{-# LANGUAGE NoImplicitPrelude , PackageImports , UnicodeSyntax #-} {-| Rules to convert numbers to an expression language. -} module Text.Numeral.Rules ( -- * The Rule type Rule -- * Rule combinators , conditional , combine , findRule -- * Rules , unknown , pos, checkPos , lit, lit1 , add , mul, mul1 , sub , mulScale, mulScale1 , shortScale, longScale, pelletierScale , shortScale1, longScale1, pelletierScale1 , mkStep, step, step1 ) where ------------------------------------------------------------------------------- -- Imports ------------------------------------------------------------------------------- import "base" Data.Bool ( Bool, otherwise ) import "base" Data.Function ( ($), id, const, flip, fix ) import "base" Data.List ( foldr ) import "base" Data.Ord ( Ord, (<), (>) ) import "base" Prelude ( Integral, fromIntegral , Num, (-), abs, divMod, div, even ) import "base-unicode-symbols" Data.Eq.Unicode ( (≡) ) import "base-unicode-symbols" Data.Function.Unicode ( (∘) ) import "base-unicode-symbols" Prelude.Unicode ( (⋅) ) import "this" Text.Numeral.Exp ( Side(L, R) ) import "this" Text.Numeral.Misc ( intLog ) import qualified "this" Text.Numeral.Exp.Classes as C import qualified "fingertree" Data.IntervalMap.FingerTree as FT ( Interval(Interval) , IntervalMap, empty, insert , search ) -------------------------------------------------------------------------------- -- The Rule type -------------------------------------------------------------------------------- -- | A rule on how to convert a number into an expression -- language. Notice how this type is equal to the type of the '$' -- operator. type Rule α β = (α → β) → (α → β) -------------------------------------------------------------------------------- -- Rule combinators -------------------------------------------------------------------------------- -- | The \'if-then-else\' concept for rules. Applies the first rule if -- the predicate holds on the input value, otherwise applies the -- second rule. conditional ∷ (α → Bool) -- ^ Predicate on input value (\"if\"). → Rule α β -- ^ Rule to apply when predicate holds (\"then\"). → Rule α β -- ^ Rule to apply when predicate does not hold (\"else\"). → Rule α β conditional p t e = \f n → if p n then t f n else e f n -- | Tries to apply the first rule, if that produces an 'C.unknown' -- value it applies the second rule. combine ∷ (C.Unknown β) ⇒ Rule α β → Rule α β → Rule α β combine r1 r2 = \f n → case r1 f n of x | C.isUnknown x → r2 f n | otherwise → x -- | Chooses which rule to apply to an input value based on a interval -- list of rules. findRule ∷ (Ord α, Num α, C.Unknown β) ⇒ (α, Rule α β) -- ^ First interval rule. → [(α, Rule α β)] -- ^ Interval rule list. → α -- ^ Upper bound of the last interval. → Rule α β findRule x xs end = \f n → case FT.search n xm of [] → C.unknown (_,r):_ → r f n where xm = mkIntervalMap $ mkIntervalList x xs end -------------------------------------------------------------------------------- -- Rules -------------------------------------------------------------------------------- -- | A rule that always fails to convert a value. It constantly -- produces the 'C.unknown' value. -- -- >>> (fix unknown) (3 :: Integer) :: Exp -- Unknown unknown ∷ (C.Unknown β) ⇒ Rule α β unknown _ _ = C.unknown -- | -- -- >>> (pos $ lit $ fix unknown) (3 :: Integer) :: Exp -- Lit 3 -- >>> (pos $ lit $ fix unknown) (-3 :: Integer) :: Exp -- Neg (Lit 3) pos ∷ (Ord α, Num α, C.Lit β, C.Neg β) ⇒ Rule α β pos f n | n < 0 = C.neg $ f (abs n) | n > 0 = f n | otherwise = C.lit 0 -- | -- -- >>> (checkPos $ lit $ fix unknown) (3 :: Integer) :: Exp -- Lit 3 -- >>> (checkPos $ lit $ fix unknown) (-3 :: Integer) :: Exp -- Unknown checkPos ∷ (Ord α, Num α, C.Unknown β, C.Lit β) ⇒ Rule α β checkPos f n | n < 0 = C.unknown | n > 0 = f n | otherwise = C.lit 0 -- | The literal rule. Converts its argument into a 'C.lit'eral -- expression. -- -- >>> lit (fix unknown) (3 :: Integer) :: Exp -- Lit 3 -- -- In this example lit is applied to the nonsense rule \"'fix' -- 'unknown'\". Lit ignores that function, which is why we can pass it -- anything we want, including itself. -- -- >>> lit (fix undefined) (3 :: Integer) :: Exp -- Lit 3 -- >>> (fix lit) (3 :: Integer) :: Exp -- Lit 3 lit ∷ (Integral α, C.Lit β) ⇒ Rule α β lit = const $ C.lit ∘ fromIntegral -- | A variant on the 'lit' rule which always multiplies its argument -- with 1. Useful for languages which have numerals of the