{- | Copyright : Copyright (C) 2011 Bjorn Buckwalter License : BSD3 Maintainer : bjorn.buckwalter@gmail.com Stability : Stable Portability: Haskell 98 This purpose of this library is to have a simple API and no dependencies beyond Haskell 98 in order to let you produce normally distributed random values with a minimum of fuss. This library does /not/ attempt to be blazingly fast nor to pass stringent tests of randomness. It attempts to be very easy to install and use while being \"good enough\" for many applications (simulations, games, etc.). The API builds upon and is largely analogous to that of the Haskell 98 @Random@ module (more recently @System.Random@). Pure: > (sample,g) = normal myRandomGen -- using a Random.RandomGen > samples = normals myRandomGen -- infinite list > samples2 = mkNormals 10831452 -- infinite list using a seed In the IO monad: > sample <- normalIO > samples <- normalsIO -- infinite list With custom mean and standard deviation: > (sample,g) = normal' (mean,sigma) myRandomGen > samples = normals' (mean,sigma) myRandomGen > samples2 = mkNormals' (mean,sigma) 10831452 > sample <- normalIO' (mean,sigma) > samples <- normalsIO' (mean,sigma) Internally the library uses the Box-Muller method to generate normally distributed values from uniformly distributed random values. If more than one sample is needed taking samples off an infinite list (created by e.g. 'normals') will be roughly twice as efficient as repeatedly generating individual samples with e.g. 'normal'. -} module Data.Random.Normal ( -- * Pure interface normal , normals , mkNormals -- ** Custom mean and standard deviation , normal' , normals' , mkNormals' -- * Using the global random number generator , normalIO , normalsIO -- ** Custom mean and standard deviation , normalIO' , normalsIO' ) where import List (mapAccumL) -- Data.List import Random -- System.Random -- Normal distribution approximation -- --------------------------------- -- | Box-Muller method for generating two normally distributed -- independent random values from two uniformly distributed -- independent random values. boxMuller :: Floating a => a -> a -> (a,a) boxMuller u1 u2 = (r * cos t, r * sin t) where r = sqrt (-2 * log u1) t = 2 * pi * u2 -- | Convert a list of uniformly distributed random values into a -- list of normally distributed random values. The Box-Muller -- algorithms converts values two at a time, so if the input list -- has an uneven number of element the last one will be discarded. boxMullers :: Floating a => [a] -> [a] boxMullers (u1:u2:us) = n1:n2:boxMullers us where (n1,n2) = boxMuller u1 u2 boxMullers _ = [] -- API -- === -- | Takes a random number generator g, and returns a random value -- normally distributed with mean 0 and standard deviation 1, -- together with a new generator. This function is analogous to -- 'Random.random'. normal :: (RandomGen g, Random a, Floating a) => g -> (a,g) normal g0 = (fst $ boxMuller u1 u2, g2) -- While The Haskell 98 report says "For fractional types, the -- range is normally the semi-closed interval [0,1)" we will -- specify the range explicitly just to be sure. where (u1,g1) = randomR (0,1) g0 (u2,g2) = randomR (0,1) g1 -- | Plural variant of 'normal', producing an infinite list of -- random values instead of returning a new generator. This function -- is analogous to 'Random.randoms'. normals :: (RandomGen g, Random a, Floating a) => g -> [a] normals = boxMullers . randoms -- | Creates a infinite list of normally distributed random values -- from the provided random generator seed. (In the implementation -- the seed is fed to 'Random.mkStdGen' to produce the random -- number generator.) mkNormals :: (Random a, Floating a) => Int -> [a] mkNormals = normals . mkStdGen -- | A variant of 'normal' that uses the global random number -- generator. This function is analogous to 'Random.randomIO'. normalIO :: (Random a, Floating a) => IO a normalIO = do u1 <- randomRIO (0,1) u2 <- randomRIO (0,1) return $ fst $ boxMuller u1 u2 -- | Creates a infinite list of normally distributed random values -- using the global random number generator. (In the implementation -- 'Random.newStdGen' is used.) normalsIO :: (Random a, Floating a) => IO [a] normalsIO = fmap normals newStdGen -- With mean and standard deviation -- -------------------------------- -- | Analogous to 'normal' but uses the supplied (mean, standard -- deviation). normal' :: (RandomGen g, Random a, Floating a) => (a,a) -> g -> (a,g) normal' (mean, sigma) g = (x * sigma + mean, g') where (x, g') = normal g -- | Analogous to 'normals' but uses the supplied (mean, standard -- deviation). normals' :: (RandomGen g, Random a, Floating a) => (a,a) -> g -> [a] normals' (mean, sigma) g = map (\x -> x * sigma + mean) (normals g) -- | Analogous to 'mkNormals' but uses the supplied (mean, standard -- deviation). mkNormals' :: (Random a, Floating a) => (a,a) -> Int -> [a] mkNormals' ms = normals' ms . mkStdGen -- | Analogous to 'normalIO' but uses the supplied (mean, standard -- deviation). normalIO' ::(Random a, Floating a) => (a,a) -> IO a normalIO' (mean,sigma) = fmap (\x -> x * sigma + mean) normalIO -- | Analogous to 'normalsIO' but uses the supplied (mean, standard -- deviation). normalsIO' :: (Random a, Floating a) => (a,a) -> IO [a] normalsIO' ms = fmap (normals' ms) newStdGen