{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_HADDOCK not-home #-} -- | -- Module : Data.Map.NonEmpty.Internal -- Copyright : (c) Justin Le 2018 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- Unsafe internal-use functions used in the implementation of -- "Data.Map.NonEmpty". These functions can potentially be used to break -- the abstraction of 'NEMap' and produce unsound maps, so be wary! module Data.Map.NonEmpty.Internal ( -- * Non-Empty Map type NEMap(..) , singleton , nonEmptyMap , withNonEmpty , fromList , toList , map , insertWith , union , unions , elems , size , toMap -- * Folds , foldr , foldr' , foldr1 , foldl , foldl' , foldl1 -- * Traversals , traverseWithKey , traverseWithKey1 , foldMapWithKey -- * Unsafe Map Functions , insertMinMap , insertMaxMap -- * Debug , valid ) where import Control.Applicative import Control.Comonad import Control.DeepSeq import Control.Monad import Data.Coerce import Data.Data import Data.Function import Data.Functor.Apply import Data.Functor.Classes import Data.List.NonEmpty (NonEmpty(..)) import Data.Map.Internal (Map(..)) import Data.Maybe import Data.Semigroup import Data.Semigroup.Foldable (Foldable1(fold1)) import Data.Semigroup.Traversable (Traversable1(..)) import Prelude hiding (foldr1, foldl1, foldr, foldl, map) import Text.Read import qualified Data.Aeson as A import qualified Data.Foldable as F import qualified Data.Map as M import qualified Data.Map.Internal as M import qualified Data.Semigroup.Foldable as F1 -- | A non-empty (by construction) map from keys @k@ to values @a@. At -- least one key-value pair exists in an @'NEMap' k v@ at all times. -- -- Functions that /take/ an 'NEMap' can safely operate on it with the -- assumption that it has at least one key-value pair. -- -- Functions that /return/ an 'NEMap' provide an assurance that the result -- has at least one key-value pair. -- -- "Data.Map.NonEmpty" re-exports the API of "Data.Map", faithfully -- reproducing asymptotics, typeclass constraints, and semantics. -- Functions that ensure that input and output maps are both non-empty -- (like 'Data.Map.NonEmpty.insert') return 'NEMap', but functions that -- might potentially return an empty map (like 'Data.Map.NonEmpty.delete') -- return a 'Map' instead. -- -- You can directly construct an 'NEMap' with the API from -- "Data.Map.NonEmpty"; it's more or less the same as constructing a normal -- 'Map', except you don't have access to 'Data.Map.empty'. There are also -- a few ways to construct an 'NEMap' from a 'Map': -- -- 1. The 'nonEmptyMap' smart constructor will convert a @'Map' k a@ into -- a @'Maybe' ('NEMap' k a)@, returning 'Nothing' if the original 'Map' -- was empty. -- 2. You can use the 'Data.Map.NonEmpty.insertMap' family of functions to -- insert a value into a 'Map' to create a guaranteed 'NEMap'. -- 3. You can use the 'Data.Map.NonEmpty.IsNonEmpty' and -- 'Data.Map.NonEmpty.IsEmpty' patterns to "pattern match" on a 'Map' -- to reveal it as either containing a 'NEMap' or an empty map. -- 4. 'withNonEmpty' offers a continuation-based interface for -- deconstructing a 'Map' and treating it as if it were an 'NEMap'. -- -- You can convert an 'NEMap' into a 'Map' with 'toMap' or -- 'Data.Map.NonEmpty.IsNonEmpty', essentially "obscuring" the non-empty -- property from the type. data NEMap k a = NEMap { nemK0 :: !k -- ^ invariant: must be smaller than smallest key in map , nemV0 :: a , nemMap :: !