form \"one -- hundred and three\" as opposed to \"hundred and three\". -- -- >>> lit1 (fix unknown) (3 :: Integer) :: Exp -- Mul (Lit 1) (Lit 3) lit1 ∷ (Integral α, C.Lit β, C.Mul β) ⇒ Rule α β lit1 = const $ \n → C.lit 1 `C.mul` C.lit (fromIntegral n) -- | -- -- >>> (add 10 L $ lit $ fix unknown) (13 :: Integer) :: Exp -- Add (Lit 3) (Lit 10) add ∷ (Num α, C.Add β) ⇒ α → Side → Rule α β add val s = \f n → (flipIfR s C.add) (f $ n - val) (f val) -- | -- -- >>> (mul 10 R L $ lit $ fix unknown) (42 :: Integer) :: Exp -- Add (Mul (Lit 4) (Lit 10)) (Lit 2) mul ∷ (Integral α, C.Add β, C.Mul β) ⇒ α → Side → Side → Rule α β mul val aSide mSide = \f n → let (m, a) = n `divMod` val mval = (flipIfR mSide C.mul) (f m) (f val) in if a ≡ 0 then mval else (flipIfR aSide C.add) (f a) mval mul1 ∷ (Integral α, C.Lit β, C.Add β, C.Mul β) ⇒ α → Side → Side → Rule α β mul1 val aSide mSide = \f n → let (m, a) = n `divMod` val mval = if m ≡ 1 then C.lit 1 ⊡ C.lit (fromIntegral val) else f m ⊡ C.lit (fromIntegral val) in if a ≡ 0 then mval else (flipIfR aSide C.add) (f a) mval where (⊡) = flipIfR mSide C.mul -- | -- -- >>> (sub 20 $ lit $ fix unknown) (18 :: Integer) :: Exp -- Sub (Lit 2) (Lit 20) sub ∷ (Integral α, C.Sub β) ⇒ α → Rule α β sub val = \f n → C.sub (f $ val - n) (f val) mkStep ∷ (Integral α, C.Unknown β, C.Lit β, C.Add β, C.Mul β) ⇒ Rule α β -- ^ lit rule → (α → Side → Rule α β) -- ^ add rule → (α → Side → Side → Rule α β) -- ^ mul rule → α → α → Side → Side → Rule α β mkStep lr ar mr val r aSide mSide f n | n < val = C.unknown | n ≡ val = lr f n | n < val⋅2 = ar val aSide f n | n < val⋅r = mr val aSide mSide f n | otherwise = C.unknown step ∷ (Integral α, C.Unknown β, C.Lit β, C.Add β, C.Mul β) ⇒ α → α → Side → Side → Rule α β step = mkStep lit add mul step1 ∷ (Integral α, C.Unknown β, C.Lit β, C.Add β, C.Mul β) ⇒ α → α → Side → Side → Rule α β step1 = mkStep lit1 add mul1 -- See: http://en.wikipedia.org/wiki/Names_of_large_numbers mulScale ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ α → α → Side → Side → Rule α β → Rule α β mulScale base offset aSide mSide bigNumRule = \f n → let rank = (intLog n - offset) `div` base base' = fromIntegral base offset' = fromIntegral offset rank' = fromIntegral rank rankExp = (fix bigNumRule) rank (m, a) = n `divMod` C.scale base' offset' rank' scale' = C.scale base' offset' rankExp mval | m ≡ 1 = scale' | otherwise = (flipIfR mSide C.mul) (f m) scale' in if a ≡ 0 then mval else (flipIfR aSide C.add) (f a) mval mulScale1 ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ α → α → Side → Side → Rule α β → Rule α β mulScale1 base offset aSide mSide bigNumRule = \f n → let rank = (intLog n - offset) `div` base base' = fromIntegral base offset' = fromIntegral offset rank' = fromIntegral rank rankExp = (fix bigNumRule) rank (m, a) = n `divMod` C.scale base' offset' rank' mval = (flipIfR mSide C.mul) (f m) (C.scale base' offset' rankExp) in if a ≡ 0 then mval else (flipIfR aSide C.add) (f a) mval shortScale ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β shortScale = mulScale 3 3 shortScale1 ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β shortScale1 = mulScale1 3 3 longScale ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β longScale = mulScale 6 0 longScale1 ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β longScale1 = mulScale1 6 0 pelletierScale ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β pelletierScale aSide mSide bigNumRule = conditional (\n → even $ intLog n `div` 3) (mulScale 6 0 aSide mSide bigNumRule) (mulScale 6 3 aSide mSide bigNumRule) pelletierScale1 ∷ (Integral α, C.Scale α, C.Add β, C.Mul β, C.Scale β) ⇒ Side → Side → Rule α β → Rule α β pelletierScale1 aSide mSide bigNumRule = conditional (\n → even $ intLog n `div` 3) (mulScale1 6 0 aSide mSide bigNumRule) (mulScale1 6 3 aSide mSide bigNumRule) -------------------------------------------------------------------------------- -- Miscellaneous -------------------------------------------------------------------------------- flipIfR ∷ Side → (α → α → α) → (α → α → α) flipIfR L = id flipIfR R = flip mkIntervalList ∷ (Num a) ⇒ (a, b) → [(a, b)] → a → [((a, a), b)] mkIntervalList (k, r) krs end = go k r krs where go k1 r1 [] = [((k1, end), r1)] go k1 r1 ((k2, r2):xs) = ((k1, k2-1), r1) : go k2 r2 xs mkIntervalMap ∷ (Ord v) ⇒ [((v, v), α)] → FT.IntervalMap v α mkIntervalMap = foldr ins FT.empty where ins ((lo, hi), n) = FT.insert (FT.Interval lo hi) n