a ++ "," ++
show b ++ "," ++ show c ++ "," ++ show d ++ "," ++ show e ++ "," ++
show f ++ "," ++ show g ++ "," ++ show h ++ "," ++ show i ++ "," ++
show j ++ "," ++ show k ++ "," ++ show l ++ "," ++ show m ++ "," ++
show n ++ "," ++ show o ++ "," ++ show p ++ "," ++ show q ++ ")"

instance (Eq a,Eq b,Eq c,Eq d ,Eq e,Eq f ,Eq g ,Eq h,
Eq i ,Eq j ,Eq k ,Eq l ,Eq m,Eq n,Eq o,Eq p,Eq q)
⇒ Eq (a, b, c, d , e, f , g , h, i , j , k , l ,m,n, o, p, q) where

(a1 , b1 , c1 , d1 , e1 , f1 , g1 , h1 , i1, j1 , k1 , l1 ,m1 ,n1 , o1 , π1, q1) ≡
(a2 , b2 , c2 , d2 , e2 , f2 , g2 , h2 , i2, j2 , k2 , l2 ,m2 ,n2 , o2 , π2, q2) =
(a1 ≡ a2) ∧ (b1 ≡ b2) ∧ (c1 ≡ c2) ∧ (d1 ≡ d2) ∧ (e1 ≡ e2) ∧
(f1 ≡ f2) ∧ (g1 ≡ g2) ∧ (h1 ≡ h2) ∧ (i1 ≡ i2) ∧ (j1 ≡ j2) ∧
(k1 ≡ k2) ∧ (l1 ≡ l2) ∧ (m1 ≡ m2) ∧ (n1 ≡ n2) ∧ (o1 ≡ o2) ∧
(π1 ≡ π2) ∧ (q1 ≡ q2)

3 Test

-- |
module Main where

import Text .XML.MusicXML hiding (String) -- MusicXML package
import System.IO
import Data.Maybe
import System.Environment
import System.Console.GetOpt
import Prelude

164

\begin{code}
-- |
module Main where

import Text.XML.MusicXML hiding (String) -- MusicXML package
import System.IO
import Data.Maybe
import System.Environment
import System.Console.GetOpt
import Prelude
\end{code}

\begin{code}
-- |
data Option = List FilePath
 | Help
 | Version
 deriving (Eq, Show)
options :: [OptDescr Option]
options = [
 Option ['v','V'] ["version"] (NoArg Version) "show version number"
 , Option ['h','H','?'] ["help"] (NoArg Help) "show help"
 , Option ['l','m'] ["manifest"] (ReqArg List "MANIFEST") "manifest file"
]
-- |
header :: String -> String
header prog = "Usage: "++ prog ++" [OPTIONS...] FILES..."
-- |
proc :: [Option] -> [String] -> IO ()
proc [] files = main' (zip ([1..]::[Int]) files)
proc ((List file):t) files = do
 list <- readFile file
 proc t (lines list ++ files)
proc (_:t) files = proc t files
\end{code}

\begin{code}
mkoutput :: FilePath -> FilePath
mkoutput = reverse . ("lmx.tuptuo-"++) . drop 4 . reverse
\end{code}

\begin{code}
-- |
put :: String -> IO ()
put msg = putStr msg >> hFlush stdout
putLn :: String -> IO ()
putLn msg = putStrLn msg >> hFlush stdout

putBool :: Bool -> IO ()
putBool True = putStrLn "[Ok]"
putBool False = putStrLn "[Failed]"
\end{code}

\begin{code}
-- |
inout :: FilePath -> IO ()
inout file = do
 putLn ("file: "++show file) >> put "Reading "
 contents <- readFile file
 r1 <- return (read_CONTENTS read_MusicXMLDoc file contents)
 r2 <- return (case isOK r1 of
 True -> Just (mkoutput file, fromOK r1); False -> Nothing)
 putBool (isOK r1)
 put "Writing "
 r3 <- return (fmap (\(a,b) ->
 (a, show_CONTENTS show_MusicXMLDoc b)) r2)
 maybe (return ()) (uncurry writeFile) r3
 putBool (isJust r3)
\end{code}