(Map k a) } deriving (Typeable) instance (Eq k, Eq a) => Eq (NEMap k a) where t1 == t2 = M.size (nemMap t1) == M.size (nemMap t2) && toList t1 == toList t2 instance (Ord k, Ord a) => Ord (NEMap k a) where compare = compare `on` toList (<) = (<) `on` toList (>) = (>) `on` toList (<=) = (<=) `on` toList (>=) = (>=) `on` toList instance Eq2 NEMap where liftEq2 eqk eqv m n = size m == size n && liftEq (liftEq2 eqk eqv) (toList m) (toList n) instance Eq k => Eq1 (NEMap k) where liftEq = liftEq2 (==) instance Ord2 NEMap where liftCompare2 cmpk cmpv m n = liftCompare (liftCompare2 cmpk cmpv) (toList m) (toList n) instance Ord k => Ord1 (NEMap k) where liftCompare = liftCompare2 compare instance Show2 NEMap where liftShowsPrec2 spk slk spv slv d m = showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m) where sp = liftShowsPrec2 spk slk spv slv sl = liftShowList2 spk slk spv slv instance Show k => Show1 (NEMap k) where liftShowsPrec = liftShowsPrec2 showsPrec showList instance (Ord k, Read k) => Read1 (NEMap k) where liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp' rl') "fromList" fromList where rp' = liftReadsPrec rp rl rl' = liftReadList rp rl instance (Ord k, Read k, Read e) => Read (NEMap k e) where readPrec = parens $ prec 10 $ do Ident "fromList" <- lexP xs <- parens . prec 10 $ readPrec return (fromList xs) readListPrec = readListPrecDefault instance (Show k, Show a) => Show (NEMap k a) where showsPrec d m = showParen (d > 10) $ showString "fromList (" . shows (toList m) . showString ")" instance (NFData k, NFData a) => NFData (NEMap k a) where rnf (NEMap k v a) = rnf k `seq` rnf v `seq` rnf a -- Data instance code from Data.Map.Internal -- -- Copyright : (c) Daan Leijen 2002 -- (c) Andriy Palamarchuk 2008 instance (Data k, Data a, Ord k) => Data (NEMap k a) where gfoldl f z m = z fromList `f` toList m toConstr _ = fromListConstr gunfold k z c = case constrIndex c of 1 -> k (z fromList) _ -> error "gunfold" dataTypeOf _ = mapDataType dataCast2 = gcast2 fromListConstr :: Constr fromListConstr = mkConstr mapDataType "fromList" [] Prefix mapDataType :: DataType mapDataType = mkDataType "Data.Map.NonEmpty.NonEmpty.Internal.NEMap" [fromListConstr] instance (A.ToJSONKey k, A.ToJSON a) => A.ToJSON (NEMap k a) where toJSON = A.toJSON . toMap toEncoding = A.toEncoding . toMap instance (A.FromJSONKey k, Ord k, A.FromJSON a) => A.FromJSON (NEMap k a) where parseJSON = withNonEmpty (fail err) pure <=< A.parseJSON where err = "NEMap: Non-empty map expected, but empty map found" -- | /O(n)/. Fold the values in the map using the given right-associative -- binary operator, such that @'foldr' f z == 'Prelude.foldr' f z . 'elems'@. -- -- > elemsList map = foldr (:) [] map -- -- > let f a len = len + (length a) -- > foldr f 0 (fromList ((5,"a") :| [(3,"bbb")])) == 4 foldr :: (a -> b -> b) -> b -> NEMap k a -> b foldr f z (NEMap _ v m) = v `f` M.foldr f z m {-# INLINE foldr #-} -- | /O(n)/. A strict version of 'foldr'. Each application of the operator -- is evaluated before using the result in the next application. This -- function is strict in the starting value. foldr' :: (a -> b -> b) -> b -> NEMap k a -> b foldr' f z (NEMap _ v m) = v `f` y where !y = M.foldr' f z m {-# INLINE foldr' #-} -- | /O(n)/. A version of 'foldr' that uses the value at the maximal key in -- the map as the starting value. -- -- Note that, unlike 'Data.Foldable.foldr1' for 'Map', this function is -- total if the input function is total. foldr1 :: (a -> a -> a) -> NEMap k a -> a foldr1 f (NEMap _ v m) = maybe v (f v . uncurry (M.foldr f)) . M.maxView $ m {-# INLINE foldr1 #-} -- | /O(n)/. Fold the values in the map using the given left-associative -- binary operator, such that @'foldl' f z == 'Prelude.foldl' f z . 