{-# LANGUAGE BangPatterns #-} -- | Scoring functions commonly used for evaluation of NLP -- systems. Most functions in this module work on lists, but some take -- a precomputed table of 'Counts'. This will give a speedup if you -- want to compute multiple scores on the same data. For example to -- compute the Mutual Information, Variation of Information and the -- Adujusted Rand Index on the same pair of clusterings: -- -- >>> let cs = counts $ zip "abcabc" "abaaba" -- >>> mapM_ (print . ($ cs)) [mi, ari, vi] -- module NLP.Scores ( -- * Scores for classification and ranking accuracy , recipRank , avgPrecision -- * Scores for clustering , ari , mi , vi -- * Auxiliary types and functions , Count , Counts , sum , mean , jaccard , entropy ) where import Data.List hiding (sum) import qualified Data.Set as Set import qualified Data.Map as Map import Prelude hiding (sum) -- | Accuracy: the proportion of elements in the first list equal to -- elements at corresponding positions in second list. Lists should be -- of equal lengths. accuracy :: (Eq a, Fractional n) => [a] -> [a] -> n accuracy xs = mean . map fromEnum . zipWith (==) xs {-# SPECIALIZE accuracy :: [Double] -> [Double] -> Double #-} -- | Reciprocal rank: the reciprocal of the rank at which the first arguments -- occurs in the list given as the second argument. recipRank :: (Eq a, Fractional n) => a -> [a] -> n recipRank y ys = case [ r | (r,y') <- zip [1::Int ..] ys , y' == y ] of [] -> 0 r:_ -> 1/fromIntegral r {-# SPECIALIZE recipRank :: Double -> [Double] -> Double #-} -- | Average precision. -- avgPrecision :: (Fractional n, Ord a) => Set.Set a -> [a] -> n avgPrecision gold _ | Set.size gold == 0 = 0 avgPrecision gold xs = (/fromIntegral (Set.size gold)) . sum . map (\(r,rel,cum) -> if rel == 0 then 0 else fromIntegral cum / fromIntegral r) . takeWhile (\(_,_,cum) -> cum <= Set.size gold) . snd . mapAccumL (\z (r,rel) -> (z+rel,(r,rel,z+rel))) 0 $ [ (r,fromEnum $ x `Set.member` gold) | (x,r) <- zip xs [1::Int ..]] {-# SPECIALIZE avgPrecision :: (Ord a) => Set.Set a -> [a] -> Double #-} -- | Mutual information: MI(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X). Also -- known as information gain. mi :: (Ord a, Ord b) => Counts a b -> Double mi (Counts cxy cx cy) = let n = Map.foldl' (+) 0 cxy cell (P x y) nxy = let nx = cx Map.! x ny = cy Map.! y in nxy / n * logBase 2 (nxy * n / nx / ny) in sum [ cell (P x y) nxy | (P x y, nxy) <- Map.toList cxy ] -- | Variation of information: VI(X,Y) = H(X) + H(Y) - 2 MI(X,Y) vi :: (Ord a, Ord b) => Counts a b -> Double vi cs@(Counts cxy cx cy) = entropy (elems cx) + entropy (elems cy) - 2 * mi cs where elems = Map.elems -- | Adjusted Rand Index: ari :: (Ord a, Ord b) => Counts a b -> Double ari (Counts cxy cx cy) = (sum1 - sum2*sum3/choicen2) / (1/2 * (sum2+sum3) - (sum2*sum3) / choicen2) where choicen2 = choice (sum . Map.elems $ cx) 2 sum1 = sum [ choice nij 2 | nij <- Map.elems cxy ] sum2 = sum [ choice ni 2 | ni <- Map.elems cx ] sum3 = sum [ choice nj 2 | nj <- Map.elems cy ] -- | A count type Count = Double -- | Count table data Counts a b = Counts { joint :: !(Map.Map (P a b) Count) -- ^ Counts of both components , marginalFst :: !(Map.Map a Count) -- ^ Counts of the first component , marginalSnd :: !(Map.Map b Count) -- ^ Counts of the second component } data P a b = P !a !b deriving (Eq, Ord) -- | The empty count table empty :: (Ord a, Ord b) => Counts a b empty = Counts Map.empty Map.empty Map.empty -- | The sum of a list of numbers (without overflowing stack, -- unlike 'Prelude.sum'). sum :: (Num a) => [a] -> a sum = foldl' (+) 0 {-# SPECIALIZE sum :: [Double] -> Double #-} {-# SPECIALIZE sum :: [Int] -> Int #-} {-# INLINE sum #-} -- | The mean of a list of numbers. mean :: (Fractional n, Real a) => [a] -> n mean xs = let (P tot len) = foldl' (\(P s l) x -> (P (s+x) (l+1))) (P 0 0) xs in realToFrac tot/len {-# SPECIALIZE mean :: [Double] -> Double #-} -- | The binomial coefficient: C^n_k = PROD^k_i=1 (n-k-i)/i choice :: (Enum b, Fractional b) => b -> b -> b choice n k = foldl' (*) 1 [n-k+1 .. n] / foldl' (*) 1 [1 .. k] {-# SPECIALIZE choice :: Double -> Double -> Double #-} -- | Jaccard coefficient -- J(A,B) = |AB| / |A union B| jaccard :: (Fractional n, Ord a) => Set.Set a -> Set.Set a -> n jaccard a b = fromIntegral (Set.size (Set.intersection a b)) / fromIntegral (Set.size (Set.union a b)) {-# SPECIALIZE jaccard :: (Ord a) => Set.Set a -> Set.Set a -> Double #-} -- | Entropy: H(X) = -SUM_i P(X=i) log_2(P(X=i)) entropy :: [Count] -> Double entropy cx = negate $ sum [ f nx | nx <- cx ] where n = sum cx logn = logBase 2 n f nx = nx / n * (logBase 2 nx - logn) counts :: (Ord a, Ord b) => [(a,b)] -> Counts a b counts xys = foldl' f empty xys where f cs@(Counts cxy cx cy) (!x,!y) = cs { joint = Map.insertWith' (+) (P x y) 1 cxy , marginalFst = Map.insertWith' (+) x 1 cx , marginalSnd = Map.insertWith' (+) y 1 cy }