\begin{code}
-- |
main :: IO ()
main = do
 argv <- getArgs
 prog <- getProgName
 case getOpt Permute options argv of
 (o,n,[]) | Help`elem`o -> putStrLn (usageInfo (header prog) options)
 | Version`elem`o -> putStrLn (unwords [prog])
 | otherwise -> proc o n
 (_,_,errs) -> putStrLn (unlines errs ++ usageInfo (header prog) options)
-- |
main' :: [(Int, FilePath)] -> IO ()
main' [] = return ()
main' ((a,b):t) = do
 putLn ("\nNumber: " ++ show a) >> inout b >> main' t
\end{code}

-- |
data Option = List FilePath
| Help
| Version
deriving (Eq ,Show)

options :: [OptDescr Option]
options = [

Option [’v’, ’V’] ["version"] (NoArg Version) "show version number"

,Option [’h’, ’H’, ’?’] ["help"] (NoArg Help) "show help"

,Option [’l’, ’m’] ["manifest"] (ReqArg List "MANIFEST") "manifest file"

]
-- |

header :: String → String
header prog = "Usage: " ++ prog ++ " [OPTIONS...] FILES..."

-- |
proc :: [Option]→ [String]→ IO ()
proc [] files = main ′ (zip ([1 . .] :: [Int]) files)
proc ((List file) : t) files = do

list ← readFile file
proc t (lines list ++ files)

proc (: t) files = proc t files

mkoutput :: FilePath → FilePath
mkoutput = reverse · ("lmx.tuptuo-"++) · drop 4 · reverse

-- |
put :: String → IO ()
put msg = putStr msg >> hFlush stdout
putLn :: String → IO ()
putLn msg = putStrLn msg >> hFlush stdout

putBool :: Bool → IO ()
putBool True = putStrLn "[Ok]"

putBool False = putStrLn "[Failed]"

-- |
inout :: FilePath → IO ()
inout file = do

putLn ("file: " ++ show file)>> put "Reading "

contents ← readFile file
r1 ← return (read CONTENTS read MusicXMLDoc file contents)
r2 ← return (case isOK r1 of

True → Just (mkoutput file, fromOK r1); False → Nothing)
putBool (isOK r1)
put "Writing "

r3 ← return (fmap (λ(a, b)→
(a, show CONTENTS show MusicXMLDoc b)) r2)

maybe (return ()) (uncurry writeFile) r3
putBool (isJust r3)

-- |
main :: IO ()
main = do

argv ← getArgs
prog ← getProgName
case getOpt Permute options argv of

(o,n, []) | Help ∈ o → putStrLn (usageInfo (header prog) options)
| Version ∈ o → putStrLn (unwords [prog])

165

| otherwise → proc o n
(, , errs)→ putStrLn (unlines errs ++ usageInfo (header prog) options)

-- |
main ′ :: [(Int ,FilePath)]→ IO ()
main ′ [] = return ()
main ′ ((a, b) : t) = do

putLn ("\nNumber: " ++ show a)>> inout b >>main ′ t

4 Conclusion

This library handle music notation at musicxml format. This Haskell library is translation from
DTD specification.

References

[1] Michael Good. Lessons from the adoption of musicxml as an interchange standard, 2006.

[2] Michael Good and Geri Actor. Using musicxml for file interchange. IEEE, 2003.

[3] Paul Haudak, John Hudges, Simon Peyton Jones, and Philip Wadler. A history of haskell:
Being lazy with class. ACM, 2007.

[4] Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report, 2002.

[5] David Brian Williams. Musicxml: The new link for sharing sibelius and finale files. 2008.

166

	Introdution
	Implementation
	Attributes
	Barline
	Common
	Container
	Direction
	Identity
	Layout
	Link
	MusicXML
	Note
	Opus
	Partwise
	Score
	Timewise
	Util

	Test
	Conclusion