'elems'@. -- -- > elemsList = reverse . foldl (flip (:)) [] -- -- > let f len a = len + (length a) -- > foldl f 0 (fromList ((5,"a") :| [(3,"bbb")])) == 4 foldl :: (a -> b -> a) -> a -> NEMap k b -> a foldl f z (NEMap _ v m) = M.foldl f (f z v) m {-# INLINE foldl #-} -- | /O(n)/. A strict version of 'foldl'. Each application of the operator -- is evaluated before using the result in the next application. This -- function is strict in the starting value. foldl' :: (a -> b -> a) -> a -> NEMap k b -> a foldl' f z (NEMap _ v m) = M.foldl' f x m where !x = f z v {-# INLINE foldl' #-} -- | /O(n)/. A version of 'foldl' that uses the value at the minimal key in -- the map as the starting value. -- -- Note that, unlike 'Data.Foldable.foldl1' for 'Map', this function is -- total if the input function is total. foldl1 :: (a -> a -> a) -> NEMap k a -> a foldl1 f (NEMap _ v m) = M.foldl f v m {-# INLINE foldl1 #-} -- | /O(n)/. Fold the keys and values in the map using the given semigroup, -- such that -- -- @'foldMapWithKey' f = 'Data.Semigroup.Foldable.fold1' . 'Data.Map.NonEmpty.mapWithKey' f@ -- -- This can be an asymptotically faster than -- 'Data.Map.NonEmpty.foldrWithKey' or 'Data.Map.NonEmpty.foldlWithKey' for -- some monoids. -- TODO: benchmark against maxView method foldMapWithKey :: Semigroup m => (k -> a -> m) -> NEMap k a -> m foldMapWithKey f (NEMap k0 v m) = option (f k0 v) (f k0 v <>) . M.foldMapWithKey (\k -> Option . Just . f k) $ m {-# INLINE foldMapWithKey #-} -- | /O(n)/. Map a function over all values in the map. -- -- > map (++ "x") (fromList ((5,"a") :| [(3,"b")])) == fromList ((3, "bx") :| [(5, "ax")]) map :: (a -> b) -> NEMap k a -> NEMap k b map f (NEMap k0 v m) = NEMap k0 (f v) (M.map f m) {-# NOINLINE [1] map #-} {-# RULES "map/map" forall f g xs . map f (map g xs) = map (f . g) xs #-} {-# RULES "map/coerce" map coerce = coerce #-} -- | /O(m*log(n\/m + 1)), m <= n/. -- The expression (@'union' t1 t2@) takes the left-biased union of @t1@ and -- @t2@. It prefers @t1@ when duplicate keys are encountered, i.e. -- (@'union' == 'Data.Map.NonEmpty.unionWith' 'const'@). -- -- > union (fromList ((5, "a") :| [(3, "b")])) (fromList ((5, "A") :| [(7, "C")])) == fromList ((3, "b") :| [(5, "a"), (7, "C")]) union :: Ord k => NEMap k a -> NEMap k a -> NEMap k a union n1@(NEMap k1 v1 m1) n2@(NEMap k2 v2 m2) = case compare k1 k2 of LT -> NEMap k1 v1 . M.union m1 . toMap $ n2 EQ -> NEMap k1 v1 . M.union m1 $ m2 GT -> NEMap k2 v2 . M.union (toMap n1) $ m2 {-# INLINE union #-} -- | The left-biased union of a non-empty list of maps. -- -- > unions (fromList ((5, "a") :| [(3, "b")]) :| [fromList ((5, "A") :| [(7, "C")]), fromList ((5, "A3") :| [(3, "B3")])]) -- > == fromList [(3, "b"), (5, "a"), (7, "C")] -- > unions (fromList ((5, "A3") :| [(3, "B3")]) :| [fromList ((5, "A") :| [(7, "C")]), fromList ((5, "a") :| [(3, "b")])]) -- > == fromList ((3, "B3") :| [(5, "A3"), (7, "C")]) unions :: (Foldable1 f, Ord k) => f (NEMap k a) -> NEMap k a unions (F1.toNonEmpty->(m :| ms)) = F.foldl' union m ms {-# INLINE unions #-} -- | /O(n)/. -- Return all elements of the map in the ascending order of their keys. -- -- > elems (fromList ((5,"a") :| [(3,"b")])) == ("b" :| ["a"]) elems :: NEMap k a -> NonEmpty a elems (NEMap _ v m) = v :| M.elems m {-# INLINE elems #-} -- | /O(1)/. The number of elements in the map. Guaranteed to be greater -- than zero. -- -- > size (singleton 1 'a') == 1 -- > size (fromList ((1,'a') :| [(2,'c'), (3,'b')])) == 3 size :: NEMap k a -> Int size (NEMap _ _ m) = 1 + M.size m {-# INLINE size #-} -- | /O(log n)/. -- Convert a non-empty map back into a normal possibly-empty map, for usage -- with functions that expect 'Map'. -- -- Can be thought of as "obscuring" the non-emptiness of the map in its -- type. See the 'Data.Map.NonEmpty.IsNotEmpty' pattern. -- -- 'nonEmptyMap' and @'maybe' 'Data.Map.empty' 'toMap'@ form an isomorphism: they -- are perfect structure-preserving inverses of eachother. -- -- > toMap (fromList ((3,"a") :| [(5,"b")])) == Data.Map.fromList [(3,"a"), (5,"b")] toMap :: NEMap k a -> Map k a toMap (NEMap k v m) = insertMinMap k v m {-# INLINE toMap #-} -- | /O(n)/. -- @'traverseWithKey' f m == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@ -- That is, behaves exactly like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value. -- -- /Use 'traverseWithKey1'/ whenever possible (if your 'Applicative' -- also has 'Apply' instance). This version is provided only for types -- that do not have 'Apply' instance, since 'Apply' is not at the moment -- (and might not ever be) an official superclass of 'Applicative'. -- -- @ -- 'traverseWithKey' f = 'unwrapApplicative' . 'traverseWithKey1' (\\k -> WrapApplicative . f k) -- @ traverseWithKey :: Applicative t => (k -> a -> t b) -> NEMap k a -> t (NEMap k b) traverseWithKey f (NEMap k v m0) = NEMap k <$> f k v <*> M.traverseWithKey f m0 {-# INLINE traverseWithKey #-} -- | /O(n)/. -- @'traverseWithKey1' f m == 'fromList' <$> 'traverse1' (\(k, v) -> (,) k <$> f k v) ('toList' m)@ -- -- That is, behaves exactly like a regular 'traverse1' except that the traversing -- function also has access to the key associated with a value. -- -- Is more general than 'traverseWithKey', since works with all 'Apply', -- and not just 'Applicative'. -- TODO: benchmark against maxView-based methods traverseWithKey1 :: Apply t => (k -> a -> t b) -> NEMap k a -> t (NEMap k b) traverseWithKey1 f (NEMap k0 v m0) = case runMaybeApply m1 of Left m2 -> NEMap k0 <$> f k0 v <.> m2 Right m2 -> flip (NEMap k0) m2 <$> f k0 v where m1 = M.traverseWithKey (\k -> MaybeApply . Left . f k) m0 {-# INLINABLE traverseWithKey1 #-} -- | /O(n)/. Convert the map to a non-empty list of key\/value pairs. -- -- > toList (fromList ((5,"a") :| [(3,"b")])) == ((3,"b") :| [(5,"a")]) toList :: NEMap k a -> NonEmpty (k, a) toList (NEMap k v m) = (k,v) :| M.toList m {-# INLINE toList #-} -- | /O(log n)/. Smart constructor for an 'NEMap' from a 'Map'. Returns -- 'Nothing' if the 'Map' was originally actually empty, and @'Just' n@ -- with an 'NEMap', if the 'Map' was not empty. -- -- 'nonEmptyMap' and @'maybe' 'Data.Map.empty' 'toMap'@ form an -- isomorphism: they are perfect structure-preserving inverses of -- eachother. -- -- See 'Data.Map.NonEmpty.IsNonEmpty' for a pattern synonym that lets you -- "match on" the possiblity of a 'Map' being an 'NEMap'. -- -- > nonEmptyMap (Data.Map.fromList [(3,"a"), (5,"b")]) == Just (fromList ((3,"a") :| [(5,"b")])) nonEmptyMap :: Map k a -> Maybe (NEMap k a) nonEmptyMap = (fmap . uncurry . uncurry) NEMap . M.minViewWithKey {-# INLINE nonEmptyMap #-} -- | /O(log n)/. A general continuation-based way to consume a 'Map' as if -- it were an 'NEMap'. @'withNonEmpty' def f@ will take a 'Map'. If map is -- empty, it will evaluate to @def@. Otherwise, a non-empty map 'NEMap' -- will be fed to the function @f@ instead. -- -- @'nonEmptyMap' == 'withNonEmpty' 'Nothing' 'Just'@ withNonEmpty :: r -- ^ value to return if map is empty -> (NEMap k a -> r) -- ^ function to apply if map is not empty -> Map k a -> r withNonEmpty def f = maybe def f . nonEmptyMap {-# INLINE withNonEmpty #-} -- | /O(n*log n)/. Build a non-empty map from a non-empty list of -- key\/value pairs. See also 'Data.Map.NonEmpty.fromAscList'. If the list -- contains more than one value for the same key, the last value for the -- key is retained. -- -- > fromList ((5,"a") :| [(3,"b"), (5, "c")]) == fromList ((5,"c") :| [(3,"b")]) -- > fromList ((5,"c") :| [(3,"b"), (5, "a")]) == fromList ((5,"a") :| [(3,"b")]) -- TODO: write manually and optimize to be equivalent to -- 'fromDistinctAscList' if items are ordered, just like the actual -- 'M.fromList'. fromList :: Ord k => NonEmpty (k, a) -> NEMap k a fromList ((k, v) :| xs) = withNonEmpty (singleton k v) (insertWith (const id) k v) . M.fromList $ xs {-# INLINE fromList #-} -- | /O(1)/. A map with a single element. -- -- > singleton 1 'a' == fromList ((1, 'a') :| []) -- > size (singleton 1 'a') == 1 singleton :: k -> a -> NEMap k a singleton k v = NEMap k v M.empty {-# INLINE singleton #-} -- | /O(log n)/. Insert with a function, combining new value and old value. -- @'insertWith' f key value mp@ will insert the pair (key, value) into -- @mp@ if key does not exist in the map. If the key does exist, the -- function will insert the pair @(key, f new_value old_value)@. -- -- See 'Data.Map.NonEmpty.insertMapWith' for a version where the first -- argument is a 'Map'. -- -- > insertWith (++) 5 "xxx" (fromList ((5,"a") :| [(3,"b")])) == fromList ((3, "b") :| [(5, "xxxa")]) -- > insertWith (++) 7 "xxx" (fromList ((5,"a") :| [(3,"b")])) == fromList ((3, "b") :| [(5, "a"), (7, "xxx")]) insertWith :: Ord k => (a -> a -> a) -> k -> a -> NEMap k a -> NEMap k a insertWith f k v n@(NEMap k0 v0 m) = case compare k k0 of LT -> NEMap k v . toMap $ n EQ -> NEMap k (f v v0) m GT -> NEMap k0 v0 $ M.insertWith f k v m {-# INLINE insertWith #-} -- | Left-biased union instance Ord k => Semigroup (NEMap k a) where (<>) = union {-# INLINE (<>) #-} sconcat = unions {-# INLINE sconcat #-} instance Functor (NEMap k) where fmap = map {-# INLINE fmap #-} x <$ NEMap k _ m = NEMap k x (x <$ m) {-# INLINE (<$) #-} -- | Traverses elements in order of ascending keys -- -- 'Data.Foldable.foldr1', 'Data.Foldable.foldl1', 'Data.Foldable.minimum', -- 'Data.Foldable.maximum' are all total. instance Foldable (NEMap k) where #if MIN_VERSION_base(4,11,0) fold (NEMap _ v m) = v <> F.fold m {-# INLINE fold #-} foldMap f (NEMap _ v m) = f v <> foldMap f m {-# INLINE foldMap #-} #else fold (NEMap _ v m) = v `mappend` F.fold m {-# INLINE fold #-} foldMap f (NEMap _ v m) = f v `mappend` foldMap f m {-# INLINE foldMap #-} #endif foldr = foldr {-# INLINE foldr #-} foldr' = foldr' {-# INLINE foldr' #-} foldr1 = foldr1 {-# INLINE foldr1 #-} foldl = foldl {-# INLINE foldl #-} foldl' = foldl' {-# INLINE foldl' #-} foldl1 = foldl1 {-# INLINE foldl1 #-} null _ = False {-# INLINE null #-} length = size {-# INLINE length #-} elem x (NEMap _ v m) = F.elem x m || x == v {-# INLINE elem #-} -- TODO: use build toList = F.toList . elems {-# INLINE toList #-} -- | Traverses elements in order of ascending keys instance Traversable (NEMap k) where traverse f (NEMap k v m) = NEMap k <$> f v <*> traverse f m {-# INLINE traverse #-} sequenceA (NEMap k v m) = NEMap k <$> v <*> sequenceA m {-# INLINE sequenceA #-} -- | Traverses elements in order of ascending keys instance Foldable1 (NEMap k) where fold1 (NEMap _ v m) = option v (v <>) . F.foldMap (Option . Just) $ m {-# INLINE fold1 #-} foldMap1 f = foldMapWithKey (const f) {-# INLINE foldMap1 #-} toNonEmpty = elems {-# INLINE toNonEmpty #-} -- | Traverses elements in order of ascending keys instance Traversable1 (NEMap k) where traverse1 f = traverseWithKey1 (const f) {-# INLINE traverse1 #-} sequence1 (NEMap k v m0) = case runMaybeApply m1 of Left m2 -> NEMap k <$> v <.> m2 Right m2 -> flip (NEMap k) m2 <$> v where m1 = traverse (MaybeApply . Left) m0 {-# INLINABLE sequence1 #-} -- | 'extract' gets the value at the minimal key, and 'duplicate' produces -- a map of maps comprised of all keys from the original map greater than -- or equal to the current key. -- -- @since 0.1.1.0 instance Comonad (NEMap k) where extract = nemV0 {-# INLINE extract #-} duplicate n0@(NEMap k0 _ m0) = NEMap k0 n0 . snd . M.mapAccumWithKey go m0 $ m0 where go m k v = (m', NEMap k v m') where !m' = M.deleteMin m {-# INLINE duplicate #-} -- | /O(n)/. Test if the internal map structure is valid. valid :: Ord k => NEMap k a -> Bool valid (NEMap k _ m) = M.valid m && all ((k <) . fst . fst) (M.minViewWithKey m) -- | /O(log n)/. Insert new key and value into a map where keys are -- /strictly greater than/ the new key. That is, the new key must be -- /strictly less than/ all keys present in the 'Map'. /The precondition -- is not checked./ -- -- While this has the same asymptotics as @Data.Map.insert@, it saves -- a constant factor for key comparison (so may be helpful if comparison is -- expensive) and also does not require an 'Ord' instance for the key type. insertMinMap :: k -> a -> Map k a -> Map k a insertMinMap kx x = \case Tip -> M.singleton kx x Bin _ ky y l r -> M.balanceL ky y (insertMinMap kx x l) r {-# INLINABLE insertMinMap #-} -- | /O(log n)/. Insert new key and value into a map where keys are -- /strictly less than/ the new key. That is, the new key must be -- /strictly greater than/ all keys present in the 'Map'. /The -- precondition is not checked./ -- -- While this has the same asymptotics as @Data.Map.insert@, it saves -- a constant factor for key comparison (so may be helpful if comparison is -- expensive) and also does not require an 'Ord' instance for the key type. insertMaxMap :: k -> a -> Map k a -> Map k a insertMaxMap kx x = \case Tip -> M.singleton kx x Bin _ ky y l r -> M.balanceR ky y l (insertMaxMap kx x r) {-# INLINABLE insertMaxMap #-}